
Wintersim 2002
San Diego, CA

9 December 2002

Meta-model are Models Too

Hans Vangheluwe

School of Computer Science, McGill University, Montréal, Canada

Juan de Lara

E.T.S. de Informática, Universidad Autonóma de Madrid, Madrid, Spain

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 1/34

Meta-modelling and XML
� modelling and simulation

� meta-modelling

� meta-modelling and XML

� Experiences with

A Tool for Multi-formalism, Meta-Modelling

AToM3: http://atom3.cs.mcgill.ca

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 2/34

Modelling and Simulation Wishlist
� Meaningful exchange and re-use of models

Syntax and Semantics !

� Domain/problem-specific (visual) modelling & simulation environments

Syntax and Semantics !

� Model transformation

– simulation (state changes)

– code-generation (syntax changes)

– simplification (level of abstraction changes)

– formalism transformation (formalism changes)

� Meaningful multi-formalism modelling

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 3/34

Petri Net model of Producer Consumer

P.Calculating
1

Wait4Cons
0

Buffer
0

Buffer−p
1

Wait4Prod
1

C.Calculating
0

Produce

Put in Buffer

Rem.from buffer

Consume

reachability analysis + simplification + simulation + code generation

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 4/34

Statechart model of Producer Consumer

Empty

Full

Producing Wait4Prod

Wait4Cons

Computing

Buff Producer Consumer

buffer++

buffer−−

Produce

/ buffer++

[in Buff.Empty]

/ buffer−−

[in Buff.Full]Consume

simulation + code generation + transformation to equivalent Petri Net

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 5/34

Timed Automata model of a Traffic Light

show(R)
R

show(O)
O

show(G)
G

show(O)
CO PCR

show(OFF)
OFF

after 60

after 10

pi

pi

pi

after 50

pi

pcr

pcr

after 10

off

off

off

off

off

smulation + code generation

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 6/34

Generated Application

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 7/34

GPSS model of Manufacturing system

5

.1

1

1

1

INSPECTR

1

INSPECTR

912

INSPECTR
3

INSPQ

INSPQ
TRANSIT

Name:
Low.Limit:
Int.Size:
Num.Intervals:

TRANSIT

10

5
5

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 8/34

Generated GPSS code

* Manufacturing shop model 4

* G. Gordon Figure 11-9/9-8

SIMULATE

L0 GENERATE 5 ; Create parts

L7 QUEUE INSPQ ; Queue for an inspector

L5 ENTER INSPECTR,1 ; A single inspector becomes busy

L8 DEPART INSPQ ; Leave the inspector queue

L9 MARK ; Start counting transit time

L1 ADVANCE 12,9 ; Inspect

L6 LEAVE INSPECTR,1 ; Make the inspector idle again

L10 TABULATE TRANSIT ; Tabulate parts’ transit time

L2 TRANSFER .1,ACC,REJ ; Randomly determine defective parts

ACC TERMINATE 1 ; Accepted parts

REJ TERMINATE 1 ; Rejected parts

TRANSIT TABLE M1,5,5,10

INSPECTR STORAGE 3

START 1000

END

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 9/34

Forrester System Dynamics model of Predator-Prey

Predator Prey

Grazing_efficiency

uptake_predator
loss_prey

predator_surplus_DR

prey_surplus_BR

2−species predator−prey system

transformation to Ordinary Differential Equations + analysis

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 10/34

Causal Block Diagram model of Harmonic Oscillator

x0

0.0

y0

1.0

IC
x

IC
y

− I OUT

K

1.0

0.0

PLOT

analysis + simplification + simulation

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 11/34

Event Scheduling DAE model of a Train
Train_at_rest

AcceleratingODE

x
v
v
k * (v − v_init + 5)

FrictionODE

x
v
v
− k * (v − 20)

BrakingODE

x
v
v
− k * (v + 3)

START EVENT

x = x_0
v = v_0
passengers = 0

Initialize_Model

passengers = passengers

Passenger_arrive
print "Train is leaving i

Train_is_full

print "Train is leaving a

Train_starts

Stop_Accelerating

Start_Accelerating

Start_Braking

print "Train arrived at t

DepartureStart

passengers = passengers −

Departure_Event

monitoring fct.:

v_max − v

+−

testmax

monitoring fct.:

v − v_min

+−

testmin
monitoring fct.:

stopping_x − x

+−

test_arrival

monitoring fct.:

v

+−

Test_zerospeed

IF
1

AFTER
0

IF
passengers < 10

AFTER
random.uniform (1 , 10)

IF
1

AFTER
5

IF
passengers >= 10

AFTER
0

IF
1 AFTER

0

IF
passengers > 0 AFTER

5

code generation

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 12/34

What is Meta-modelling ?
� A meta-model is a model of a modelling formalism

� A meta-model is itself a model. Its syntax and semantics are

governed by the formalism it is described in. That formalism can be

modelled in a meta-meta-model.

� As a meta-model is a model, we can reason about it, manipulate it, . . .

In particular, properties of (all models in) a formalism can be formally

proven.

� Formalism-specific modelling and simulation tools can automatically

be generated from a meta-model (e.g., in AToM3 A Tool for

Multi-formalism Meta-Modelling).

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 13/34

� Formalisms can be tailored to specific needs by modifying the

meta-model (possibly through inheritance if specializing).

� Building domain/application specific, possibly graphical modelling

and simulation environments becomes affordable.

� Semantics of new formalisms through extension or transformation.

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 14/34

FSA model of Even Binary Number recognizer

Init End_1

End_0

1

0

1

0

1

0

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 15/34

ER model of the FSA formalism syntax
(meta-model)

Name type=String init.val
isInitial type=Boolean in
isFinal type=Boolean init

FSAState
current

FSATransition

points_to

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 16/34

ER formalism + constraints (OCL/Python)

check for unique input labels (FSA)

for transition1 in state.out_connections:

for transition2 in state.out_connections:

if transition1 != transition2:

if transition1.in == transition2.in:

return("Non-determinism: input "+transition1.in)

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 17/34

ER model of the ER formalism (meta-meta-model)

name type=String init.val
attributes type=List init

ERentity

ERrelationship

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 18/34

Meta-meta-. . .

meta-meta
model

meta-model
processor

meta-model
user
input

a model of a class of models (the formalism MF)
semantics within formalism MMF
describes: structure and constraints

a model in formalism MF

-create
-delete
-verify (local, global)

meta-model
processor model

user
input

a model of a class of models (the formalism F)
semantics within formalism MF
describes: structure and constraints

a model in formalism F

-create
-delete
-verify (local, global)

MMF

MF

F

(ER)

(ER)

(FSA)

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 19/34

Causal Block Diagram Semantics ?

x0

0.0

y0

1.0

IC
x

IC
y

− I OUT

K

1.0

0.0

PLOT

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 20/34

Causal Block Diagram Denotational Semantics

���
� ��

�
dx
dt

� y x � 0 	� 0
dy
dt

�
 Kx y � 0 	� 1

K� 1

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 21/34

FSA model Operational Semantics ?

Init End_1

End_0

1

0

1

0

1

0

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 22/34

Simulation steps

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 23/34

Init End_1

End_0

1

0

1

0

1

0

Current State

Init End_1

End_0

1

0

1

0

1

0

Current State

Init End_1

End_0

1

0

1

0

1

0

Current State

Init End_1

End_0

1

0

1

0

1

0

Current State

Rule 1 Rule 2

Rule 2
Rule 2

Final Action
"Accept Input"

input 0

input 1
input 0

end of input

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 24/34

Graph Grammar model of FSA OpSem

/ <ANY><ANY>

<ANY>

Current State

2

4

3

1

/<COPIED><COPIED>

<COPIED>

Current State

2

4

3

1

<ANY>

1

/ <ANY><ANY><ANY> <ANY>

Current State

2

4

3 5

1

/<COPIED><COPIED>

<COPIED>
<COPIED>

Current State

2

4
3

5

1

::=

::=

::=

Rule 1 (priority 3)

Rule 2 (priority 1)

Rule 3 (priority 2)

Locate Initial Current State

State Transition

Local State Transition

condition:
matched(4).input == input[0]

action:
remove(input[0])

condition:
matched(4).input == input[0]

action:
remove(input[0])

<COPIED>

Current State

3

1

2

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 25/34

Model Transformation meta-specification

meta-model a model in formalism ER

meta-model
processor

model

user
input

a model of a class of models
(the formalism NFA)
semantics within formalism ER

a model in formalism NFA

-create
-delete
-verify (local, global)

MF

F

(ER)

(NFA)

meta-model a model in formalism MF

meta-model
processor

model

user
input

a model of a class of models (the formalism F)
semantics within formalism MF
describes: structure and constraints

a model in formalism FSA

-create
-delete
-verify (local, global)

MF

F

(ER)

(FSA)
(multi-formalism)

model transformer
=

meta-model
processor

transformation
meta-model

MF (GGR)

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 26/34

Model Transformation Uses (1)
� Code generation

� Operational Semantics (reference simulator)

� Denotational Semantics

May model transformation as Graph Grammar

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 27/34

Formalism transformation uses (2)
� Add new formalisms without much effort (only ∆).

� Re-use lower level modelling/simulation environment.

� Answer questions at “optimal” level.

� Optimization possible at every level.

� Semantics of coupled multi-formalism models.

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 28/34

Formalism Transformation Graph

DEVS

Process Interaction
Discrete Event

state trajectory data (observation frame)

Petri Nets
Statecharts

scheduling-hybrid-DAE

Bond Graph a-causal

Bond Graph causal

DAE non-causal set

DAE causal set

PDE

Transfer Function

Difference Equations

System Dynamics

KTG Cellular Automata

Event Scheduling
Discrete Event

3 Phase Approach
Discrete Event

DAE causal sequence (sorted)

DEVS&DESS

Activity Scanning
Discrete Event

Timed Automata

Causal Block Diagram

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 29/34

Saving (meta-)models: core-XML

document ::= prolog element misc*

prolog ::= VERSION? ENCODING? misc*

misc ::= COMMENT | attribute_decl

attribute_decl ::= ATTDEF NAME attribute+ ENDDEF

element ::= START attribute* empty_or_content

empty_or_content ::= SLASH CLOSE | CLOSE content END NAME? CLOSE

content ::= (DATA | misc | element)*

attribute ::= NAME (EQ VALUE)?

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 30/34

XML and Meta-modelling

XML XML
AToM3

Python format

core XML F G

lexical &
syntactic
analysis

write Python load write

syntax
check

transform

core XML
syntax

(in lex & yacc)

ER+constrGraphGram

ER+constr

GraphGram

GraphGram

formalism F
syntax

formalism F
syntax

model of
transformation

model of
XML generation

model of
Python generation

< DTD, XMLSchema < XSLT

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 31/34

Alternatives

1. Generate DTDs from meta-model to describe model syntax

2. Models are attributed typed directed graphs

� Graph Exchange Language (GXL)

http://www.grupo.de/GXL

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 32/34

GXL Example

<gxl>

<node id="Customers" type="GENERATE">

<attr name="A" value="50"/>

<attr name="B" value="10"/>

</node>

<node id="End" type="TERMINATE">

<attr name="A" value="1"/>

</node>

<edge begin="Customers" end="End" type="ConnectBlock">

<attr colour="BLUE">

</edge>

</gxl>

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 33/34

Conclusions
� Meta-model formalism syntax

� Graph Grammars models for all model Transformations

� Variations (flavours) of formalisms (syntax and semantics)

� Simulator (reference implementation)

� Model exchange with XML, GXL

� Meta-modelling Environment (ATOM3)

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 34/34

