Wintersim 2002
San Diego, CA
9 December 2002

Meta-model are Models Too

Hans Vangheluwe
) McGill

School of Computer Science, McGill University, Montréal, Canada

Juan de Lara

m .

E.T.S. de Informéatica, Universidad Autonéma de Madrid, Madrid, Spain

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 1/34



Meta-modelling and XML

e modelling and simulation
— meta-modelling
— meta-modelling and XML

e Experiences with
A Tool for Multi-formalism, Meta-Modelling
AToM?: http://atom3.cs.mcgill.ca

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 2/34



Modelling and Simulation Wishlist

e Meaningful exchange and re-use of models
Syntax and Semantics !

e Domain/problem-specific (visual) modelling & simulation environments
Syntax and Semantics !
e Model transformation
— simulation (state changes)
— code-generation (syntax changes)
— simplification (level of abstraction changes)

— formalism transformation (formalism changes)

e Meaningful multi-formalism modelling

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 3/34



Petri Net model of Producer Consumer

QCalculating ait4Prod

Rem.from buffer

) 4
0 )
€’Calculating

Consume

Put in Buffer

reachability analysis + simplification + simulation + code generation

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 4/34



Statechart model of Producer Consumer

Buff Producer Consumer

: yait4Prod
Empty Produggce
: 3
buffer——: : : :
[in Buff.Empty] Consume [in‘Buff.Full
buffer++ ¢ : : / :
buffer++ WaitdCons bu]‘:fer——
Full : : :

Clompufing

simulation + code generation + transformation to equivalent Petri Net

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too

5/34



Timed Automata model of a Traffic Light

smulation + code generation

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 6/34



Generated Application

— Traffic Light GUI S

Pedestrian Pedes trian Pedestrian Pedes tian Pedestrian Pedestran Pedestrian Pedestran Pedestrian
el e el e e e e el e T el e
N N N N e e

| M — | |

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 7/34



GPSS model of Manufacturing system

oy =

@» 12 9

INSPECTR

INSPECTR
3 1

INBPEGTR

Name: TRANSIT]

Low.Limit: 5
| @0 Int.Size: 5
TRANSI|T Num.Intervals: 10

@ 1

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 8/34



L0
L7
L5
L8
L9
Ll
L6
110
L2
ACC
REJ

SIMULATE
GENERATE
QUEUE
ENTER
DEPART
MARK
ADVANCE
LEAVE
TABULATE
TRANSFER
TERMINATE
TERMINATE

TRANSIT TABLE

INSPECTR STORAGE

START
END

Manufacturing shop model 4
G. Gordon Figure 11-9/9-8

5

INSPQ
INSPECTR, 1
INSPQ

12,9
INSPECTR, 1
TRANSIT
.1,ACC,REJ
1

1

M1,5,5,10

3

1000

Wintersim 2002, 9 December, San Diego

Create parts

Queue for an inspector

; A single inspector becomes busy

Leave the inspector queue
Start counting transit time

Inspect

; Make the inspector idle again

Tabulate parts’ transit time

; Randomly determine defective parts
; Accepted parts
; Rejected parts

hv@cs.mcgill.ca

Generated GPSS code

Meta-model are Model Too

9/34



Forrester System Dynamics model of Predator-Prey

uptake_predator
loss_prey

prey_surplus_BR

predator_surplus_D

2-species predator-prey system

transformation to Ordinary Differential Equations + analysis

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 10/34



Causal Block Diagram model of Harmonic Oscillator

)

0.0

analysis + simplification + simulation

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 11/34



Event Scheduling + DAE model of a Train

Departure_Event

Initialize_Model
o passengers = passengers -
or i I’
passengers = 0 Train_at_rest
1 AFTER|
0
START EVENT
DepartureStart IF
AFTER print "Train arrved at t passengers >0 AFTER
0 5
Passenger_arrive Train_is_full
passengers = passengers I i Train s loaving | IF
passengers >= 1 1
AFTER
0|
passerjgers < 10 T
AFTER
5 moritofing fet.
AFTER
randgm.uniform (1, 10) Train_starts
print “Train s leaving @ BrakingODE
‘AcceleratingODE
testmax M
K* (v=v.init+5)
Start_Braking
monioring fc.
vmax-v
Stop_Accelerating
Start_Accelerating est_arrival

monitofing fet

Stopping_x - x

monitofing fct.

FrictionODE

code generation

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 12/34



What is Meta-modelling ?

e A meta-model is a model of a modelling formalism

e A meta-model is itself a model. lts syntax and semantics are
governed by the formalism it is described in. That formalism can be
modelled in a meta-meta-model.

e As a meta-model is a model, we can reason about it, manipulate it, ...
In particular, properties of (all models in) a formalism can be formally
proven.

e Formalism-specific modelling and simulation tools can automatically
be generated from a meta-model (e.g., in AToM? A Tool for
Multi-formalism Meta-Modelling).

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 13/34



e Formalisms can be tailored to specific needs by modifying the
meta-model (possibly through inheritance if specializing).
= Building domain/application specific, possibly graphical modelling
and simulation environments becomes affordable.

e Semantics of new formalisms through extension or transformation.

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 14/34



FSA model of Even Binary Number recognizer

@~ @

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 15/34



ER model of the FSA formalism syntax
(meta-model)

SATransition

FSAState l

Name type=String init.val
isInitial type=Boolean in
isFinal type=Boolean init

current

points_to

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 16/34



ER formalism + constraints (OCL/Python)

# check for unique input labels (FSA)
for transitionl in state.out connections:
for transitionZ in state.out connections:
1f transitionl != transition2:
1f transitionl.in == transition2.in:

return ("Non-determinism: 1nput "+transitionl.in)

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too

17/34



ER model of the ER formalism (meta-meta-model)

Wintersim 2002, 9 December, San Diego

Rrelationship

ERentity

name type=String init.val
attributes type=List init

AN

hv@cs.mcgill.ca

Meta-model are Model Too

18/34



Meta-meta-. ..

(ER)

meta-meta a model of a class of models (the formalism MF)
model semantics within formalism MMF

describes: structure and constraints

> ILTITTE

~
(ER)
user >
inout —— meta-model meta-model || a model in formalism MF
inpu processor <
-create .
-delete ) = a model of a class of models (the formalism F)
-verify (local, global = sema_ntlcs within formalism MF _
A g ) - describes: structure and constraints
)
(FSA)
user meta-model . - -
; a model in formalism F
input processor < model
-create
-delete J

-verify (local, global)

S LLLTITTITIT

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 19/34



Causal Block Diagram Semantics ?

)

0.0

PLOT
A

©)
X

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 20/34



Causal Block Diagram Denotational Semantics

g
< — = — KX (O) )
dt y
L p—
Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 21/34



FSA model Operational Semantics ?

@~ @

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 22/34



Simulation steps

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 23/34



Rule 1
TITTITITN] =
Current State
input 1
Rule 2
ITTIIY =2
Current State
end of input

Final Action
llllllllllllllllllllllllll> "Acceptlnput"

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca

input 0

Rule 2
TITTITITN] =

input 0
Rule 2

TRTTTTIT Y =

Current State

Current State

Meta-model are Model Too

24/34



Graph Grammar model of FSA OpSem

Rule 1 (priority 3) Locate Initial Current State

1=

Rule 2 (priority 1) State Transition

Current State

Current State

condition:
matched(4).input == input[0]
3

3 5 s

) T
<ANY> <ANY>/ <ANY> N @ A

action:
remove(input[0])

4
<COPIEDECOPIED>

Rule 3 (priority 2) Local State Transition

1

Current State Current State

condition:
matched(4).input == input[0]

4
ANY>/ <ANY> = SQPIED&COPIED>
3 3
action: @

remove(input[0])

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too

25/34



Model Transformation meta-specification

(ER) (GGR) (ER)
meta-model| a model in formalism ER transformation meta-model | a model in formalism MF
meta-model
- a model of 'a class of models = - a model of a class of models (the formalism F)
= (the formalism NFA) = = . o ;
= . ey . = - semantics within formalism MF
- semantics within formalism ER - - oo .
= - - describes: structure and constraints
meta-model E meta-model
processor E processor
user __,) = user
input = Input
-create = -create
-delete E -delete

-verify (local, global) -verify (local, globa

(NFA) (FSA)

_______________ (multi-formalism)

i . model transformer
a model in formalism NFA -

meta-model
processor

a model in formalism FSA

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 26/34



Model Transformation Uses (1)

e Code generation
e Operational Semantics (reference simulator)

e Denotational Semantics

May model transformation as Graph Grammar

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 27/34



Formalism transformation uses (2)

e Add new formalisms without much effort (only A).

e Re-use lower level modelling/simulation environment.
e Answer questions at “optimal” level.

e Optimization possible at every level.

e Semantics of coupled multi-formalism models.

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 28/34



Formalism Transformation Graph

PDE !
: Bond Graph a-causal

Cel!ular Automata

DAE non-causal set

Process Interaction
Discrete Event

Sysiem Dynamics

CaL'}fsaI Blfock iagta

Petri Nets
- 3 Phase Approach
Discrete Event

“NDAE caflisal\set—sTransfer Fun

-vent Schedul‘t‘ing
- Discrete Event

écheduling: ibrid-fDAE

ijfferegfc@ ZEquafiions

Vo SIS SRR N 111 2N S TS S T
state trajectory data (observation frame)

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too

29/34



Saving (meta-)models: core-XML

document ::= prolog element misc*

prolog ::= VERSION? ENCODING? misc*

misc ::= COMMENT | attribute_decl

attribute_decl ::= ATTDEF NAME attribute+ ENDDEF

element ::= START attribute* empty_or_content
empty_or_content ::= SLASH CLOSE | CLOSE content END NAME? CLOSE
content ::= (DATA | misc | element)*

attribute ::= NAME (EQ VALUE)?

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 30/34



XML and Meta-modelling

AToM3
Python format
GraphGram ER-+constr A

: q =
= P! th(,;r]70deerllgrfation \\\\\ == formalism F
= ython g \\\\‘ = syntax
------- Teeassamy N =
R S =
{ lexical& V. I = OO — S
i syntactic : i write t {Pythonload je—0A/ { owrite
%, analysis
vaaaein .2 ysIS | \ core XML | = “e....... pgresene s g GraphGram| areaseres
= syntax % $ =
= (in lex & yacc) "z,/ § model of =
= ’/,/ 5 XML generation =
= 2 s =
= 7, ~ -
\ 4 KA 4 =
core XML 2 F = G

..................

o \O mmg iﬁrggs Eimul’O‘ >O |||||||5; transform ' e """'»{%\O

.............................

ER+constr GraphGram
formalism F model of
syntax transformation
< DTD, XMLSchema < XSLT

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 31/34



Alternatives

1. Generate DTDs from meta-model to describe model syntax

2. Models are attributed typed directed graphs
— Graph Exchange Language (GXL)
http://www.grupo.de/GXL

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 32/34



GXL Example

<gxl>

<node 1d="Customers" type="GENERATE">
<attr name="A" value="50"/>
<attr name="B" value="10"/>

</node>

<node 1d="End" type="TERMINATE">
<attr name="A" value="1"/>

</node>

<edge begin="Customers" end="End" type="ConnectBlock">
<attr colour="BLUE">

</edge>

</gx1>

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 33/34



Conclusions

e Meta-model formalism syntax

e Graph Grammars models for all model Transformations

e Variations (flavours) of formalisms (syntax and semantics)
e Simulator (reference implementation)

e Model exchange with XML, GXL

e Meta-modelling Environment (ATOM?)

Wintersim 2002, 9 December, San Diego hv@cs.mcgill.ca Meta-model are Model Too 34/34



