
An Introduction to
Tkinter

Bruno Dufour &
Wen Hsin Chang

Friday, September 7th, 2001

What is Tkinter ?

Tkinter is an open source, portable
graphical user interface (GUI) toolkit
designed for use in Python scripts.
Tkinter is a python interface for the Tk GUI
toolkit (originally developed for the Tcl
language)

Advantages offered by Tkinter

Layered implementation
Accessibility
Portability
Availability

Drawback of Tkinter

Due to the layered approach used in its
implementation, execution speed becomes
a concern.

The smallest Tkinter program…

from Tkinter import *
root = Tk()
root.title("A simple application")
root.mainloop()

… and its ouput

Microsoft Windows 2000 Red Hat Linux 7.1 running KDE 2.0

Widgets and Tkinter

Tkinter’s components are called Widgets
Widgets are equivalents to OOP’s objects
or components
All widgets inherit from the Widget class

Widget Options

Options are attributes of the widget. Not all
widgets have the same attributes. Some which
are common to all widgets such as ‘text’,
specifying the text to be displayed, or ‘Padx’,
which specifies the space between itself and its
neighbor widget. Other options like ‘wrap’ for a
text widget or ‘orient’ for a scrollbar widget are
widget specific.

Widget Methods

Methods are mostly widget specific,
meaning some widgets such as scrollbar
or list box have their own methods to help
the user exploits widgets’ full
functionalities. Methods that is common to
all widgets are methods such as
‘Configure()’ or ‘Keys()’

Widget Manipulation

Widget manipulation is done via options
Options can be set at creation time or later
on by calling the configure() method
on the widget, with a list of valid widget
option IDs and their respective values

Widget Types

Toplevel
Frame
Label
Button
Entry
Radiobutton
Checkbutton

Menu
Message
Text
Scrollbar
Listbox
Scale
Canvas

What widgets look like…

Microsoft Windows 2000

… on different Operating Systems

Red Hat Linux 7.1 running KDE 2.0

Screen Layout in Tkinter

Fonts: specified using a n-tuple
(family, size, option1, option2, …)

Colors: specified using color names (“red”,
“blue”, “peachpuff”, etc.) or RGB values in
the form (hexadecimal)

#RGB
#RRGGBB
#RRRRGGGGBBBB

Tkinter variables

Variables can be used as widget options
to hold values associated with them (eg.
the value option for Radiobuttons)
Tkinter provides a way for the widget to
adjust to a change in the value of such a
variable
This is not possible using standard
variables

The need for Tkinter variables

Tkinter provides the Variable (abstract)
class.
The Variable class provides the possibility
of associating a callback method with a
variable
Thus, one could respond to a change in
the value of such variables

Methods of the Variable class

Private Methods:
__init__(self,
master=None)
__del__(self)
__str__(self)

Public Methods
set(self, value)
trace(self, mode,
callback)
Trace_vdelete(self,
mode, cbname)
Trace_vinfo(self)

Particularities of Tkinter variables

The Variable class does not implement the
get() method (only a base class)
The set() method does not do any type
checking (do not expect to catch a type
conversion error in a try..except construct)
The get() method will fail if an erroneous
data type has been stored in the variable

Subclasses of Variable

Variable

StringVar IntVar DoubleVarBooleanVar

Always use one of the subclasses of Variable itself to manipulate data

Geometry management in Tkinter

Geometry management consists of widget
placement and sizing of the screen
Geometry management increases the
portability of the GUI toolkit.
Tkinter provides 3 geometry managers:
Pack, Grid and Place.

The Pack geometry manager

Quickest and most common way to design
interfaces
Positioning is done relative to the
container widgets (top, bottom, left, right)
Widgets are packed from edge to center of
the container, using space left available by
previous pack operations.

Options to the pack() method

N / S / E / W / NW / SW / NE / SE / NS / EW /
NSEW / CENTER

anchor

Integer valuesipadx, ipady

Integer valuespadx, pady

Widgetin_(‘in’)

TOP / BOTTOM / RIGHT / LEFTside

NONE / X / Y / BOTHfill

YES / NOexpand
Possible ValuesOption

Methods provided by the Packer

Returns a list of widget IDs, in the
packing order, which are slaves of
the master widget.

pack_slaves()

Returns a dictionary containing the
current options.

pack_info()

The widget is no longer managed
by the Packer, but is not
destroyed.

pack_forget()

Packs the widget with the
specified options.

pack(option=value,…),
pack_configure(option=value,…)

EffectMethod

The Grid geometry manager

Used for more complex layouts
Allows the container to be divided in rows
and columns
Similar to HTML’s Table (columnspan +
rowspan)
Using the Packer, one would have to use
multiple frames to achieve the same effect

Options to the grid() method

N / S / E / W / NW / SW / NE / SE / NS / EW /
NSEW (Note: Default is to center widgets *)

sticky

Integer valuesipadx, ipady

Integer valuespadx, pady

Widgetin_(‘in’)

Positive integer valuesrowspan,
columnspan

Positive integer valuesrow, column
Possible ValuesOption

* CENTER is not supported with the sticky option

Methods provided by the Grid

Returns the size of the grid, in the
form of a tuple (column, row)

grid_size()

Returns a tuple (column, row) which
represents the cell in the grid that is
closest to the point (x, y).

grid_location(x, y)

Returns a list of widget IDs which are
slaves of the master widget.

grid_slaves()

Returns a dictionary containing the
current options.

grid_info()

The widget is no longer managed by
the Grid, but is not destroyed.

grid_forget(), grid_remove()

Places the widget in a grid, using the
specified options.

grid(option=value,…),
grid_configure(option=value,…)

EffectMethod

Special notes about the Grid

Empty rows and columns are not
displayed by the grid geometry manager,
even if a minimum size is specified.
The grid manager cannot be used in
combination with the pack manager, as
this results in an infinite negociation loop.

The Place geometry manager

Most powerful manager
Allows exact placement of widgets in a container
Allows placement of widgets using either exact
coordinates, or as a percentage relative to the
size of the master window (expressed as a float
in the range [0.0, 1.0]).
The same holds for the widget size.

Options to the place() method

Integer valuesx, y

Integer valueswidth, height

Float [0.0, 1.0]relx, rely

Float [0.0, 1.0] relwidth, relheight

Widgetin_(‘in’)

INSIDE / OUTSIDEbordermode

N / NE / E / SE / SW / W / NW / CENTER anchor
Possible ValuesOption

Event Handling in Tkinter

Easy, convenient and flexible
Allows callback functions to be associated
with any event for any widget
Event descriptors are used to identify
events

Event Descriptors

String representation of events
Used for binding callbacks to events
General form: <Modifier- Type - Qualifier>
Not all 3 sections are required for an event
descriptor to be valid (the type alone often
suffices).

Event Types in Tkinter

Tkinter can handle the following event types:
Keyboard events: KeyPress, KeyRelease
Mouse events: ButtonPress, ButtonRelease,
Motion, Enter, Leave, MouseWheel
Window events: Visibility, Unmap, Map,
Expose, FocusIn, FocusOut, Circulate,
Colourmap, Gravity, Reparent, Property,
Destroy, Activate, Deactivate

Event Qualifiers

Can be either:
Mouse button index (1 to 5)
Keysym: the name of a particular key (eg:
“backslash”, “backspace”)

A type does not have to be specified when
a qualifier is used (can still be done
though)

Event Modifiers

Possible Modifiers:
Control, Shift, Alt, Meta: Modifier keys
B1 to B5: Mouse button modifiers
Double, Triple: Repetition modifiers
Any: specifies to execute the callback regardless of
the modifiers

Any number of modifiers can be specified
Order of modifiers is irrelevant (eg: <Control-Alt-
Shift-A>)

Event Attributes

Time at which the event occurred. Under Microsoft
Windows®, this is the value returned by the
GetTickCount() API function.

time
state of the event as a numberstate
keycode of the pressed key (KeyPress, KeyRelease) keycode
Height / width of the exposed window (Configure, Expose) height / width

boolean which indicates whether the window has the focus
(Enter, Leave)

focus

number of the mouse button pressed (ButtonPress,
ButtonRelease)
(1=LEFT, 2=CENTER, 3=RIGHT, etc.)

num
Serial # of the eventserial

DescriptionAttribute

Event Attributes (cont.)

delta of wheel movement (MouseWheel)delta
widget for which the event occurred widget
type of the event as a number type
keysym of the event as a number (KeyPress, KeyRelease) keysym_num

keysym of the the event as a string (KeyPress,
KeyRelease)

keysym
pressed character (as a char) (KeyPress, KeyRelease)char
x / y-position of the mouse on the screen relative to the rootx_root / y_root
x / y – position of the mouse relative to the widgetx / y

DescriptionAttribute

Binding callbacks to Events

3 method calls:
bind(): can be called on any widget, and in
particular a Toplevel widget
bind_class(): used internally in order to
provide standard bindings for Tkinter widgets.
Can be avoided by subclassing strategy.
bind_all(): binds events to the whole
application

Callbacks and events

Tkinter always uses the most specific event
descriptor for a given event and a given widget
Callbacks for the 4 different levels of Tkinter’s
event handling will be called in sequence,
starting with the widget level, then the Toplevel,
the class and then the Application.
If, at any given level, one wants to stop the
propagation of the event, simply return “break” in
the callback associated with this event.

The Canvas widget

Provides basic drawing facilities, as well as
advanced drawing features
Drawing is done by creating canvas items
Items are not widgets, even though they are
handled in a similar way
Each item receives a unique ID upon creation
Each item is enclosed in its bounding box
specified by a top-left corner and a lower-right
corner

Items supported by the Canvas

Arc: arc, chord,
pieslice
Bitmap
Image
Line
Oval: circle or ellipse

Polygon
Rectangle
Text
Window: used to
place other widgets
on the canvas (eg
buttons)

Tkinter Canvas Options

Distancexscrollincrement, yscrollincrement
Functionxscrollcommand, yscrollcommand
List of 4 coordinatesscrollregion
Booleanconfine
Floatcloseenough

Possible ValuesOption

Manipulating Items

Item creation functions (create_line(),
create_oval(), etc.) all return the item ID
of the newly created canvas item
The itemconfigure() method is used to
configure canvas items after their creation

(See Tkinter documentation or Online
Presentation for more information)

Tkinter coordinate systems

2 coordinate systems:
Canvas coordinate system: origin at the top-
left corner of the canvas (may not be visible)
Window coordinate system: origin at the top-
left corner of the visible portion of the canvas

Event objects use the Window coord. sys.
canvasx() and canvasy() methods can
convert coords to Canvas coord. sys.

Canvas and Tags

Tags are strings that can be associated with any
canvas item
More than one item can have the same tag, and
a single item can have multiple tags
This allows to create groups of items
Canvas items can be interchangeably
referenced by ID (integers) or tags.

Canvas and Tags (cont.)

What happens to function which only take
one item as parameter?
Tkinter provides a very good approach:
the first (lowest) item in the display list that
matches the tag is used
Binding can also be done on canvas items
by using the tag_bind() and tag_unbind()
functions

Special Tags

CURRENT (“current”): the item that is
currently situated under the mouse cursor
is automatically assigned the CURRENT
tag. (Note: don’t use this tag manually!!)
ALL (“all”): this special tag matches all
items in the canvas

To obtain more information:

Presentation web site:
http://pages.infinit.net/bdufou1/
Official Python website:
http://www.python.org/
John E. Grayson. Python and Tkinter
programming. Manning, 2000.

