Probabilistic analysis of a search tree problem

Henning Sulzbach J. W. Goethe-Universität Frankfurt a. M.

XII Latin American Congress of Probability and Mathematical Statistics

Viña del Mar, March 27, 2012

joint work with Nicolas Broutin and Ralph Neininger

Partial match retrieval

A classical combinatorial problem is to perform a search in a multidimensional database where the record to be retrieved is either *fully* or *partially* specified. The latter is called a *Partial match query*.

n-dim. domain: $S = S_1 \times \cdots \times S_n$

set of data $S' \subseteq S$ with $|S'| < \infty$.

Problem: For a fixed query $q = (q_1, \ldots, q_n)$ with $q_i \in S_i \cup \{*\}$, find all elements $s = (s_1, \ldots, s_n) \in S'$ such that

 $s_i = q_i$, if $q_i \neq *$.

(日) (同) (三) (三) (三) (○) (○)

Data structures

Comparison-based structures - search trees:

- Quadtrees (Finkel and Bentley '74),
- K-d-trees (Bentley '75)

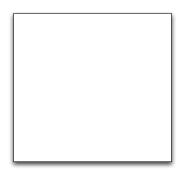
Several variants are known in the literature.

Digital structures:

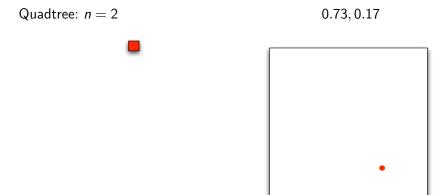
• *K*-d-tries (Rivest '76)

Model: $S_i = [0, 1]$ for all *i*.

Dimension: n = 2

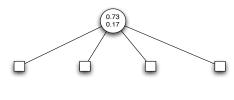


Model: $S_i = [0, 1]$ for all *i*.

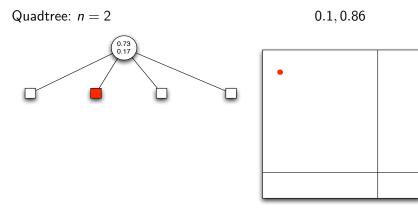


Model: $S_i = [0, 1]$ for all *i*.

Quadtree: n = 2

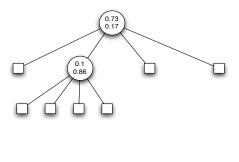


Model: $S_i = [0, 1]$ for all i.

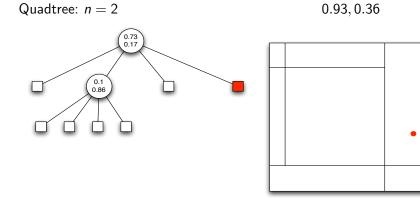


Model: $S_i = [0, 1]$ for all *i*.

Quadtree: n = 2

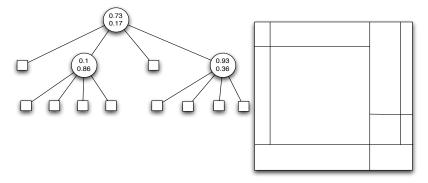


Model: $S_i = [0, 1]$ for all *i*.

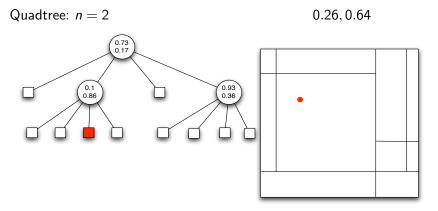


Model: $S_i = [0, 1]$ for all *i*.

Quadtree: n = 2

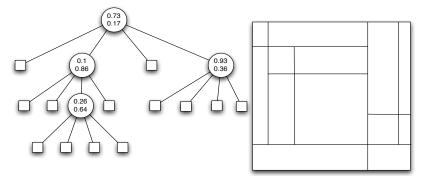


Model: $S_i = [0, 1]$ for all *i*.

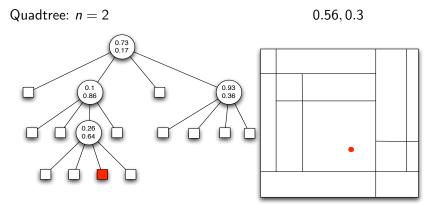


Model: $S_i = [0, 1]$ for all *i*.

Quadtree: n = 2

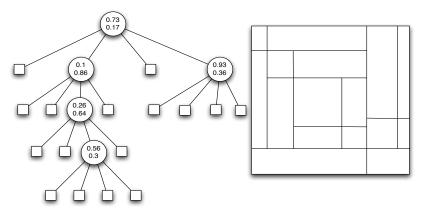


Model: $S_i = [0, 1]$ for all *i*.

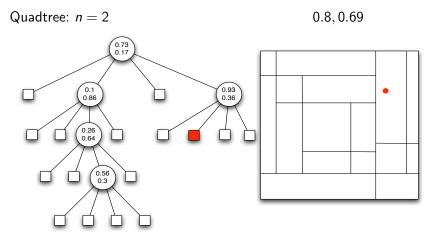


Model: $S_i = [0, 1]$ for all *i*.

Quadtree: n = 2

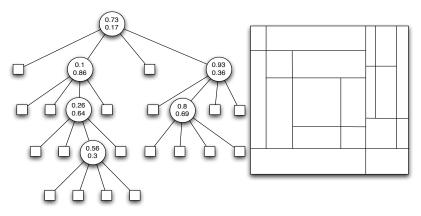


Model: $S_i = [0, 1]$ for all *i*.



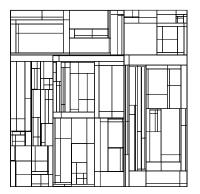
Model: $S_i = [0, 1]$ for all *i*.

Quadtree: n = 2



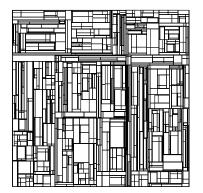
Simulation - Quadtree

n = 100



Simulation - Quadtree

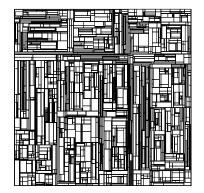
n = 500



(日) (個) (目) (目) (目) (目)

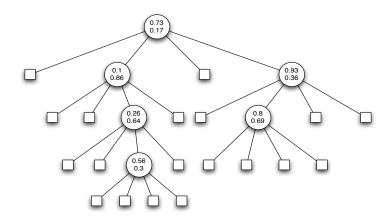
Simulation - Quadtree

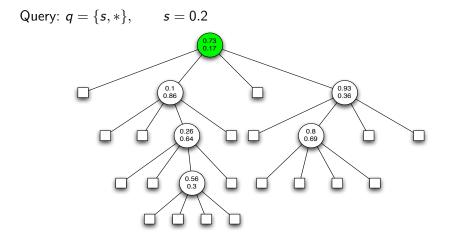
n = 1000



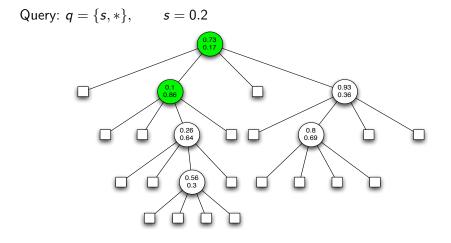
◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Query: $q = \{s, *\}, \qquad s = 0.2$

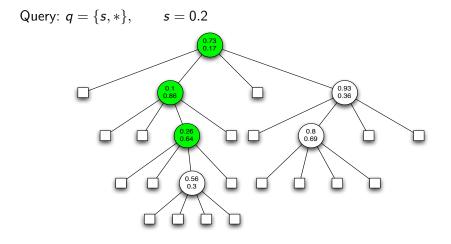




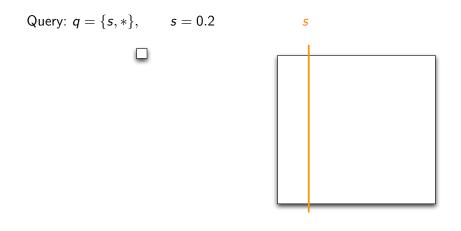
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

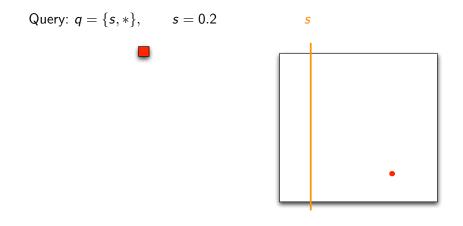


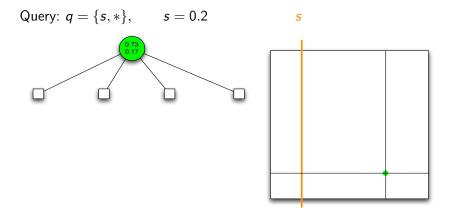
◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで



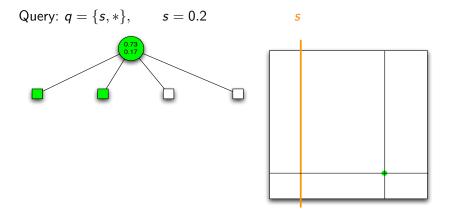
◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで



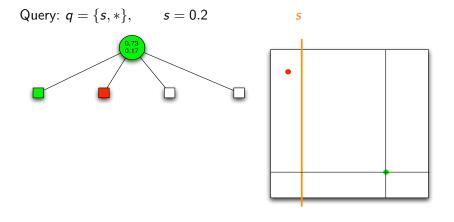




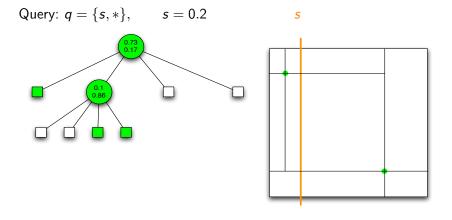
▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで



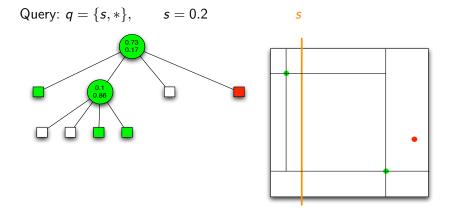
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで



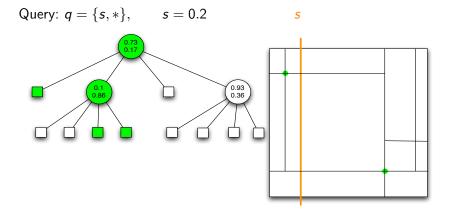
・ロト・雪・・雪・・雪・・つくぐ



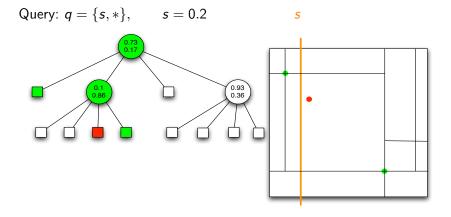
▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで



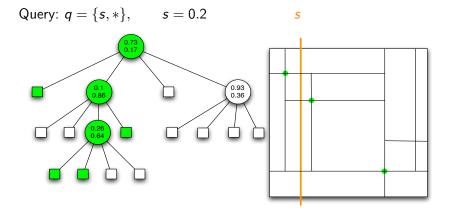
▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで



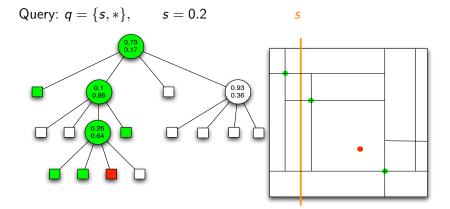
▲□> ▲圖> ▲目> ▲目> 二目 - のへで



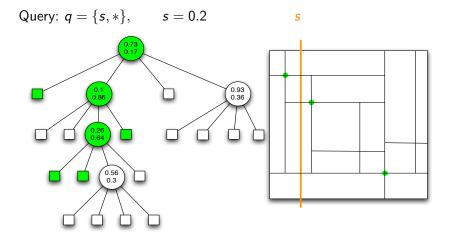
▲□> ▲圖> ▲目> ▲目> 二目 - のへで



▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

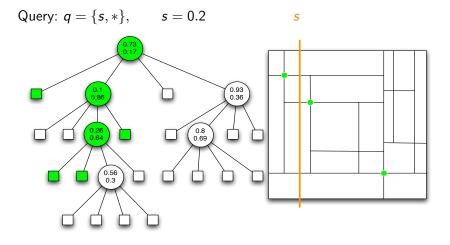


▲□▶ ▲□▶ ▲注▶ ▲注▶ 三注 - 釣��





A partial match query



▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

A problem of stochastic geometry

Performing a partial match query with $q = \{s, *\}$, a node is visited *if and only if* it is inserted in a subregion that intersects the vertical line x = s.

This is equivalent to an intersection of its horizontal line and the line x = s.

Probabilistic model

For the analysis of the complexity of information retrieval we *always* assume the components of elements in the database S' to be *independent* and *uniform* on $[0, 1]^2$.

 $C_n(s)$: number of nodes visited by a partial match query with $q = \{s, *\}$ in a random two-dimensional quadtree of size n.

Probabilistic analysis of the complexity

Theorem (Flajolet, Gonnet, Puech, Robson '93)

Let ξ be uniform on [0,1], independent of the quadtree. For $n \to \infty$, it holds

 $\mathbb{E}[C_n(\xi)] \sim \kappa n^{\beta}$

with

$$\kappa = \frac{\Gamma(2\beta + 2)}{2\Gamma^3(\beta + 1)} \approx 1.59, \qquad \beta = \frac{\sqrt{17} - 3}{2} \approx 0.56.$$

The variance or a distributional limit theorem remained open problems.

Asymptotic results for fixed s

Theorem (Curien, Joseph '11)

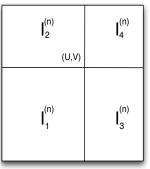
For fixed $s \in [0,1]$ and $n \to \infty$, it holds $\mathbb{E}C_n(s) \sim K_1 n^{\beta} (s(1-s))^{\beta/2}$,

where

$$K_1\int_0^1(s(1-s))^{eta/2}ds=\kappa.$$

The main idea - Decomposing at the root

U,V : components of the first inserted point, $I_1^{(n)},\ldots,I_4^{(n)}$: number of points in the subregions.



Given U, V, we have

 $\mathcal{L}(I_1^{(n)}, I_2^{(n)}, I_3^{(n)}, I_4^{(n)}) = \mathsf{Mult}(n-1; UV, U(1-V), (1-U)V, (1-U)(1-V)).$

The main idea - Decomposing at the root

For any $s \in [0, 1]$,

$$C_{n}(s) \stackrel{d}{=} 1 + 1_{\{s < U\}} \left(C_{l_{1}^{(n)}}^{(1)} \left(\frac{s}{U} \right) + C_{l_{2}^{(n)}}^{(2)} \left(\frac{s}{U} \right) \right) \\ + 1_{\{s \ge U\}} \left(C_{l_{3}^{(n)}}^{(3)} \left(\frac{s - U}{1 - U} \right) + C_{l_{4}^{(n)}}^{(4)} \left(\frac{s - U}{1 - U} \right) \right),$$

where $(C_n^{(1)}), (C_n^{(2)}), (C_n^{(3)}), (C_n^{(4)})$ are ind. copies of (C_n) , ind. of $(U, V, I_1^{(n)}, I_2^{(n)}, I_3^{(n)}, I_4^{(n)})$.

This does not imply a recurrence for $C_n(s)$, neither for fixed s nor for $s = \xi$. It is due to this fact that the problem remained unsolved for many years.

The recursion on the process level

The recursion

$$C_{n}(s) \stackrel{d}{=} 1 + 1_{\{s < U\}} \left(C_{l_{1}^{(n)}}^{(1)} \left(\frac{s}{U} \right) + C_{l_{2}^{(n)}}^{(2)} \left(\frac{s}{U} \right) \right) \\ + 1_{\{s \ge U\}} \left(C_{l_{3}^{(n)}}^{(3)} \left(\frac{s - U}{1 - U} \right) + C_{l_{4}^{(n)}}^{(4)} \left(\frac{s - U}{1 - U} \right) \right),$$

remains valid on the level of càdlàg functions, $(C_n(s))_{s \in [0,1]}$ is a random stepfunction!

(日) (日) (日) (日) (日) (日) (日) (日)

The recursion on the process level

Scaling gives

$$\frac{C_{n}(s)}{n^{\beta}} \stackrel{d}{=} n^{-\beta} + 1_{\{s < U\}} \left(\left(\frac{I_{1}^{(n)}}{n}\right)^{\beta} \frac{C_{I_{1}^{(n)}}^{(1)}\left(\frac{s}{U}\right)}{\left(I_{1}^{(n)}\right)^{\beta}} + \left(\frac{I_{2}^{(n)}}{n}\right)^{\beta} \frac{C_{I_{2}^{(n)}}^{(2)}\left(\frac{s}{U}\right)}{\left(I_{2}^{(n)}\right)^{\beta}} \right) + 1_{\{s \ge U\}} \left(\left(\frac{I_{3}^{(n)}}{n}\right)^{\beta} \frac{C_{I_{3}^{(n)}}^{(3)}\left(\frac{s-U}{1-U}\right)}{\left(I_{3}^{(n)}\right)^{\beta}} + \left(\frac{I_{4}^{(n)}}{n}\right)^{\beta} \frac{C_{I_{4}^{(n)}}^{(4)}\left(\frac{s-U}{1-U}\right)}{\left(I_{4}^{(n)}\right)^{\beta}} \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Fixed-point equation

Assuming $n^{-\beta}C_n(s) \to Z(s)$ uniformly in $s \in [0,1]$ for $n \to \infty$, suggests that Z satisfies

$$Z(s) \stackrel{d}{=} 1_{\{s < U\}} \left((UV)^{\beta} Z^{(1)} \left(\frac{s}{U} \right) + (U(1-V))^{\beta} Z^{(2)} \left(\frac{s}{U} \right) \right) \\ + 1_{\{s \ge U\}} ((1-U)V)^{\beta} Z^{(3)} \left(\frac{s-U}{1-U} \right) \\ + 1_{\{s \ge U\}} ((1-U)(1-V))^{\beta} Z^{(4)} \left(\frac{s-U}{1-U} \right),$$

where $Z^{(1)}, Z^{(2)}, Z^{(3)}, Z^{(4)}$ are ind. copies of Z, ind. of (U, V).

A functional limit law

Theorem (Broutin, Neininger, S. '12)

There exists a random continuous process Z on the unit interval such that

$$\left(\frac{C_n(s)}{K_1 n^{\beta}}\right)_{s\in[0,1]} \to (Z(s))_{s\in[0,1]}, \quad n \to \infty,$$

in distribution in $(\mathcal{D}[0,1], d_{sk})$ where d_{sk} denotes the Skorohod metric.

Characterization of Z

Theorem (Broutin, Neininger, S. '12)

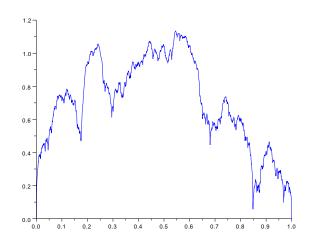
Z is the unique solution in $(\mathcal{D}[0,1], d_{sk})$ of the fixed-point equation

$$Z(s) \stackrel{d}{=} 1_{\{s < U\}} \left((UV)^{\beta} Z^{(1)} \left(\frac{s}{U} \right) + (U(1-V))^{\beta} Z^{(2)} \left(\frac{s}{U} \right) \right) \\ + 1_{\{s \ge U\}} ((1-U)V)^{\beta} Z^{(3)} \left(\frac{s-U}{1-U} \right) \\ + 1_{\{s \ge U\}} ((1-U)(1-V))^{\beta} Z^{(4)} \left(\frac{s-U}{1-U} \right),$$

with $\mathbb{E}||Z||^2 < \infty$ and $\mathbb{E}Z(\xi) = B(\beta/2 + 1, \beta/2 + 1)$. Here, $Z^{(1)}, Z^{(2)}, Z^{(3)}, Z^{(4)}$ are independent copies of Z, independent of (U, V).

A Simulation

by Nicolas Broutin



► Ξ √QC

The marginals of Z

Theorem (Broutin, Neininger, S. '12)

For all $s \in [0, 1]$, we have

$$Z(s) \stackrel{d}{=} Z \cdot (s(1-s))^{\beta/2},$$

where Z is the unique solution of

$$Z \stackrel{d}{=} V^{\beta} U^{\beta/2} Z + (1-V)^{\beta} U^{\beta/2} Z'$$

with $\mathbb{E}Z = 1$ and $\mathbb{E}Z^2 < \infty$. Again, Z' is an independent copy of Z and (Z, Z') is independent of (U, V).

Back to the uniform case

Theorem (Broutin, Neininger, S. '12)

We have

$$\frac{C_n(\xi)}{\kappa n^{\beta}} \stackrel{d}{\longrightarrow} Z \cdot \frac{(\xi(1-\xi))^{\beta/2}}{B(\beta/2+1,\beta/2+1)}$$

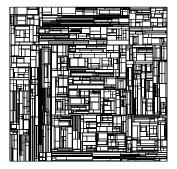
with convergence of all moments , in particular

 $Var[C_n(\xi)] \sim K_2 n^{2\beta},$

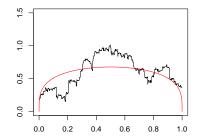
where

$$K_2 = K_1^2 \left[\frac{2(2\beta+1)}{3(1-\beta)} B^2 \left(\beta+1,\beta+1\right) - B^2 \left(\frac{\beta}{2}+1,\frac{\beta}{2}+1\right) \right] = 0.44736..$$

Simulations

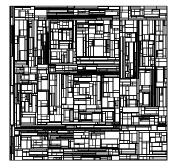


n = 1000

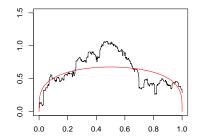


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Simulations

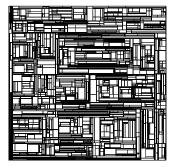


n = 1000

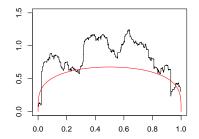


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Simulations



n = 1000



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The proof - Functional contraction method

Solutions to the fixed-point equation of interest, or more generally of type

$$Z \stackrel{d}{=} \sum_{i=1}^{K} A_r Z_r + b,$$

with conditions as in our case and random linear operators A_1, \ldots, A_K are considered as fixed-points of the map

where Z_1, \ldots, Z_r are independent with common distribution μ , independent of (A_1, \ldots, A_K, b) .

The proof - Functional contraction method

 Choose a suitable subset of M(D[0,1]) and endow it with some appropriate metric d that turns T into a contraction. Here, the crucial condition turns out to be

$$\sum_{l=1}^{K} \mathbb{E} \|A_i\|_{\mathsf{op}}^{s} < 1,$$

for s < 1.

- Construct a solution of the fixed-point equation by hand.
- Show d(C^{*}_n, Z) → 0 and infer distributional convergence for the rescaled quantity C^{*}_n.

The why of β - Size-biasing!

Let $X_n = C_n(\xi)$. On the level of expectations,

$$\mathbb{E}[X_n] = 1 + 2\mathbb{E}\left[\mathbf{1}_{\{\xi < U\}} X_{l_1^{(n)}}^{(1)} + \mathbf{1}_{\{\xi \ge U\}} X_{l_3^{(n)}}^{(3)}\right]$$

This allows to compute β :

 $\mathbb{E}[X_n] = 1 + 2\mathbb{E}[X_{L_n}]$

with $L_n \stackrel{d}{=} \operatorname{Bin}(n-1, \sqrt{U}V)$. Scaling gives $n^{-\gamma} \mathbb{E}[X_n] \sim 2\mathbb{E}\left[\left(\frac{L_n}{n}\right)^{\gamma} \frac{X_{L_n}}{L_n^{\gamma}}\right].$

Hence $1 = 2\mathbb{E}[(\sqrt{U}V)^{\gamma}] \Rightarrow \gamma = \beta$.

The constant β appears in several other contexts, e.g. as the Hausdorff dimension of the random Cantor set $\beta \in \mathbb{R}^{3}$ and $\beta \in \mathbb{R}^{3}$.

References

- Flajolet, Gonnet, Puech, Robson. Analytic variations on quadtrees. *Algorithmica*, 10:472–500, 1993.
- Curien, Joseph. Partial match queries in 2-dimensional quadtrees: a probabilistic approach. *Adv. Appl. Probab.*, 43(1):178–194, 2011.
- Broutin, Neininger, S. Partial match queries in random quadtrees. *Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA)*, 1056–1065, 2012.
- Neininger, S. On a functional contraction method, *submitted*, 2012, available at http://arxiv.org.
- Broutin, Neininger, S. A limit process for partial match queries in random quadtrees, *submitted*, 2012, available at http://arxiv.org.