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Partial match retrieval

A classical combinatorial problem is to perform a search in a
multidimensional database where the record to be retrieved is
either fully or partially specified. The latter is called a Partial
match query.

n-dim. domain: S = S1 × · · · × Sn

set of data S ′ ⊆ S with |S ′| <∞.

Problem: For a fixed query q = (q1, . . . , qn) with qi ∈ Si ∪ {∗},
find all elements s = (s1, . . . , sn) ∈ S ′ such that

si = qi , if qi 6= ∗.



Data structures

Comparison-based structures - search trees:

• Quadtrees (Finkel and Bentley ’74),

• K -d-trees (Bentley ’75)

Several variants are known in the literature.

Digital structures:

• K -d-tries (Rivest ’76)



The Quadtree - Construction

Model: Si = [0, 1] for all i .

Dimension: n = 2
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Simulation - Quadtree
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Simulation - Quadtree

n = 1000



A partial match query

Query: q = {s, ∗}, s = 0.2
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A problem of stochastic geometry

Performing a partial match query with q = {s, ∗}, a node is visited
if and only if it is inserted in a subregion that intersects the vertical
line x = s.

This is equivalent to an intersection of its horizontal line and the
line x = s.



Probabilistic model

For the analysis of the complexity of information retrieval we
always assume the components of elements in the database S ′ to
be independent and uniform on [0, 1]2.

Cn(s): number of nodes visited by a partial match query with
q = {s, ∗} in a random two-dimensional quadtree of size n.



Probabilistic analysis of the complexity

Theorem (Flajolet, Gonnet, Puech, Robson ’93)

Let ξ be uniform on [0, 1], independent of the quadtree. For
n→∞, it holds

E[Cn(ξ)] ∼ κnβ

with

κ =
Γ(2β + 2)

2Γ3(β + 1)
≈ 1.59, β =

√
17− 3

2
≈ 0.56.

The variance or a distributional limit theorem remained open
problems.



Asymptotic results for fixed s

Theorem (Curien, Joseph ’11)

For fixed s ∈ [0, 1] and n→∞, it holds

ECn(s) ∼ K1nβ(s(1− s))β/2,

where

K1

∫ 1

0
(s(1− s))β/2ds = κ.



The main idea - Decomposing at the root

U,V : components of the first inserted point,

I
(n)
1 , . . . , I

(n)
4 : number of points in the subregions.
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4 ) = Mult(n−1; UV ,U(1−V ), (1−U)V , (1−U)(1−V )).



The main idea - Decomposing at the root

For any s ∈ [0, 1],

Cn(s)
d
= 1 + 1{s<U}

(
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where (C
(1)
n ), (C

(2)
n ), (C

(3)
n ), (C

(4)
n ) are ind. copies of (Cn), ind. of

(U,V , I
(n)
1 , I

(n)
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(n)
3 , I

(n)
4 ).

This does not imply a recurrence for Cn(s), neither for fixed s nor
for s = ξ. It is due to this fact that the problem remained unsolved
for many years.



The recursion on the process level

The recursion
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remains valid on the level of càdlàg functions, (Cn(s))s∈[0,1] is a
random stepfunction!



The recursion on the process level

Scaling gives

Cn(s)
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Fixed-point equation

Assuming n−βCn(s)→ Z (s) uniformly in s ∈ [0, 1] for n→∞,
suggests that Z satisfies

Z (s)
d
= 1{s<U}

(
(UV )βZ (1)

( s

U

)
+ (U(1− V ))βZ (2)

( s

U

))
+1{s≥U}((1− U)V )βZ (3)

(
s − U

1− U

)
+1{s≥U}((1− U)(1− V ))βZ (4)

(
s − U

1− U

)
,

where Z (1),Z (2),Z (3),Z (4) are ind. copies of Z , ind. of (U,V ).



A functional limit law

Theorem (Broutin, Neininger, S. ’12)

There exists a random continuous process Z on the unit interval
such that (

Cn(s)

K1nβ

)
s∈[0,1]

→ (Z (s))s∈[0,1] , n→∞,

in distribution in (D[0, 1], dsk) where dsk denotes the Skorohod
metric.



Characterization of Z

Theorem (Broutin, Neininger, S. ’12)

Z is the unique solution in (D[0, 1], dsk) of the fixed-point equation

Z (s)
d
= 1{s<U}

(
(UV )βZ (1)

( s

U

)
+ (U(1− V ))βZ (2)

( s

U

))
+1{s≥U}((1− U)V )βZ (3)

(
s − U

1− U

)
+1{s≥U}((1− U)(1− V ))βZ (4)

(
s − U

1− U

)
,

with E‖Z‖2 <∞ and EZ (ξ) = B(β/2 + 1, β/2 + 1).
Here, Z (1),Z (2),Z (3),Z (4) are independent copies of Z ,
independent of (U,V ).



A Simulation

by Nicolas Broutin
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The marginals of Z

Theorem (Broutin, Neininger, S. ’12)

For all s ∈ [0, 1], we have

Z (s)
d
= Z · (s(1− s))β/2,

where Z is the unique solution of

Z
d
= V βUβ/2Z + (1− V )βUβ/2Z ′

with EZ = 1 and EZ 2 <∞. Again, Z ′ is an independent copy of
Z and (Z ,Z ′) is independent of (U,V ).



Back to the uniform case

Theorem (Broutin, Neininger, S. ’12)

We have
Cn(ξ)

κnβ
d−→ Z · (ξ(1− ξ))β/2

B(β/2 + 1, β/2 + 1)

with convergence of all moments , in particular

Var[Cn(ξ)] ∼ K2n2β,

where

K2 = K 2
1

[
2(2β + 1)

3(1− β)
B2 (β + 1, β + 1)− B2

(
β

2
+ 1,

β

2
+ 1

)]
= 0.44736 . . .
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The proof - Functional contraction method

Solutions to the fixed-point equation of interest, or more generally
of type

Z
d
=

K∑
i=1

ArZr + b,

with conditions as in our case and random linear operators
A1, . . . ,AK are considered as fixed-points of the map

T :M(D[0, 1]) → M(D[0, 1]),

T (µ) = L

(
K∑
i=1

ArZr + b

)
,

where Z1, . . . ,Zr are independent with common distribution µ,
independent of (A1, . . . ,AK , b).



The proof - Functional contraction method

• Choose a suitable subset of M(D[0, 1]) and endow it with
some appropriate metric d that turns T into a contraction.
Here, the crucial condition turns out to be

K∑
I=1

E‖Ai‖sop < 1,

for s < 1.

• Construct a solution of the fixed-point equation by hand.

• Show d(C ∗n ,Z )→ 0 and infer distributional convergence for
the rescaled quantity C ∗n .



The why of β - Size-biasing!

Let Xn = Cn(ξ). On the level of expectations,

E[Xn] = 1 + 2E
[

1{ξ<U}X
(1)

I
(n)
1

+ 1{ξ≥U}X
(3)

I
(n)
3

]
.

This allows to compute β:

E[Xn] = 1 + 2E[XLn ]

with Ln
d
= Bin(n − 1,

√
UV ). Scaling gives

n−γE[Xn] ∼ 2E
[(

Ln

n

)γ XLn

Lγn

]
.

Hence 1 = 2E[(
√

UV )γ ]⇒ γ = β.

The constant β appears in several other contexts, e.g. as the
Hausdorff dimension of the random Cantor set.
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