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Partial match retrieval

A classical combinatorial problem is to perform a search in a
multidimensional database where the record to be retrieved is
either fully or partially specified. The latter is called a Partial
match query.

n-dim. domain: S =51 x --- x S,
set of data S’ C S with |S§'| < 0.

Problem: For a fixed query ¢ = (qu, ..., qn) with g; € S; U {x},
find all elements s = (s1,...,s,) € S’ such that

si = qi, if g # *



Data structures

Comparison-based structures - search trees:

e Quadtrees (Finkel and Bentley '74),
e K-d-trees (Bentley '75)

Several variants are known in the literature.

Digital structures:

e K-d-tries (Rivest '76)



The Quadtree - Construction

Model: S; = [0, 1] for all i.

Dimension: n =2
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Model: S; = [0, 1] for all i.
Quadtree: n =2 0.73,0.17
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Model: S; = [0, 1] for all i.
Quadtree: n =2 0.1,0.86
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The Quadtree - Construction

Model: S; = [0, 1] for all i.
Quadtree: n =2 0.93,0.36
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The Quadtree - Construction

Model: S; = [0, 1] for all i.
Quadtree: n =2 0.26,0.64
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The Quadtree - Construction

Model: S; = [0, 1] for all i.
Quadtree: n =2 0.56,0.3




The Quadtree - Construction

Model: S; = [0, 1] for all /.

Quadtree: n =2




The Quadtree - Construction

Model: S; = [0, 1] for all i.
Quadtree: n =2 0.8,0.69




The Quadtree - Construction

Model: S; = [0, 1] for all /.

Quadtree: n =2




Simulation - Quadtree

n =100
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Simulation - Quadtree
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Simulation - Quadtree

n = 1000
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A partial match query

Query: g = {s,*}, s=0.2
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A partial match query

Query: g = {s,*}, s=0.2

J




A partial match query

Query: g = {s,*}, s=0.2




A partial match query

Query: g = {s,*}, s=0.2 s
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A partial match query

Query: g = {s, *}, s=0.2 s




A problem of stochastic geometry

Performing a partial match query with g = {s, x}, a node is visited
if and only if it is inserted in a subregion that intersects the vertical
line x = s.

This is equivalent to an intersection of its horizontal line and the
line x = s.



Probabilistic model

For the analysis of the complexity of information retrieval we
always assume the components of elements in the database S’ to
be independent and uniform on [0, 1]2.

Cr(s): number of nodes visited by a partial match query with
g = {s,*} in a random two-dimensional quadtree of size n.



Probabilistic analysis of the complexity

Theorem (Flajolet, Gonnet, Puech, Robson '93)

Let & be uniform on [0,1], independent of the quadtree. For
n — oo, it holds
E[Ca(€)] ~ rn”

with
(26 +2) V17 -3
=— ~ ~1. = ~ 0.56.
K 233 + 1) 59, 154 5 0.56

The variance or a distributional limit theorem remained open
problems.



Asymptotic results for fixed s

Theorem (Curien, Joseph '11)
For fixed s € [0,1] and n — oo, it holds
ECy(s) ~ Kin’(s(1 - 5))?/2,

where

1
S — S ’6/25:/4,.
Kl/o“l )?2d



The main idea - Decomposing at the root

U, V : components of the first inserted point,

Il("), ey I‘E"): number of points in the subregions.
(n) (n)
I, I,
uv)
(n) ()
¥ A

Given U, V, we have

(K 5 5 Y = Mult(n—1; UV, U(1—V), (1= U)V, (1= U) (1= V).



The main idea - Decomposing at the root

For any s € [0,1],
d (s @ (=
Ca(s) = 141 <C Al=— )+ C O >
(s) {s<U} ,1( ) <U) 12( ) (U)
S

3 (s-U @ (s-U
Hlszu) (C/§"> (1 — U) T <1 — U>> ’
where (C(l)) (C( )) (C(3)) (C( )) are ind. copies of (C,), ind. of
(U \/ /(”) /(”) I(”) ILE”))

This does not imply a recurrence for C,(s), neither for fixed s nor
for s = £. It is due to this fact that the problem remained unsolved
for many years.



The recursion on the process level

The recursion
d s
Cols) £ 1+41pcpy (C,“) (U) + C( ) (U)>

Hisu (C,(fn? ( ) < >>

remains valid on the level of cadlag functions, (Cy(s))sejo,q) is a
random stepfunction!




The recursion on the process level

Scaling gives

(,(n))ﬁ i (39) N (,}))5 ¢ (3=6)

n



Fixed-point equation

Assuming n=?C,(s) — Z(s) uniformly in s € [0,1] for n — oo,
suggests that Z satisfies

2) £ tyecy (U020 () + W= V)Y29 ()

s—U
=y (1= U)V)7Z0) <1_U>

s (1= U)(1 = V))PZz® (i:g) ,

where 21, 7(2) 703) 7(4) are ind. copies of Z, ind. of (U, V).



A functional limit law

Theorem (Broutin, Neininger, S. '12)

There exists a random continuous process Z on the unit interval
such that

Cn(s))
= (Z(5))seo1y> N — 0,
(Klnﬁ s€l0,1] <ol

in distribution in (D]0, 1], dsx) where dsx denotes the Skorohod
metric.



Characterization of Z

Theorem (Broutin, Neininger, S. '12)
Z is the unique solution in (D[0, 1], dsk) of the fixed-point equation
d s s
2(s) £ Ly (V)20 (5) + (U= V))PZ? (2)

s—U
(1= U)V)° 203 <1 — U)

s—U
(- o) - P29 (327,
with E|| Z||? < co and EZ(&) = B(B/2+1,3/2 + 1).
Here, Z(1) 72 7B3) 7(4) are independent copies of Z,
independent of (U, V).



A Simulation

by Nicolas Broutin
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The marginals of Z

Theorem (Broutin, Neininger, S. '12)
For all s € [0, 1], we have
Z(s) £ 2 (s(1=5))°%

where Z is the unique solution of

zZ L VBUPRZ 41— v)PUPlRZ

with EZ = 1 and EZ? < co. Again, Z' is an independent copy of
Z and (Z,Z') is independent of (U, V).



Back to the uniform case

Theorem (Broutin, Neininger, S. '12)

et e (€1 — )2
n§) d §(1-¢
wnd 2 BB2 41, 8/241)

with convergence of all moments , in particular

Var[Cn(&)] ~ K2n2f87
where

2(28 +1)

o = K 3a=g

B*(+1,6+1) - B? (§+17§+1)} = 0.44736.. ..



Simulations
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The proof - Functional contraction method

Solutions to the fixed-point equation of interest, or more generally
of type

K
d
Z<Y AZ +b,
i=1
with conditions as in our case and random linear operators
A1, ..., Ak are considered as fixed-points of the map

T: M(D[0,1]) — M(D[0,1]),
K
T(p) = E(ZA,Zrer),

where 73, ..., Z, are independent with common distribution g,
independent of (Ay,...,Ak,b).



The proof - Functional contraction method

e Choose a suitable subset of M(D]0, 1]) and endow it with
some appropriate metric d that turns T into a contraction.
Here, the crucial condition turns out to be

K
D EJAlS, <1,
=1

for s < 1.
e Construct a solution of the fixed-point equation by hand.

e Show d(C;, Z) — 0 and infer distributional convergence for
the rescaled quantity C;\.



The why of 3 - Size-biasing!
Let X, = C,(&). On the level of expectations,
E[X,] = 1+2E [1{§<U}X,((1n§ + 1{5>U}xl‘(3n§} .
1 3

This allows to compute 3:

E[X,] = 1+2E[X,]

with L, £ Bin(n — 1, /UV). Scaling gives

L\ X0
TEX,) ~2E | 2) Skl
e~ (7) ]

Hence 1 = 2E[(v/UV)] = v = 8.

The constant 3 appears in several other contexts, e.g. as the
Hausdorff dimension of the random Cantor set.
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