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Recursive laminations of the disk

Curien and Le Gall 2011:

In each step, connect two uniformly chosen points unless the chord
intersects any previously inserted.
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Recursive laminations of the disk

Curien and Le Gall 2011:

In each step, connect two uniformly chosen points unless the chord
intersects any previously inserted.

Number of inserted chords at time n is about
√
πn.

Lamination: Ln = set of inserted chords at time n.
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The limit triangulation

Theorem (Curien, Le Gall)

L∞ :=
⋃

n≥1 Ln is a triangulation, that is, its complement consists
of triangles with vertices on the circle.

Observe: Triangulations are maximal, they cannot be increased by
additional chords.
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The dual tree

0

s

Cn(s)

Tn: dual tree, dgr: graph distance on Tn.

Cn(s) = depth of node at s ∈ [0, 1] in Tn.

Scaling limit of the dual tree Tn ?

Scaling limit of the contour process Cn(s) ?
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Trees encoded by excursions

Let f : [0, 1]→ R+ be a continuous excursion.

0 1
Tf

x y

[x]

[y]d (x,y)f

Tf = [0,1]/∼ where s ∼ t with s ≤ t if df (s, t) = 0 where

df (s, t) = f (s) + f (t)− 2 inf{f (x) : s ≤ x ≤ t}.

(Tf , df ) is a compact tree-like metric space (an R-tree).
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Triangulations encoded by excursions

Let f : [0, 1]→ R+ be a continuous excursion with distinct local
minima.

Lf contains chords connecting s ≤ t if and only if df (s, t) = 0.

0 1
Lf

0

Inner nodes of Tf correspond to triangles in Lf .
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The Brownian world - Aldous ’94
Consider uniform triangulations of the n-gon Pn:

0           4n-6 

                       contour process (Dyck path)

↓ δHaus ↓ dGH ↓ ‖ · ‖∞

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

t



Recursive triangulations and their background Main results Variations of the scheme

The Brownian world - Aldous ’94
Consider uniform triangulations of the n-gon Pn:

0           4n-6 

                       contour process (Dyck path)

↓ δHaus ↓ dGH ↓ ‖ · ‖∞

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

t



Recursive triangulations and their background Main results Variations of the scheme

Outline

1. Recursive triangulations and their background

2. Main results

3. Variations of the scheme



Recursive triangulations and their background Main results Variations of the scheme

The dual tree of the lamination

0

s

Cn(s)

Cn(s) = depth of node at s ∈ [0, 1] in Tn.

Theorem (Broutin, S. ’15)
There exists a random continuous process Z (s), s ∈ [0, 1], such
that, uniformly in s ∈ [0, 1], almost surely,

Cn(s)
nβ/2 → Z (s), β =

√
17− 3
2 = 0.561 . . .
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The dual tree of the lamination

Theorem (Broutin, S. ’15)
There exists a random continuous process Z (s), s ∈ [0, 1], such
that, uniformly in s ∈ [0, 1], almost surely,

Cn(s)
nβ/2 → Z (s), β =

√
17− 3
2 = 0.561 . . .

Moreover, L∞ = LZ (already proved by Curien and Le Gall).

Almost surely,
(Tn, n−β/2dgr)→ (TZ , dZ )

in the Gromov-Hausdorff topology on the space of (isometry
classes of) compact metric spaces.
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A simulation of the limit
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E [Z (s)] ∼ (s(1− s))β

Optimal Hölder exponent: β = 0.561 . . . .
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Recursive decomposition

U

V

0

In
(0)

In
(1)

Attempted insertions in
subfragments

I(0)n
n ∼ (1− (V − U))2

I(1)n
n ∼ (V − U)2
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Recursive decomposition

U

V
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Cn(s)
d
=1[0,U](s)C
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I(n)0

(
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1− (V − U)
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Recursive decomposition

U

V

0
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(
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1− (V − U)

)
+ 1(V ,1](s)C

(0)
I(n)0

(
s − (V − U)

1− (V − U)

)
+ 1(U,V ](s)

(
1+ C (0)

I(n)0

(
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)
+ C (1)

I(n)1

(
s − U
V − U
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(U,V ) min and max of two ind. uniforms, here U = 0.32,V = 0.56
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The fractal dimension

Theorem (Broutin, S. ’15)

Almost surely, we have

dim(TZ ) =
1
β

= 1.781 . . .

both for Minkowski and Hausdorff dimension.

Compare: dim(Te) = 2 for the CRT.
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A homogeneous model

In each step
• choose one fragment
uniformly at random

• insert a chord uniformly
at random

Observe: I(n)0 is uniformly distributed (Polya urn!), hence

I(n)0
n →W , n→∞,

where W is uniform on [0, 1] and independent of (U,V ).
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A homogeneous model

Theorem (Broutin, S. ’15)

There exists a random continuous process H(s), s ∈ [0, 1], such
that, uniformly in s ∈ [0, 1], almost surely,

Ch
n (s)
n1/3 → H(s).

Moreover, E [H(s)] ∼ (s(1− s))1/2.
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A simulation of H
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Optimal Hölder exponent: 3−2
√

2
3 = 0.057 . . .
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The characterization of H
(U,V ): as before and W another independent uniform.

H(0) H(1)
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The characterization of H
(U,V ): as before and W another independent uniform.

H(0), (1−W)1/3H(0) H(1), W1/3H(1)
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The fractal dimension

Theorem (Broutin, S.)

Almost surely,
dim(TH) = 3

both for Minkowski and Hausdorff dimension.
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Summary: Triangulations vs. trees vs. excursions

Model Triangulation Dual tree Contour function

Rec. dim(TZ ) = 1/β
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dim(LZ ) = 1+ β o.H.e.: β
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dim(LH) = 1+ β o.H.e.: 0.057
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