Variations of the scheme

TRIANGULATIONS, DUAL TREES AND FRACTAL DIMENSIONS

Henning Sulzbach, McGill Montréal

CMS Winter Meeting, Montréal, December 2015

joint work with Nicolas Broutin (INRIA Paris, NYU Shanghai)

Variations of the scheme

Outline

1. Recursive triangulations and their background

2. Main results

3. Variations of the scheme

Variations of the scheme

Outline

$1. \ \mbox{Recursive triangulations and their background}$

2. Main results

3. Variations of the scheme

Curien and Le Gall 2011:

Curien and Le Gall 2011:

In each step, connect two uniformly chosen points unless the chord intersects any previously inserted.

Number of inserted chords at time *n* is about $\sqrt{\pi n}$.

Lamination: L_n = set of inserted chords at time n.

Variations of the scheme

The limit triangulation

Theorem (Curien, Le Gall)

 $\mathcal{L}_{\infty} := \overline{\bigcup_{n \ge 1} L_n}$ is a triangulation, that is, its complement consists of triangles with vertices on the circle.

Observe: Triangulations are maximal, they cannot be increased by additional chords.

The dual tree

 T_n : dual tree, d_{gr} : graph distance on T_n . $C_n(s) =$ depth of node at $s \in [0, 1]$ in T_n . Scaling limit of the dual tree T_n ?

Scaling limit of the contour process $C_n(s)$?

Trees encoded by excursions

Let $f : [0,1] \rightarrow \mathbb{R}^+$ be a continuous excursion.

 $\mathcal{T}_f = [0,1]/\sim$ where $s \sim t$ with $s \leq t$ if $d_f(s,t) = 0$ where $d_f(s,t) = f(s) + f(t) - 2 \inf\{f(x) : s \leq x \leq t\}.$

 (\mathcal{T}_f, d_f) is a compact tree-like metric space (an \mathbb{R} -tree).

Triangulations encoded by excursions

Let $f : [0,1] \rightarrow \mathbb{R}^+$ be a continuous excursion with *distinct* local minima.

 \mathcal{L}_f contains chords connecting $s \leq t$ if and only if $d_f(s, t) = 0$.

Inner nodes of \mathcal{T}_f correspond to triangles in \mathcal{L}_f .

The Brownian world - Aldous '94

Consider uniform triangulations of the *n*-gon P_n :

contour process (Dyck path)

The Brownian world - Aldous '94

Variations of the scheme

Outline

1. Recursive triangulations and their background

2. Main results

3. Variations of the scheme

The dual tree of the lamination

 $C_n(s) = \text{depth of node at } s \in [0,1] \text{ in } T_n.$ Theorem (Broutin, S. '15)

There exists a random continuous process $Z(s), s \in [0, 1]$, such that, uniformly in $s \in [0, 1]$, almost surely,

$$\frac{C_n(s)}{n^{\beta/2}} \to Z(s), \qquad \beta = \frac{\sqrt{17}-3}{2} = 0.561...$$

The dual tree of the lamination

Theorem (Broutin, S. '15)

There exists a random continuous process $Z(s), s \in [0, 1]$, such that, uniformly in $s \in [0, 1]$, almost surely,

$$\frac{C_n(s)}{n^{\beta/2}} \to Z(s), \qquad \beta = \frac{\sqrt{17}-3}{2} = 0.561...$$

Moreover, $\mathcal{L}_{\infty} = \mathcal{L}_{Z}$ (already proved by Curien and Le Gall).

Almost surely,

$$(T_n, n^{-\beta/2}d_{gr}) \rightarrow (\mathcal{T}_Z, d_Z)$$

in the Gromov-Hausdorff topology on the space of (isometry classes of) compact metric spaces.

A simulation of the limit

 $\mathbb{E}\left[Z(s)
ight]\sim(s(1-s))^{eta}$

Optimal Hölder exponent: $\beta = 0.561...$

Variations of the scheme

Variations of the scheme

Variations of the scheme

Variations of the scheme

Characterizing Z

(U, V) min and max of two ind. uniforms, here U = 0.32, V = 0.56

Characterizing Z

(U, V) min and max of two ind. uniforms, here U = 0.32, V = 0.56

Characterizing Z

(U, V) min and max of two ind. uniforms, here U = 0.32, V = 0.56

Variations of the scheme

The fractal dimension

Theorem (Broutin, S. '15)

Almost surely, we have

$$\dim(\mathcal{T}_{Z}) = \frac{1}{\beta} = 1.781\ldots$$

both for Minkowski and Hausdorff dimension.

Compare: $\dim(\mathcal{T}_e) = 2$ for the CRT.

Variations of the scheme

Outline

1. Recursive triangulations and their background

2. Main results

3. Variations of the scheme

Vlain results

Variations of the scheme

A homogeneous model

In each step

- choose one fragment uniformly at random
- insert a chord uniformly at random

Observe: $I_0^{(n)}$ is uniformly distributed (Polya urn!), hence $\frac{I_0^{(n)}}{n} \to W, \quad n \to \infty,$

where W is uniform on [0, 1] and independent of (U, V).

Variations of the scheme

A homogeneous model

Theorem (Broutin, S. '15)

There exists a random continuous process $H(s), s \in [0, 1]$, such that, uniformly in $s \in [0, 1]$, almost surely,

$$\frac{C_n^h(s)}{n^{1/3}} \to H(s).$$

Moreover, $\mathbb{E}[H(s)] \sim (s(1-s))^{1/2}$.

Variations of the scheme

A simulation of H

Optimal Hölder exponent: $\frac{3-2\sqrt{2}}{3} = 0.057...$

The characterization of H

(U, V): as before and W another independent uniform.

The characterization of H

(U, V): as before and W another independent uniform.

The characterization of H

(U, V): as before and W another independent uniform.

Recursive triangulations and their background

Main results

Variations of the scheme

The fractal dimension

Theorem (Broutin, S.)

Almost surely,

$\dim(\mathcal{T}_H)=3$

both for Minkowski and Hausdorff dimension.

Summary: Triangulations vs. trees vs. excursions

Model	Triangulation	Dual tree	Contour function
Rec.		$dim(\mathcal{T}_{Z}) = 1/\beta$	
	$dim(\mathcal{L}_{Z}) = 1 + \beta$		о.Н.е.: <i>β</i>
Hom.		$dim(\mathcal{T}_{H})=3$	- Marky hours and a second
	$dim(\mathcal{L}_{H}) = 1 + \beta$		o.H.e.: 0.057

References

- D. Aldous. Triangulating the circle, at random. *Amer. Math. Monthly*, **101**: 223–233, 1994
- D. Aldous. Recursive self-similarity for random trees, random triangulations and Brownian excursion. *Ann. Probab.*, **22**: 527–545, 1994
- N. Curien and J.-F. Le Gall. Random recursive triangulations of the disk via fragmentation theory. *Ann. Probab.*, **39**: 2224-2270, 2011
- N. Broutin and H. Sulzbach. The dual tree of a recursive triangulation of the disk. *Ann. Probab.*, **43**: 738–781, 2015

Thank you