
COMP760, SUMMARY OF LECTURE 17.

HAMED HATAMI

1. How to do compression?

In this lecture we will discuss how to compress a protocol with low information cost, but possibly
very high communication cost, to a protocol with low communication cost. It will be important to
understand how much information is revealed at every step of the protocol. Thus we will take a
closer look at the protocol tree, and we shall try to break the information cost into an expression
in terms of the amounts of the information that are revealed nodes of the tree.

Consider a protocol π, and fix the public randomness to R = r (recall that we denoted this
protocol by πr) so that there is no public randomness anymore. Note that every internal node v
of the protocol tree at distance j from the root corresponds to a value for the partial transcript
Π≤j . Let Lj denote the set of the internal nodes at distance j from the root, Vint denote the
internal nodes of the tree, and let ` be the number of rounds of the protocol. Using the formula
I(A;B|C) = Ec∼CI(A;B|C = c), we have

I(X; Π|Y) = I(X; Π1|Y) + I(X; Π2|YΠ1) + . . .+ I(X; Π`|YΠ≤`−1)

= I(X; Π1|Y) +
∑
v∈L1

Pr[πr reaches v]I(X; Π2|Y v) + . . .+
∑

v∈L`−1

Pr[πr reaches v]I(X; Π`|Y v)

=
∑
v∈Vint

Pr[πr reaches v]I(X; Πv|Y v),

where Πv is the message sent at the node v. Repeating the same argument for I(Y ; Π|X), we
conclude that

IC(πr) =
∑
v∈Vint

Pr[πr reaches v] (I(X; Πv|Y v) + I(Y ; Πv|Xv)) ,

If Bob is the owner of the node v, then I(X; Πv|Y v) = 0, and if Alice is the owner, then
I(Y ; Πv|Xv) = 0. Hence we have the following proposition.

Proposition 1. Let π be a protocol, and πr be the protocol obtained from π by setting the public
randomness to R = r. If Vint denotes the internal nodes of the protocol tree of πr, then

(1) IC(πr) =
∑
v∈Vint

Pr[πr reaches v]I(P ; Πv|Qv),

where P = X and Q = Y if Alice owns v, and P = Y and Q = X otherwise. Similarly

(2) ICext(πr) =
∑
v∈Vint

Pr[πr reaches v]I(XY ; Πv|v),

Proposition 1 breaks the information cost to a sum over the terms that correspond to the amount
of information that is revealed at node v.

As we saw in Lecture 15, given an input (x, y), every internal node u, defines a probability
distribution on the set of its children. This probability distribution is only known to the owner of

1

2 HAMED HATAMI

the node u. If u is owned by Alice, then she knows the probability distribution pxu(·), and if v is
owned by Bob, then he knows the probability distribution pyv(·). Given a leaf t of the protocol tree,
the probability that t will be reached by the protocol for a given pair of inputs x, y is given by

PrRA,RB [Πxy(t)] =

 ∏
i∈[`−1]

Alice owns vi

pxvi(vi+1)

×
 ∏

i∈[`−1]
Bob owns vi

pyvi(vi+1)

 = pxA(t)pyB(t),

where (v1, v2, . . . , v`(= t)) is the unique path from the root to the leaf t. The reason that Alice
and Bob need to communicate is that one of them knows some of the terms in the product and the
other one knows the rest. Indeed if they knew the probabilities PrRA,RB [Πxy(t)], then they could
use the public randomness to mutually sample a leaf according to this probability distribution, and
that would be a simulation of πr with no communication. The idea behind the compression is that
Alice and Bob will try to communicate in order to be able to choose a leaf with the right probability
distribution PrRA,RB [Πxy(t)], and they will try to save the amount of the communication using the
assumption that the information cost of the original protocol is low.

Consider πr and an input (x, y). Let u be a node owned by Alice, and thus she knows the
probability distribution pxu(·). Bob, in general, does not know what this probability distribution is,
as he does not know x, but he can have an estimate of this probability distribution. Bob knows
y, rB and the partial transcript u, and considering them, he has a posterior probability distribution
for w (and prior to knowing x). More precisely

qyu(w) = PrXY,RA [au(x,RA, r) = w|u, Y = y] = Ex∼µ|u,Y=y
[pxu(w)]

is Bob’s best estimate for pxu, and similarly if v is an internal node owned by Bob then

qxv (w) = PrXY,RB [bv(y,RB, r) = w|v,X = x] = Ey∼µ|v,X=x
[pyv(w)]

is Alice’s best estimate for pyv. We will think of the probabilities pxu and pyv as the “correct”
probabilities and of qyu and qxv as the estimate of the other party of these probabilities. Now with
this notation we can state Proposition 1 in terms of divergence.

Theorem 2. Let π be a protocol, and let Vint denote the internal nodes of the protocol tree. Then

ICµ(π) = ErExy∼µ

 ∑
v∈Vint

Pr[πr reaches v]D(pv‖qv)

 ,
where pv = pxv and qv = qyv if v is owned by Alice, and pv = pyv and qv = qxv otherwise.

Proof. The proof is by applying the formula

I(A;B|C) = Eac∼AC [D (B|A=a,C=c ‖ B|C=c)]

from Lecture 13 to each term in (1). �

1.1. Braverman-Rao’s correlated sampling. Theorem 2 shows that if the information cost of
a protocol tree is low, then for many nodes on the tree, the divergence of the correct distribution
(known to the owner) from the other party’s prior of that distribution is small. Let us look at an
internal node u of of the tree, and let us assume that it is owned by Alice. Suppose that u has
many children, and thus at this point Alice is likely to send a long message. Note that for example
in a protocol with bounded number of rounds, most nodes of the tree will have many children.
Now Alice is going to pick a child according to the distribution pxu, which is known to her. If pxu is

COMP760, SUMMARY OF LECTURE 17. 3

close to Bob’s estimate qyu, then can they use a small amount of communication to mutually pick
a child according to the probability distribution pxu, rather than first Alice picking the child and
then sending the possibly long message to Bob? Note for example if pxu = qyu and if they both know
this fact, then they do not need to communicate at all. Instead they can use public randomness
to choose a child randomly according to pxu (which is known to both in this case). Note also the
difficultly here that even if pxu = qyu, Alice and Bob might not be aware of it. Braverman and
Rao [BR14] discovered a protocol whose communication is bounded by a function of the divergence
D(pxu‖qxu) and allows Alice and Bob to do this sampling mutually.

1.1.1. The correlated sampling protocol. Braverman-Rao’s correlated sampling is very fundamental,
and it is interesting even outside the realm of information complexity. Consider two distributions
p and q over a universe U . Suppose that p is known to Alice and q is known to Bob. They want
to use as little communication as possible to mutually pick a random element from U according to
the distribution p.

Alice and Bob will use the public randomness to generate a random sequence (a1, a2, . . .) where
each ai = [xi, αi] is sampled independently by picking xi ∈ U and αi ∈ [0, 1] both uniformly at
random (and independently of each other). Let aj = [xj , αj] be the first element in the sequence
with αj ≤ p(xj). Obviously Alice is the only one who knows what aj is, as Bob does not know p.
Note that Pr[xj = x] = p(x), which shows that xj has the right distribution p. So what remains
is that Alice has to give enough hints to Bob, so that he can figure out what j is. First note that
with high probability j = O(|U|). Indeed note that 1[αi≤p(xi)] are independent Bernoulli random

variable with expected values 1
|U| . Hence

Pr[j > m|U|] =

(
1− 1

|U|

)m|U|
< e−m.

So the first thing Alice will do is that she will send the value of k =
⌈
j
|U|

⌉
to Bob so that he will

know that j belongs to the window k|U| ≤ j < (k + 1)|U| of length |U|. Note that this requires
O(log(k)) bits of communication which with high probability is O(1) as we discussed above.

Figure 1. The red points correspond to the values of i with αi ≤ p(xi). Here
k = 2 is the first window that contains such a point, and the first red element in
this window is j.

|U| 2|U| 3|U|

k = 2

j

Now Bob knows that j belongs to this possibly large window (denoted by W), but he needs some
way to identify it. To this end, Alice also sends him the values of s = 2+ log(1/ε) (publicly chosen)
hash1 functions h1(xj), . . . , hs(xj).

Now Bob will use his distribution q (his guess of what p is) to sieve out the potential aj ’s from
the window that Alice has told him. So he computes

Q0 = {i ∈W : αi ≤ q(xi)},
1For example, in the case U = {0, 1}n, they can publicly choose r1, . . . , rs ∈ {0, 1}n at random, and then Alice

can send the values of hi(xj) = 〈xj , ri〉F2 to Bob.

4 HAMED HATAMI

pretending that his estimate q is prefect and is precisely equal to p. Note that typically Q0 will
have very few elements (in expectation it has only one element). Now if j ∈ Q0 then Bob will
identify it using the hash values that Alice has sent to him. Indeed since Q0 is very small it will
be very unlikely that some element in Q0 other than xj will match these hash functions.

Now what if j does not belong to Q0? Then with high probability none of the elements in Q0

will match the hash values and Bob will know that his estimate q was not good enough and as a
result he has sieved out j. Thus he will revise his set Q0 to include more elements (and hopefully
j):

Q1 = {i ∈W : αi ≤ 2q(xi)}.
But including more elements in this way means possibly doubling the size of Q. Thus he might
need more hash values to identify xj correctly, and because of this he will ask Alice to send him
one more hash function. Alice will send him the value of hs+1(xj), and then Bob will look in Q1 to
see if any element matches all the hash values. If yes, he finds xj and otherwise it means that he
will need to consider even more elements. So they repeat the above process. Let us formally state
the protocol now:

• Alice finds the first j with the first αj ≤ p(xj).
• Alice sends Bob k =

⌈
j
|U|

⌉
.

• Alice sends Bob the hash values hi(xj) for i = 1, . . . , s, where s = 2 + dlog(1/ε)e.
• Repeat until Bob produces an output, beginning with t = 0:

– Bob defines
Qt = {i ∈W : αi ≤ 2tq(xi)}.

– If any element in Qt matches the hash values h1(xj), . . . , hs+t(xj) Bob responds
“success” and outputs that value.

– Otherwise he responds “fail”, and Alice sends him another hash value hs+t+1(xj).
– Set t = t+ 1

Now let us formally analyze the above protocol π. First note that π is guaranteed to terminate

at some time t ≤ T := log
p(xj)
q(xj)

as obviously j ∈ QT . Hence as xj has distribution p, the expected

number of rounds is bounded by

Ex∼p log
p(x)

q(x)
= D(p‖q).

Now since every round requires two bits of communication, we have

CCavg(π) ≤ E (dlog(k)e+ 2 + dlog(1/ε)e+ 2|T |) ≤ 5 + log(1/ε) + 2D(p‖q).
Next we need to bound the probability of error, that is if Bob by mistake would take another

element x` for xj .

Claim 3. Consider a fixed t. Then

Pr[∃` ∈ Qt, x` 6= xj , (hi(x`) = hi(xj) ∀i = 1, . . . , s+ t) | j] ≤ ε.
Proof. Note that conditioned on the value of j, the elements a1, . . . , aj−1 are uniformly and inde-
pendently distributed in {(u, α) : u ∈ U , α > p(u)}. On other hand this conditioning does not
affect the distribution of (aj+1, aj+1, . . .). Note that in either case ` < j, or ` > j,

Pr[` ∈ Qt|j] ≤ Pr[` ∈ Qt] =
2t

|U| .

COMP760, SUMMARY OF LECTURE 17. 5

Moreover by the property of the hash functions

Pr[hi(x`) = hi(xj) ∀i = 1, . . . , s+ t | j, `, x` 6= xj] ≤ 2−s−t.

Hence

Pr[` ∈ Qt, x` 6= xj , (hi(x`) = hi(xj) ∀i = 1, . . . , s+ t) | j] ≤ 2−s

|U| ≤
ε

|U| .

Applying the union bound completes the proof. �

Setting t to be terminating round, shows that the protocol π performs the required task, has error
probability at most ε, and its average communication complexity is at most 5+log(1/ε)+2D(p‖q).
Unfortunately the price 2D(p‖q) is too much to pay for applications such as information equals
amortized communication. The coefficient 2 comes from the fact that at each round Bob has to
say “fail” so that Alice will send him another hash value. This can be easily remedied. They can
combine many rounds together. In other words at each round Alice would send many new hash
values to Bob.

• Alice finds the first j with the first αj ≤ p(xj).
• Alice sends Bob k =

⌈
j
|U|

⌉
.

• Alice sends Bob the hash values hi(xj) for i = 1, . . . , s, where s = 2 + dlog(1/ε)e.
• Repeat until Bob produces an output, beginning with t = 0:

– Bob defines
Qt = {i ∈W : αi ≤ 2t

2
q(xi)}.

– If any element in Qt matches the hash value Bob responds “success” and outputs
that value.

– Otherwise he responds “fail”, and Alice sends him another 2t+ 3 new hash values.
– Set t = t+ 1

This new protocol terminates after fewer rounds as Qt grows much faster. Indeed it will terminate

after at most T :=
⌈√

log
p(xj)
q(xj)

⌉
rounds. The analysis of the error probability is exactly as the

previous protocol. The number 2t + 3 is chosen for the convenience so that after t rounds the

total number of hash functions is s + (t + 1)2 − 1. Hence using T ≤
√

log
p(xj)
q(xj)

+ 1 the average

communication is at most

CCavg(π) ≤ E
[
dlog(k)e+ s− 1 + (T + 1)2 + 2T

]
≤ 5 + log(1/ε) + Ex∼p

[
log

p(x)

q(x)
+ 5

√
log

p(x)

q(x)

]

= D(p‖q) + 5 + log(1/ε) + 5Ex∼p

[√
log

p(x)

q(x)

]

≤ D(p‖q) + 5 + log(1/ε) + 5

√
Ex∼p

[
log

p(x)

q(x)

]
= D(p‖q) + log(1/ε) +O(

√
D(p‖q) + 1).

This finally finishes the analysis of the correlated sampling, and proves the following theorem.

6 HAMED HATAMI

Theorem 4. Given probability distributions p and q over the same universe, known to Alice and
Bob respectively, there exists a protocol with expected communication at most

D(p‖q) + log(1/ε) +O(
√
D(p‖q))

such that with probability at least 1 − ε both parties output the same output x which is distributed
exactly according to p.

Next we show that how one can use this sampling to compress a protocol that has bounded
number of rounds.

1.2. Compression using this sampling. The idea is that Alice and Bob start from the root and
use Theorem 4 at every node to sample a child according to the correct distribution. If no error
occurs, then they will reach a mutual leaf which will have the same distribution as in the original
protocol, and furthermore Theorem 2 shows that the expected number of communicated bits is
bounded by a function of the information cost. However there is one complication. What if an
error occurs and Alice and Bob lose synchronization and they end up on different nodes, and thus
traverse different paths down the tree. The problem here is that in this case we do not have any
control on the amount of communication anymore. In this case, Alice and Bob will do correlated
sampling with two completely irrelevant distribution as one thinks that they are on one node of the
tree and the other thinks they are on some other node. That is why in the following theorem, there
is a conditioning on an event E. Here E is basically the event that all the correlation samplings
will go right, and Alice and Bob stay synchronized.

Theorem 5. Consider a k-round protocol π, and ε > 0. There is a public coin protocol τ and and
event E(x, y, rπ, rτ) such that

Pr[E|x, y, rπ] ≥ 1− ε ∀x, y, rπ,
where rπ is the public randomness of π and rτ is the public randomness of τ . Moreover conditioned
on E the following two statements hold:

• τ(x, y) has the same distribution as πr(x, y) for every x, y, r.

• The expected number of communicated bits is at most I +O(k log(k/ε) +
√
Ik), where I is

the information cost of π.

Proof. Let δ = ε/k. Alice and Bob use Theorem 4 (with error parameter δ) at every node to sample
a child according to the correct distribution. At a node v, this requires the expected communication
at most

D(pv‖qv) + log(1/δ) +O(
√
D(pv‖qv)).

While they mutually sampled a child they move to that child and continue this process until
they reach a leaf. Let E be the event that no error occurs in these correlated samplings, and
let v1, . . . , vk+1 be the path from the root to the leaf transversed by them. Since there only k
rounds, the probability that an error happens in the correlated samplings is at most kδ = ε. Hence
Pr[E|x, y, rπ] ≥ 1−ε. On the other hand conditioned on E, the expected communication is at most

k∑
i=1

D(pvi‖qvi)+log(1/δ)+O(
√
D(pvi‖qvi)) ≤ k log(1/δ)+

k∑
i=1

D(pvi‖qvi)+O

√√√√k

k∑
i=1

D(pvi‖qvi)

 ,

where we used the Cauchy-Schwarz inequality. Taking the expected value with respect to xy ∼
µ, and the public randomness rπ, we conclude that conditioned on E, the expected number of

COMP760, SUMMARY OF LECTURE 17. 7

communicated bits is at most

Exy∼µ,r[communication|E] ≤ k log(1/δ)+Exyrπ

[
k∑
i=1

D(pvi‖qvi)
]

+O

√√√√kExyrπ

[
k∑
i=1

D(pvi‖qvi)
] ,

where we used concavity of
√
x to take the expected value inside the square root. Now the proof is

completed as

Exyr

[
k∑
i=1

D(pvi‖qvi)
]

= Exyr

 ∑
v∈Vint

Pr[π reaches v]D(pv‖qv)

 = ICµ(π),

using Theorem 2. �

Remark 6. Here basically E is the event that things go right in the simulation, and thus condi-
tioned on E, τ will be a perfect simulation of π and furthermore its expected communication will
be bounded by K := I+k log(k/ε)+O(

√
Ik). Note that the gain is that I is outside O(·), and thus

we know the exact constant in front of I. On the other hand when E does not happen we have
no control on the communication. Obviously we can always truncate the protocol and terminate
after K/ε bits of communication. Since conditioned on E the expected communication is K, by
Markov’s inequality, the probability that it will be larger than K/ε will be bounded by ε. Hence
this way we will get a simulation of π with error at most 2ε and worst case communication

K/ε = Oε(I + k log k +
√
kI),

as it was discussed in the previous lecture.

References

[BR14] Mark Braverman and Anup Rao, Information equals amortized communication, IEEE Trans. Inform. Theory
60 (2014), no. 10, 6058–6069. MR 3265014

School of Computer Science, McGill University, Montréal, Canada
E-mail address: hatami@cs.mcgill.ca

	1. How to do compression?
	1.1. Braverman-Rao's correlated sampling
	1.2. Compression using this sampling

	References

