
COMP760, SUMMARY OF LECTURE 14.

HAMED HATAMI

1. Introduction to information complexity

So far, in this course, we have been focused on the communication cost of protocols, and given
various communication tasks, we studied the minimum communication cost required to perform
those tasks. The information theoretic tools introduced in the past two lectures enable us to intro-
duce another natural measure of complexity. Roughly speaking, given a protocol and a distribution
on the inputs of Alice and Bob, the information cost of this protocol is the amount of information
that the communication between Alice and Bob reveals about their inputs. Note that a protocol
with a very high communication cost might still have a small information cost if the communication
between Alice and Bob does not reveal much about their inputs. Naturally, we will be interested
in finding the smallest information cost required to perform a given communication task.

The concept of information complexity is deeply connected to communication complexity. Recall
how entropy captured the amount of information in a random variable, and how this quantity gave
us the exact asymptotic of the transmission cost of many independent copies of X. That is the
simplest setting of communication where there is a one-way channel and Alice wants to transmit her
data to Bob. The general setting of communication complexity is more complicated as Alice and
Bob are allowed to interact. However as the recent results in this area have demonstrated, similar to
the way that the information content of a random variable gives the asymptotics of the transmission
cost, information complexity provides valuable information about the communication complexity,
and specially in the asymptotic case where Alice and Bob are performing many instances of a given
communication task.

1.1. The basic setting. The setting is the same as the two player setting in communication
complexity, where Alice and Bob (having infinite computational power) want to mutually compute
a function f : X × Y → {0, 1}. To be able to measure information, we also need to assume that
there is a prior distribution µ on X×Y . Earlier in the course, we discussed two different models of
randomized communication protocols, the public coin and private coin protocols. For the purpose
of communication complexity, once we allow public randomness, it makes no difference whether we
permit the players to have private random strings or not. This is because the private random strings
can be simulated by parts of the public random string, which is infinite. However, for information
complexity, it is crucial to consider protocols that permit both private and public randomness. For
example, consider a protocol in which Alice sends x ⊕ r to Bob where r is chosen uniformly at
random from {0, 1}n. Note that if r is private to Alice, then the communication of x ⊕ r does
not reveal any information about x, while if r is known publicly, then x ⊕ r completely reveals x.
Hence we will consider the setting where both public and private random strings are present. We
shall also consider the deterministic case, where there is not randomness in the protocol, or the
restricted models where only one of public or private randomness is permitted.

• A function f : X × Y → {0, 1}, and a probability distribution µ on X × Y .
• A public random string R (visible to everybody), and private random strings RA (known

to Alice), and RB (known to Bob).
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• Alice receives x ∈ X and Bob receives y ∈ Y , where (x, y) is sampled randomly according
to the distribution µ.

1.2. Allowing long messages in one round. One of the greatest achievements of information
complexity has been its success [BGPW13] in determining the exact asymptotics of randomized
communication complexity of functions such as disjointness

lim
ε→∞

Rε(DISJn)

n
= 0.4827.

Prior to the discovery of these techniques, proving the lower-bound Rε(DISJn) = Ω(n) was already
a challenging problem and it took several works to find a short proof for this fact [Raz92]. To be
able to talk about the communication complexity with this precision we shall sometimes need to
use a more economical definition of a protocol. Since we had only been interested in the big-O
asymptotics of communication complexity, we simplified the model and assumed that Alice and
Bob alternatively speak and each time they send a bit to the other party. However this might
unnecessarily double the cost of communication, as there might be an optimal protocol in which
one of the parties remains quiet in many of the rounds. So in our revised model we will let each
one of the parties, Alice and Bob, to send a message longer than one bit if necessary. Also in order
for the other party to know that the message is finished we will assume that at each round the
messages that a party can possibly send are prefix-free. That is none of the messages is the prefix
(i.e. the start) of another possible message in that round. With this assumption, once the other
party receives the last bit of the message, he knows that the message is finished (as at this stage,
there is no possible message that can be obtained from this by possibly adding more bits), and
does not need to receive an “over” message to confirm that the message is over.

• A private coin protocol π is a tree where every internal node has an owner Alice or Bob.
• The owners alternate, that is the owner of every node is different from the owner of its

parent.
• Every node of the tree, except the root, is labeled with a finite string in {0, 1}N, such that

the set Mv of the labels on the children of an internal node v is prefix-free.
• For every internal node v owned by Alice, there is a function av : (x,RA) → Mv. Here
av(x,RA) is the message that will be sent by Alice at that stage of the execution of the
protocol, and then the protocol will move the the corresponding child.
• For every internal node u owned by Bob, there is a function bu : (y,RB) → Mu. Similarly
bu(y,RB) is the message that will be sent by Alice at that stage of the execution of the
protocol, and then the protocol will move the the corresponding child.
• Every leaf is labeled with an “output” value. Note that they do not need to communicate

this value as part of the communication. Once the protocol researches the leaf, they both
have agreed on an output value.

We often assume that every leaf in the protocol is at the same depth. We can do this since if
some leaf is at depth less than the maximum, we can modify the protocol by adding dummy nodes
which are always picked with probability 1, until all leaves are at the same depth.

Note that the above model is a generalization of our original model where Alice and Bob were
alternatively sending one bit at each round as then Mv = {0, 1} for every internal node, and it is
prefix-free.

The reason that we do not require the parties to communicate the output value is that, the
output might be very big, and outputting it can be very costly as we will be working with functions
f : X × Y → Z where Z can be a large set.
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Figure 1. An example of a protocol tree
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Now we can define a protocol with both public coin and private coin as a distribution on pri-
vate coins, run by first using shared randomness to sample an index r, and then running the
corresponding private coin protocol πr.

1.3. The transcript. The transcript of the protocol, denoted by Π(x, y,RA, RB, R) is the con-
catenation of all the bits exchanged during the execution of the protocol together with the public
random string R. It is basically all the information that is visible to both parties (and possibly
to an external observer). We denote by Πt the transcript of the t-th round of the communication.
This is the message sent at that round. We also denote by Π0 = R the public randomness, so that

Π = Π0Π1 . . .Π`,

where ` is the number of rounds. We shall also denote by Π≤t the transcript of the communication
from the beginning to the end of round t:

Π≤t = Π0Π1 . . .Πt,

1.4. Information cost. We defined the communication cost of a protocol as the maximum number
of bits that is exchanged by that protocol on all inputs and with all randomness:

CC(π) = max
RA,RB ,R

xy

(# of bits exchanged).

We defined the average communication cost of a protocol as the maximum expected number of
bits that is exchanged by that protocol on all inputs:

CCavg(π) = max
xy

ERA,RB ,R[# of bits exchanged].

We defined the average communication cost of a protocol with respect to the measure µ as the
expected number of bits that is exchanged by that protocol when the inputs are drawn from the
distribution µ.

CCµ(π) = E XY∼µ
RA,RB ,R

[# of bits exchanged].

Obviously

CCµ(π) ≤ CCavg(π) ≤ CC(π).

Finally we are ready to formally define the information cost of a protocol. Maybe the most
natural attempt would be to define the information cost as the amount of information that is
revealed about the inputs X and Y to an external observer who sees that communication and the
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public randomness. This is known as the external information cost and is formally defined as the
mutual information between XY and the transcript 1 of the protocol

ICext
µ (π) = I(XY ; Π).

While this notion is interesting and useful, it turns out there is another way of defining information
cost that has nicer properties. This is called the internal information cost or just the information
cost for short, and it corresponds to the amount of information that Alice and Bob learn about
each other’s inputs from the communication. Note that Bob knows Y and RB, and thus what he
learns about X from the communication can be measured by I(X; Π|Y RB) and similarly what Alice
learns about Y from the communication can measured by I(Y ; Π|XRA). As we shall see below in
Proposition 1, conditioning on private randomness does not affect these quantities: I(X; Π|Y,RB) =
I(X; Π|Y ) and I(Y ; Π|X,RA) = I(Y ; Π|X). Hence we define the information cost as

ICµ(π) = I(X; Π|Y ) + I(Y ; Π|X).

The above definition is fairly recent and it is due to Barak, Braverman, Chen and Rao [BBCR10]
from 2009.

1.5. Transcripts and conditioning on them . Before proving the basic results about informa-
tion cost, let us list some useful facts that will be used frequently. Consider a specific transcript Π
of a protocol π. Note that the transcript corresponds to combinatorial rectangle XΠ×YΠ, where XΠ

is a set of possible values for XRA, and YΠ is a set of possible values for Y RB. Hence conditioning
on Π means conditioning on the event

(R = Π0, XRA ∈ XΠ, Y RB ∈ YΠ).

This is a very useful fact. For example it immediately implies the following conditional indepen-
dences:

I(XRA;RB|YΠ) = I(RA;Y RB|XΠ) = 0,

and

I(RA;RB|XYΠ) = I(RA;RB|XΠ) = I(RA;RB|YΠ) = 0.

1.6. Conditioning on Private randomness does not matter.

Proposition 1. We have I(X; Π|Y RB) = I(X; Π|Y ) and I(Y ; Π|XRA) = I(Y ; Π|X).

The proof will use the identity

(1) I(A;B|Z) = I(A;B|ZC)− I(A;C|ZB) + I(A;C|Z),

from the last lecture.

Proof of proposition 1. We only prove I(X; Π|Y RB) = I(X; Π|Y ), as the proof of the other equality
is identical. The proof is by induction. Suppose that the interaction has 2` rounds and Alice speaks
at odd rounds 1, 3, 5, . . . , 2` − 1, and Bob speaks at even rounds 2, 4, . . . , 2`. The statement that
we want to prove is obvious for ` = 0, and our induction hypothesis says that

I(Π≤2`−2;X|Y ) = I(Π≤2`−2;X|Y RB).

By chain rule

I(Π≤2`;X|Y ) = I(Π≤2`−2;X|Y ) + I(Π2`−1;X|YΠ≤2`−2) + I(Π2`;X|YΠ≤2`−1),

1Recall that Π contains the public random string R
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and

I(Π≤2`;X|Y RB) = I(Π≤2`−2;X|Y RB) + I(Π2`−1;X|Y RBΠ≤2`−2) + I(Π2`;X|Y RBΠ≤2`−1).

The 3rd term is 0 in both identities by the discussion in Section 1.5 as Bob speaks at round 2`
and what he says is based on Y RBΠ≤2`−1. Hence, using the induction hypothesis, to establish the
proposition it suffices to prove

(2) I(Π2`−1;X|YΠ≤2`−2) = I(Π2`−1;X|Y RBΠ≤2`−2).

By the identity (1) we have

I(Π2`−1;X|YΠ≤2`−2) = I(Π2`−1;X|YΠ≤2`−2RB)−I(Π2`−1;RB|YΠ≤2`−2X)+I(Π2`−1;RB|YΠ≤2`−2).

The last two terms are equal to 0 by the discussion in Section 1.5 as Alice speaks at round 2`− 1,
and her decision is based on Π≤2`−2XRA. �

1.7. Information cost is the average over public randomness. Consider a protocol π, and
denote by πr the protocol obtained by fixing the public randomness to a string r.

Theorem 2. We have

ICµ(π) = ErICµ(πr).

Proof. We have

ICµ(π) = I(Π;X|Y ) + I(Π;Y |X)

= I(R;X|Y ) + I(Π;X|Y R) + I(R;Y |X) + I(Π;Y |XR)

= I(Π;X|Y R) + I(Π;Y |XR) = ErI(Π;X | Y, [R = r]) + I(Π;Y | X, [R = r])

= ErIC(πr, µ),

where [R = r] denotes the event that R = r.
�

1.8. External information cost is larger than the information cost. The following theorem
shows that ICext ≥ IC. The intuitive reason behind this fact is that the external observer does not
know either of X or Y , so she can learn more new information about the inputs than Alice and Bob
who already have some information about the other person’s input from the possible correlation
between X and Y . Indeed if X and Y are independent and thus there is no such correlation between
them (which is equivalent to µ being a product distribution), then ICext and IC are equal.

Theorem 3. We have

ICµ(π) ≤ ICext
µ (π).

Proof. Suppose without loss of generality that the interaction has 2` rounds and Alice speaks at
odd rounds, and Bob speaks at even rounds. By induction hypothesis the statement is true for
2`−1 rounds, and combining this with the chain rule ICext

µ (π2`−1) = I(XY ; Π2`−1) = I(Y ; Π2`−1)+
I(X; Π2`−1|Y ) shows that

(3) I(Y ; Π≤2`−1) ≥ I(Y ; Π≤2`−1|X).

Similarly to establish the induction hypothesis for the 2` rounds, it suffices to prove

I(Y ; Π) ≥ I(Y ; Π|X).
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By (3), we have

I(Y ; Π) = I(Y ; Π≤2`−1) + I(Y ; Π2`|Π≤2`−1)

≥ I(Y ; Π≤2`−1|X) + I(Y ; Π2`|Π≤2`−1)

= I(Y ; Π≤2`−1|X) + I(Y ; Π2`|Π≤2`−1X)− I(X; Π2`|Π≤2`−1Y ) + I(X; Π2`|Π≤2`−1) By (1)

≥ I(Y ; Π≤2`−1|X) + I(Y ; Π2`|Π≤2`−1X)− I(X; Π2`|Π≤2`−1Y )

= I(Y ; Π≤2`−1|X) + I(Y ; Π2`|Π≤2`−1X) = I(Y,Π|X).

�

1.9. Information cost is bounded by communication cost. The following theorem establishes
the intuitive fact that the amount of information that Alice and Bob reveal about their input by
their communication is bounded by the number of communicated bits.

Theorem 4. We have
ICµ(π) ≤ ICext

µ (π) ≤ CCµ(π),

where CCµ(π) denotes the average communication cost of π with respect to µ.

Proof. We proved the first inequality in Theorem 3. To bound the external information cost by the
average communication cost, note that

I(Π;XY ) = I(Π0;XY ) + I(Π>0;XY |Π0) = I(Π>0;XY |Π0) ≤ H(Π>0) ≤ E[|Π>0|] = CCµ(π).

�
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