COMP760, LECTURES 14-15: NOISE STABILITY IN GAUSSIAN SPACE, INVARIANCE PRINCIPAL, THRESHOLD FUNCTION

HAMED HATAMI

In the previous lecture, we introduced the *Noise Stability* of boolean functions and stated theorem 2.22 about noise stability of the *Majority Function*. We start this lecture by proving the corresponding theorem.

1. NOISE STABILITY IN GAUSSIAN SPACE

Theorem 1.1 (Noise Stability of Majority Function). Let $Maj_n : (\mathbb{R}^n, \gamma_n) \to \{0, 1\}$

$$Maj_n: x \to \begin{cases} 1 & \sum x_i \ge 0\\ 0 & \sum x_i < 0 \end{cases}$$

, then we have

$$\mathbb{S}_{\rho}(Maj_n) = \frac{1}{4} + \frac{\arccos(\rho)}{2\pi}$$

Proof.

$$S_{\rho}(Maj_{n}) = \mathbb{E}1_{[\sum x_{i} \ge 0]}1_{[\sum y_{i} \ge 0]} = \mathbb{E}1_{[\rho \sum y_{i} + \sqrt{1 - \rho^{2}} \sum g_{i} \ge 0]}1_{[\sum y_{i} \ge 0]}$$

where y_i 's and g_i 's are i.i.d. Gaussians. $\sum y_i$ has the same distribution as $\sqrt{n}h$, where h is a Gaussian in \mathbb{R} . Similarly, $\sum g_i$ has distribution the same as $\sqrt{n}h'$. Therefore, the expected value is equal to:

$$\mathbb{E}1_{[\rho h + \sqrt{1 - \rho^2} h' \ge 0]} 1_{[h \ge 0]} = \frac{1}{4} + \frac{\arccos \rho}{2\pi}$$

Definition 1.2 (Gaussian Rearrangement). Given $A \subset \mathbb{R}^n$ its Gaussian Rearrangement A^* is defined to be the interval (t, ∞) with $\gamma_1(t, \infty) = \gamma_n(A)$.

Recall that γ_i is the Gaussian measure on \mathbb{R}^* .

Theorem 1.3 (Borrell 83). Let $A, B \subseteq \mathbb{R}^n$. Then for any $0 \le \rho \le 1$ and $q \ge 1$ we have:

$$\mathbb{E}(U_{\rho}A)^{q}B \leq \mathbb{E}(U_{\rho}A^{*})^{q}B$$

In particular,

$$\mathbb{S}_{\rho}(A) = \mathbb{E}AU_{\rho}A \le \mathbb{E}A^*U_{\rho}A^* = \mathbb{S}_{\rho}(A^*)$$

Hence, $\gamma_n(A) = \frac{1}{2}$ then $\mathbb{S}_{\rho}(A) \leq \mathbb{S}_{\rho}(Maj_n) = \frac{1}{4} + \frac{\arccos \rho}{2\pi}$.

These notes are scribed by Athena K. Moghaddam.

HAMED HATAMI

2. Invariance Principle

Theorem 2.1 (Invariance Principal I). Let $Q(x_1, ..., x_n) = \sum_{S \le [n]} \alpha_S \prod_{i \in S} x_i$ satisfies: (1) $dea(O) \le d$

(2)
$$\sum_{|S|>0} \alpha_S^2 = 1$$

(3)
$$I_i := \sum_{S:i \in S} \alpha_S^2 \le \tau \quad \forall i: 1, ..., n$$

Then:

$$Sup_t | prob[Q(\varepsilon_1, ..., \varepsilon_n) \le t] - prob[Q(g_1, ..., g_n) \le t] | \le O(d\tau^{\frac{1}{8d}})$$

Where $\varepsilon_1, ..., \varepsilon_n$ are *i.i.d.* ± 1 uniform random variables and $g_1, ..., g_n$ are *i.i.d.* Gaussians.

Definition 2.2 (Rademacher Random Variable). A uniform ± 1 random variable is called a rademacher random variable.

Theorem 2.3 (Invariance Principal II).

$$|\mathbb{E}[\Psi(Q(\varepsilon_1,...,\varepsilon_n))] - \mathbb{E}[\Psi(Q(g_1,...,g_n))]| \le O(d9^d B\tau)$$

for all $\Psi : \mathbb{R} \to \mathbb{R}$ in C^4 (four times differentiable) with $|\Psi^{(4)}(t)| < B$ for all t.

Remark that if we could take $\Psi: x \to \begin{cases} |x| & x \leq t \\ 0 & otherwise \end{cases}$ then theorem II would imply theorem I. One instead has to approximate functions with bounded fourth derivatives.

Proof. Let $Z_i = Q(g_1, ..., g_i, \varepsilon_{i+1}, ..., \varepsilon_n)$. We claim that $|\mathbb{E}\Psi(Z_{i-1} - \mathbb{E}\Psi(Z_i)| \le O(B9^d I_i^2)$. First we show that the theorem can be extracted from this claim. Indeed,

$$\begin{split} |\mathbb{E}\Psi(Z_0) - \mathbb{E}\Psi(Z_n)| &\leq \sum_{i=1}^n |\mathbb{E}\Psi((Z_{i-1}) - \mathbb{E}\Psi(Z_i)| \\ &\leq O(B9^d) \sum_{i=1}^n I_i^2 = O(B9^d) \\ (maxI_i) \sum I_i &\leq O(B9^d\tau) \sum I_i = O(B9^d\tau) \sum_{|S|>0} |S|/alpha_S^2 \leq O(dB9^d\tau) \sum_{|S|>0} \alpha_S^2 = O(\tau B9^d d) \end{split}$$

To prove the claim $Q(x_1, ..., x_n) = \sum_{S:i \notin S} \alpha_S \prod_{j \in s} x_j + x_i \sum_{S:i \in S} \alpha_S \prod_{j \in s \setminus \{i\}} x_j = r(x_1, ..., x_{i-1}, x_{i+1}, ..., x_n) + s(x_1, ..., x_{i-1}, x_{i+1}, ..., x_n)$, let $R = r(g_1, ..., g_{i-1}, \varepsilon_{i+1}, ..., \varepsilon_n)$ and $S = s(g_1, ..., g_{i-1}, \varepsilon_{i+1}, ..., \varepsilon_n)$. We have $Z_{i-1} = R + \varepsilon_i S$ and $Z_i = R + g_i S$. Now using Taylor's theorem: $|\mathbb{E}\Psi(Z_{i-1} - \mathbb{E}\Psi(Z_i)| \leq |\mathbb{E}\Psi(Z_i)| \leq |\mathbb{E}\Psi(Z_i)|$

$$|\mathbb{E}\Psi(R) + \varepsilon_i S\Psi'(R) + \frac{(\varepsilon_i S)^2}{2}\Psi''(R) + \frac{(\varepsilon_i S)^3\Psi^{(3)}(R)}{6} + E_1 \\ -\mathbb{E}\Psi(R) - g_i S\Psi'(R) - \frac{(g_i S)^2}{2}\Psi''(R) - \frac{(g_i S)^3\Psi^{(3)}(R)}{6} - E_2$$

Where $|E_1| \leq \frac{|\Psi^{(4)}(\xi)|(\varepsilon_i S)^4}{24} \leq \frac{B(\varepsilon_i S)^4}{24}$ for some ξ between R and $R + \varepsilon_i S$. Similarly, $|E_2| \leq \frac{B(g_i S)^4}{24}$. All terms get canceled except the error terms E_1 and E_2 . So the expression is bounded by:

$$\mathbb{E}\left|\frac{B(\varepsilon_i S)^4}{24}\right| + \mathbb{E}\left|\frac{B(g_i S)^4}{24}\right| \le \frac{B}{24}\mathbb{E}S^4 + \frac{3B}{24}\mathbb{E}S^4 \frac{B}{6}\mathbb{E}S^4$$

by *Hypercontractivity*

$$\leq \frac{B9^d}{6} (\mathbb{E}S^2)^2 = \frac{B9^d}{6} \sum_{i \in S} \alpha_S^2 = \frac{B9^d}{6} I_i^2$$

Lecture 15

In previous lectures, we claimed that *Majority Function* is the stablest in Gaussian space. Now, we are going to prove this fact using the properties of *Threshold Function*.

Definition 2.4. $T_{\rho}Q = \sum \rho^{|S|} \alpha_S \prod_{i \in S} x_i$

Definition 2.5 (Threshold Function). For any $\mu \in [-1, 1]$, the function $Thr^{(\mu)} : (\mathbb{R}, \gamma_1) \to \{-1, 1\}$ is defined as:

$$Thr^{(\mu)} : x \to \begin{cases} 1 & x \ge t_0 \\ -1 & x < t_0 \end{cases}$$

with $\mathbb{E}Thr^{(\mu)} = \mu$.

Theorem 2.6 (Majority is stablest in Gaussian space). Let $f : (\mathbb{R}^n, \gamma_n) \to [1, -1]$ with $\mathbb{E}f = \mu$. Then:

$$\mathbb{S}_{\rho}(f) \leq \mathbb{S}_{\rho}(Thr^{(\mu)})$$

Theorem 2.7 (Majority is stablest in discrete setting). Let $f : \{0,1\}^n \to [-1,1]$ and $I_i(f) = \sum_{S \ni i} |\widehat{f(s)}|^2 \leq \tau$ for every *i*. Then for every $0 \leq \rho \leq 1$, $\mathbb{S}_{\rho}(f) \leq \mathbb{S}_{\rho}(Thr^{(\mu)}) + O_{\rho}(\frac{\log \log \frac{1}{\tau}}{\log \frac{1}{\tau}})$ where $\mu = \mathbb{E}f$

Proof. Express $f = \sum \widehat{f(S)}\chi_S$. Let $Q(x_1, ..., x_n) = \sum_{s \subseteq [[n]} \widehat{f(S)} \prod_{i \in S} x_i$. Therefore, $f(x_1, ..., x_n) = Q(\varepsilon_1, ..., \varepsilon_n)$ where $\varepsilon_i = (-1)^{x_i}$. Let $(g_1, ..., g_n)$ be an i.i.d. Gaussian. We have

$$\mathbb{S}_{\rho}(f) = \sum \rho^{|S|} |\widehat{f(S)}|^2 = \mathbb{S}_{\rho}(Q(g_1, ..., g_n))$$

We would like to apply invariance principal to replace rademachers with Gaussians. However, since the degree of Q can be as large as n, we cannot apply invariance directly to Q. Instead, we apply a *smoothed* version of the theorem, which can be applied on $T_{\beta}Q$ for $\beta < 1$. Let $\rho = \rho'\beta^2$ where $\beta < 1$ is very close to 1. $(0 < 1 - \beta << 1 - \rho)$ to be determined later.

$$\mathbb{S}_{\rho}(f) = \sum \rho^{|S|} |\widehat{f(S)}|^2 = \sum (\rho' \beta^2)^{|S|} |\widehat{f(S)}|^2 = \mathbb{S}_{\rho'}(T_{\beta}Q(g_1, ..., g_n)).$$

Now using the smoothed invariance, $T_{\beta}Q(g_1, ..., g_n)$ is close in distribution to $T_{\beta}Q(\varepsilon_1, ..., \varepsilon_n)$ and hence it cannot be far from being in [-1,1]. To make this precise we define function ξ as follows:

$$\xi: t \to \begin{cases} 0 & |t| \le 1\\ (|t|-1)^2 & |t| > 1 \end{cases}$$

HAMED HATAMI

Note that ξ measures the L_2 -distance of t from its truncated value in [-1, 1]. By invariance principle of random variables $R = T_{\beta}Q(\varepsilon_1, ..., \varepsilon_n)$ and $S = T_{\beta}Q(g_1, ..., g_n)$ satisfy $|\mathbb{E}\xi(R) - \mathbb{E}\xi(S)| \leq \tau^{\Omega(1-\beta)}$. Let S' be the truncation of S to the interval [-1, 1]:

$$S' = \begin{cases} S & |S| \le 1\\ 1 & S > 1\\ -1 & S < -1 \end{cases}$$

By assumption, $Q(\varepsilon_1, ..., \varepsilon_n) \in [-1, 1]$ and since T_β is an averaging operator, $T_\beta Q(\varepsilon_1, ..., \varepsilon_n) \in [-1, 1]$ and hence $\xi(R) = 0$. Thus,

$$\mathbb{E}|\xi(S)| = \mathbb{E}(S - S')^2 \le \tau^{\Omega(1-\beta)}$$

$$\Rightarrow |\mathbb{S}_{\rho'}(S) - \mathbb{S}_{\rho'}(S')| = |\mathbb{E}SU_{\rho'}S - \mathbb{E}S'U_{\rho'}S'|$$

$$\le |\mathbb{E}SU_{\rho'}S - \mathbb{E}S'U_{\rho'}S| + |\mathbb{E}S'U_{\rho'}S - \mathbb{E}S'U_{\rho'}S'|$$

$$\le ||S - S'||_2 ||U_{\rho'}S||_2 + ||S'||_2 ||U_{\rho'}(S - S')||_2$$

$$\le ||S - S'||_2 ||S||_2 + ||S'||_2 ||S - S'||_2 \le \tau^{(\Omega(1-\beta))}.$$

By Borrell's theorem, $\mathbb{S}_{\rho'}(S') \leq \mathbb{S}_{\rho'}(Thr^{\mu'})$ where $\mu' = \mathbb{E}S'$. Now, we just have to show that $\mu = \mu'$:

$$\begin{aligned} |\mu - \mu'| &= |\mathbb{E}(S - S')| \le ||S - S'||_2 \le \tau(\Omega(1 - \beta)) \\ \Rightarrow |\mathbb{S}_{\rho'}(Thr^{\mu} - \mathbb{S}_{\rho'}(Thr^{\mu'})| \le O(\frac{1 - \beta}{1 - \rho}) \\ \Rightarrow \mathbb{S}_{\rho}(f) &= \mathbb{S}_{\rho}(Thr^{(\mu)}) + O(\tau^{(\Omega(1 - \beta)} + \frac{1 - \beta}{1 - \rho}) \end{aligned}$$

and by optimizing the last expression over β the result yields to the theorem claim.

3. Applications of "Majority is Stablest" Theorem

Definition 3.1 (Condorcet Method for Ranking 3 Candidates). In an election with n voters and 3 candidates, A, B and C, each voter submits 3 bits representing his preferences. The first bit indicates whether he prefers A to B; The second one shows his preference between B and C and the third one shows the same fact over C and A. These preferences are aggregated into 3 strings $x, y, z \in (-1, 1)^n$. A boolean function $f : \{-1, 1\}^n \mapsto -1, 1$ is applied to x, y and z and the aggregated preference is represented by (f(x), f(y), f(z)).

Definition 3.2 (Condorcet Paradox). If f is the Majority function we have an irrational outcome, in which all 3 aggregated bits are 1 or all are -1 representing preferences A < B < C < A or A > B > C > A.

Definition 3.3. A triple $(a, b, c) \in \{-1, 1\}^3$ is called rational, if it corresponds to a non-cyclic ordering.

Theorem 3.4 (Ken Arrow's Impossibility Theorem). The only functions f that never give irrational outcomes are dictator functions $f(x) = x_i$ or $f(x) = 1 - x_i$ for some i.

Note that every voter has 6 possible rational rankings. Suppose that every voter votes independently at random from the 6 possible choices. Let $x, y, z \in \{-1, 1\}^n$ be the corresponding random string. Note that:

$$1_{[a_1=a_2=a_3]} = \frac{1}{4} + \frac{1}{4}a_1a_2 + \frac{1}{4}a_1a_3 + \frac{1}{4}a_2a_3$$

$$\Rightarrow \Pr[(f(x), f(y), f(z))] = 1 - \mathbb{E}1_{[f(x) = f(y) = f(z)]} = \frac{3}{4} - \frac{1}{4} \mathbb{E}f(x)f(y) - \frac{1}{4} \mathbb{E}f(x)f(z) - \frac{1}{4} \mathbb{E}f(y)f(z)$$
$$= \frac{3}{4} - \frac{3}{4} \mathbb{E}f(x)f(y) = \frac{3}{4} - \frac{3}{4} \sum \widehat{f(S)}\widehat{f(T)}\mathbb{E}\chi_S(x)\chi_T(y)$$

Now we know that,

$$\mathbb{E}\chi_S(x)\chi_T(y) = (\prod_{i \in S \cap T} \mathbb{E}x_i y_i)(\prod_{i \in S \setminus T} \mathbb{E}x_i)(\prod_{i \in T \setminus S} \mathbb{E}y_i)$$

Since $\mathbb{E}y_i = \mathbb{E}x_i = 0$ and $\mathbb{E}x_i y_i = \frac{2}{6} - \frac{4}{6} = -\frac{1}{3}$, so $\mathbb{E}\chi_S(x)\chi_T(y) = \begin{cases} 0 & S \neq T\\ (\frac{-1}{3})^{|S|} & S = T \end{cases}$. Hence, $\Pr[(f(x), f(y), f(z)) \text{ is rational}] = \frac{3}{4} + \frac{3}{4}\sum_{i=1}^{3} (\frac{-1}{3})^{|S|} |\widehat{f(S)}|^2 \le \frac{3}{4} + \frac{3}{4}\mathbb{S}_{\frac{1}{3}}(f)$

Corollary 3.5. If f satisfies $I_i(f) = o_n(1)$ and $\mathbb{E}f = 0$, then rationality of $f \leq \frac{3}{4} + \frac{3}{4} \arcsin \frac{1}{3} + o_n(1) \leq 0.9123 + o_n(1)$.

SCHOOL OF COMPUTER SCIENCE, MCGILL UNIVERSITY, MONTRÉAL, CANADA *E-mail address:* hatami@cs.mcgill.ca