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HAMED HATAMI

In the previous lecture, we introduced the Noise Stability of boolean functions and stated the-
orem 2.22 about noise stability of the Majority Function. We start this lecture by proving the
corresponding theorem.

1. Noise Stability in Gaussian Space

Theorem 1.1 (Noise Stability of Majority Function). Let Majn : (Rn, γn)→ {0, 1}

Majn : x→
{

1
∑
xi ≥ 0

0
∑
xi < 0

, then we have

Sρ(Majn) =
1

4
+

arccos(ρ)

2π

Proof.

Sρ(Majn) = E1[
∑
xi≥0]1[

∑
yi≥0] = E1

[ρ
∑
yi+
√

1−ρ2
∑
gi≥0]

1[
∑
yi≥0]

where yi’s and gi’s are i.i.d. Gaussians.
∑
yi has the same distribution as

√
nh, where h is a

Gaussian in R. Similarly,
∑
gi has distribution the same as

√
nh′. Therefore, the expected value

is equal to:

E1
[ρh+
√

1−ρ2h′≥0]
1[h≥0] =

1

4
+

arccos ρ

2π

�

Definition 1.2 (Gaussian Rearrangement). Given A ⊂ Rn its Gaussian Rearrangement A∗ is
defined to be the interval (t,∞) with γ1(t,∞) = γn(A).

Recall that γi is the Gaussian measure on R∗.

Theorem 1.3 (Borrell 83). Let A,B ⊆ Rn. Then for any 0 ≤ ρ ≤ 1 and q ≥ 1 we have:

E(UρA)qB ≤ E(UρA
∗)qB∗

In particular,

Sρ(A) = EAUρA ≤ EA∗UρA∗ = Sρ(A∗)

Hence, γn(A) = 1
2 then Sρ(A) ≤ Sρ(Majn) = 1

4 + arccos ρ
2π .

These notes are scribed by Athena K. Moghaddam.
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2. Invariance Principle

Theorem 2.1 (Invariance Principal I). Let Q(x1, ..., xn) =
∑

S≤[n] αS
∏
i∈S xi satisfies:

(1) deg(Q) ≤ d

(2)
∑
|S|>0

α2
S = 1

(3) Ii :=
∑
S:i∈S

α2
S ≤ τ ∀i : 1, ..., n

Then:
Supt|prob[Q(ε1, ..., εn) ≤ t]− prob[Q(g1, ..., gn) ≤ t]| ≤ O(dτ

1
8d )

Where ε1, ..., εn are i.i.d. ±1 uniform random variables and g1, ..., gnare i.i.d. Gaussians.

Definition 2.2 (Rademacher Random Variable). A uniform ±1 random variable is called a rademacher
random variable.

Theorem 2.3 (Invariance Principal II).

|E[Ψ(Q(ε1, ..., εn))]− E[Ψ(Q(g1, ..., gn))]| ≤ O(d9dBτ)

for all Ψ : R→ R in C4 (four times differentiable) with |Ψ(4)(t)| < B for all t.

Remark that if we could take Ψ : x→
{
|x| x ≤ t
0 otherwise

then theorem II would imply theorem I.

One instead has to approximate functions with bounded fourth derivatives.

Proof. Let Zi = Q(g1, ..., gi, εi+1, ..., εn). We claim that |EΨ(Zi−1−EΨ(Zi)| ≤ O(B9dI2
i ). First we

show that the theorem can be extracted from this claim. Indeed,

|EΨ(Z0)− EΨ(Zn)| ≤
n∑
i=1

|EΨ((Zi−1)− EΨ(Zi)|

≤ O(B9d)
n∑
i=1

I2
i = O(B9d)

(maxIi)
∑

Ii ≤ O(B9dτ)
∑

Ii = O(B9dτ)
∑
|S|>0

|S|/alpha2
S ≤ O(dB9dτ)

∑
|S|>0

α2
S = O(τB9dd)

To prove the claim Q(x1, ..., xn) =
∑

S:i/∈S αS
∏
j∈s xj + xi

∑
S:i∈S αS

∏
j∈s\{i} xj =

r(x1, ..., xi−1, xi+1, ..., xn) + s(x1, ..., xi−1, xi+1, ..., xn) , let R = r(g1, ..., gi−1, εi+1, ..., εn) and S =
s(g1, ..., gi−1, εi+1, ..., εn). We have Zi−1 = R+ εiS and Zi = R+ giS. Now using Taylor’s theorem:

|EΨ(Zi−1 − EΨ(Zi)| ≤

|EΨ(R) + εiSΨ′(R) +
(εiS)2

2
Ψ′′(R) +

(εiS)3Ψ(3)(R)

6
+ E1

−EΨ(R)− giSΨ′(R)− (giS)2

2
Ψ′′(R)− (giS)3Ψ(3)(R)

6
− E2|

Where |E1| ≤ |Ψ
(4)(ξ)|(εiS)4

24 ≤ B(εiS)4

24 for some ξ between R and R+ εiS. Similarly, |E2| ≤ B(giS)4

24 .
All terms get canceled except the error terms E1 and E2. So the expression is bounded by:

E|B(εiS)4

24
|+ E|B(giS)4

24
| ≤ B

24
ES4 +

3B

24
ES4B

6
ES4
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by Hypercontractivity

≤ B9d

6
(ES2)2 =

B9d

6

∑
i∈S

α2
S =

B9d

6
I2
i

�

Lecture 15

In previous lectures, we claimed that Majority Function is the stablest in Gaussian space. Now,
we are going to prove this fact using the properties of Threshold Function.

Definition 2.4. TρQ =
∑
ρ|S|αS

∏
i∈S xi

Definition 2.5 (Threshold Function). For any µ ∈ [−1, 1], the function Thr(µ) : (R, γ1)→ {−1, 1}
is defined as:

Thr(µ) : x→
{

1 x ≥ t0
−1 x < t0

with EThr(µ) = µ.

Theorem 2.6 (Majority is stablest in Gaussian space). Let f : (Rn, γn) → [1,−1] with Ef = µ.
Then:

Sρ(f) ≤ Sρ(Thr(µ))

Theorem 2.7 (Majority is stablest in discrete setting). Let f : {0, 1}n → [−1, 1] and Ii(f) =∑
S3i |f̂(s)|2 ≤ τ for every i. Then for every 0 ≤ ρ ≤ 1, Sρ(f) ≤ Sρ(Thr(µ)) + Oρ(

loglog 1
τ

log 1
τ

) where

µ = Ef

Proof. Express f =
∑
f̂(S)χS . Let Q(x1, ..., xn) =

∑
s⊆[[n] f̂(S)

∏
i∈S xi. Therefore, f(x1, ..., xn) =

Q(ε1, ..., εn) where εi = (−1)xi . Let (g1, ..., gn) be an i.i.d. Gaussian. We have

Sρ(f) =
∑

ρ|S||f̂(S)|2 = Sρ(Q(g1, ..., gn))

We would like to apply invariance principal to replace rademachers with Gaussians. However, since
the degree of Q can be as large as n, we cannot apply invariance directly to Q. Instead, we apply
a smoothed version of the theorem, which can be applied on TβQ for β < 1. Let ρ = ρ′β2 where
β < 1 is very close to 1. (0 < 1− β << 1− ρ) to be determined later.

Sρ(f) =
∑

ρ|S||f̂(S)|2 =
∑

(ρ′β2)|S||f̂(S)|2 = Sρ′(TβQ(g1, ..., gn).

Now using the smoothed invariance, TβQ(g1, ..., gn) is close in distribution to TβQ(ε1, ..., εn) and
hence it cannot be far from being in [-1,1] . To make this precise we define function ξ as follows:

ξ : t→
{

0 |t| ≤ 1
(|t| − 1)2 |t| > 1
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Note that ξ measures the L2-distance of t from its truncated value in [-1, 1]. By invariance principle

of random variables R = TβQ(ε1, ..., εn) and S = TβQ(g1, ..., gn) satisfy |Eξ(R)−Eξ(S)| ≤ τΩ(1−β).
Let S’ be the truncation of S to the interval [-1, 1]:

S′ =

 S |S| ≤ 1
1 S > 1
−1 S < −1

By assumption, Q(ε1, ..., εn) ∈ [−1, 1] and since Tβ is an averaging operator, TβQ(ε1, ..., εn) ∈ [−1, 1]
and hence ξ(R) = 0.
Thus,

E|ξ(S)| = E(S − S′)2 ≤ τΩ(1−β)

⇒ |Sρ′(S)− Sρ′(S′)| = |ESUρ′S − ES′Uρ′S′|
≤ |ESUρ′S − ES′Uρ′S|+ |ES′Uρ′S − ES′Uρ′S′|
≤ ‖S − S′‖2‖Uρ′S‖2 + ‖S′‖2‖Uρ′(S − S′)‖2

≤ ‖S − S′‖2‖S‖2 + ‖S′‖2‖S − S′‖2 ≤ τ (Ω(1− β)).

By Borrell’s theorem, Sρ′(S′) ≤ Sρ′(Thrµ
′
) where µ′ = ES′. Now, we just have to show that µ = µ′:

|µ− µ′| = |E(S − S′)| ≤ ‖S − S′‖2 ≤ τ (Ω(1− β))

⇒ |Sρ′(Thrµ − Sρ′(Thrµ
′ | ≤ O(

1− β
1− ρ

)

⇒ Sρ(f) = Sρ(Thr(µ)) +O(τ (Ω(1−β) +
1− β
1− ρ

and by optimizing the last expression over β the result yields to the theorem claim. �

3. Applications of “Majority is Stablest” Theorem

Definition 3.1 (Condorcet Method for Ranking 3 Candidates). In an election with n voters and
3 candidates, A, B and C, each voter submits 3 bits representing his preferences. The first bit
indicates whether he prefers A to B; The second one shows his preference between B and C and
the third one shows the same fact over C and A. These preferences are aggregated into 3 strings
x, y, z ∈ (−1, 1)n. A boolean function f : {−1, 1}n 7→ −1, 1 is applied to x, y and z and the
aggregated preference is represented by (f(x), f(y), f(z)).

Definition 3.2 (Condorcet Paradox). If f is the Majority function we have an irrational outcome,
in which all 3 aggregated bits are 1 or all are -1 representing preferences A < B < C < A or
A > B > C > A.

Definition 3.3. A triple (a, b, c) ∈ {−1, 1}3 is called rational, if it corresponds to a non-cyclic
ordering.

Theorem 3.4 (Ken Arrow’s Impossibility Theorem). The only functions f that never give irrational
outcomes are dictator functions f(x) = xi or f(x) = 1− xi for some i.

Note that every voter has 6 possible rational rankings. Suppose that every voter votes indepen-
dently at random from the 6 possible choices. Let x, y, z ∈ {−1, 1}n be the corresponding random
string. Note that:

1[a1=a2=a3] =
1

4
+

1

4
a1a2 +

1

4
a1a3 +

1

4
a2a3
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⇒ Pr[(f(x), f(y), f(z))] = 1− E1[f(x)=f(y)=f(z)] =
3

4
− 1

4
Ef(x)f(y)− 1

4
Ef(x)f(z)− 1

4
Ef(y)f(z)

=
3

4
− 3

4
Ef(x)f(y) =

3

4
− 3

4

∑
f̂(S)f̂(T )EχS(x)χT (y)

Now we know that,

EχS(x)χT (y) = (
∏

i∈S∩T
Exiyi)(

∏
i∈S\T

Exi)(
∏
i∈T\S

Eyi)

Since Eyi = Exi = 0 and Exiyi = 2
6 −

4
6 = −1

3 , so EχS(x)χT (y) =

{
0 S 6= T

(−1
3 )|S| S = T

. Hence,

Pr[(f(x), f(y), f(z)) is rational] =
3

4
+

3

4

∑
(
−1

3
)|S||f̂(S)|2 ≤ 3

4
+

3

4
S 1

3
(f)

Corollary 3.5. If f satisfies Ii(f) = on(1) and Ef = 0, then rationality of f ≤ 3
4 + 3

4 arcsin 1
3 +

on(1) ≤ 0.9123 + on(1).
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