COMP 760 - Fall 2011 - Assignment 1

Due: October 3rd, 2011

General rules: In solving this you may consult with each other, but you must each find and write your own solution.

1. Recall that by Hölder's inequality, if $p, q \ge 1$ are conjugate exponents and $a_1, \ldots, a_n, b_1, \ldots, b_n$ are complex numbers, then

$$\left|\sum_{i=1}^{n} a_{i} b_{i}\right| \leq \left(\sum_{i=1}^{n} |a_{i}|^{p}\right)^{1/p} \left(\sum_{i=1}^{n} |b_{i}|^{q}\right)^{1/q}.$$

Deduce from this, that if p_1, \ldots, p_n are non-negative numbers with $\sum_{i=1}^n p_i = 1$, then

$$\left|\sum_{i=1}^{n} a_{i} b_{i} p_{i}\right| \leq \left(\sum_{i=1}^{n} |a_{i}|^{p} p_{i}\right)^{1/p} \left(\sum_{i=1}^{n} |b_{i}|^{q} p_{i}\right)^{1/q}.$$

2. Let X be a probability space, and $p, q \ge 1$ be conjugate exponents. Show that for every $f \in L_p(X)$, we have

$$||f||_p = \sup_{g:||g||_q=1} |\langle f, g \rangle|.$$

3. Suppose that (X, μ) is a measure space and $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1$, for $p, q, r \ge 1$. Show that if $f \in L_p(X)$, $g \in L_q(X)$, and $h \in L_r(X)$, then

$$\left| \int f(x)g(x)h(x)d\mu(x) \right| \le \|f\|_p \|g\|_q \|h\|_r.$$

4. Suppose that X is a measure space and $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$, for $p, q, r \ge 1$. Show that if $f \in L_p(X)$ and $g \in L_q(X)$, then

$$||fg||_r \le ||f||_p ||g||_q.$$

5. Let X be a probability space. Let $||T||_{p\to q}$ denote the operator norm of $T: L_p(X) \to L_q(X)$. In other words

$$||T||_{p \to q} := \sup_{f:||f||_p = 1} ||Tf||_q.$$

Recall that the adjoint of T is an operator T^* such that

$$\langle Tf,g\rangle = \langle f,T^*g\rangle,$$

for all $f, g \in L_2(X)$. Prove that for conjugate exponents $p, q \ge 1$, and every linear operator $T: L_2(X) \to L_2(X)$, we have

$$||T||_{p\to 2} = ||T^*||_{2\to q}.$$

6. Let G be a finite Abelian group, and H be a subgroup of G. Prove that

$$\left(H^{\perp}\right)^{\perp} = H.$$

7. Let G be a finite Abelian group, and H be a subgroup of G. Prove that for every $f: G \to \mathbb{C}$, we have

$$\mathbb{E}_{x \in H} f(x) = \sum_{a \in H^{\perp}} \widehat{f}(\chi_a).$$

8. Let G be a finite Abelian group and $f, g: G \to \mathbb{C}$. Show that for every positive integer m,

$$||f * g||_m \le ||f||_1 ||g||_m.$$

9. Let G be a finite Abelian group and $f,g,h:G\rightarrow [-1,1].$ Show that

$$\left|\sum_{a\in G}\widehat{f}(a)\widehat{g}(a)\widehat{h}(a)\right| \leq 3\left\|\min(|\widehat{f}|,|\widehat{g}|,|\widehat{h}|)\right\|_{\infty}.$$

10. Let $f: \mathbb{Z}_2^n \to \mathbb{C}$ satisfy $||f||_p \leq \sqrt{p} ||f||_2$ for all $1 \leq p < \infty$, and let $A \subseteq \mathbb{Z}_2^n$. Show that

$$\left\| \max_{a \in A} |f_a| \right\|_2 \le 5\sqrt{\ln|A|} \|f\|_2,$$

where $f_a: x \mapsto f(x+a)$.