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Chapter 1

Background: Basic Analysis

This chapter provides some background material from measure theory, probability theory, and functional analysis. We

will not immediately need these definitions and results; the reader can skip this chapter or some parts in the first

reading and return to it when we refer to the material in future chapters.

1.1 Some basic inequalities

One of the most basic inequalities in analysis concerns the arithmetic and geometric mean. It is sometimes called

AM-GM inequality.

Theorem 1.1. The geometric mean of n non-negative reals is less than or equal to their arithmetic mean: If a1, . . . , an
are non-negative reals, then

(a1 . . . an)
1/n ⩽

a1 + . . .+ an
n

.

In 1906, Jensen founded the theory of convex functions and proved a significant extension of the AM-GM inequality.

We call a subset D of a real vector space convex if every convex linear combination of a pair of points of D belongs

to D. Equivalently, if x, y ∈ D, then tx + (1 − t)y ∈ D for every t ∈ [0, 1]. Given a convex set D, we call a function

f : D → R convex if for every t ⩽ [0, 1],

f(tx+ (1− t)y) ⩽ tf(x) + (1− t)f(y).

If the inequality is strict for every t ∈ (0, 1), then the function is called strictly convex.

Note that f is a convex function if and only if {(x, y) ∈ D×R : y ⩾ f(x)} is a convex set. Also note that f : D → R
is convex if and only if fxy : [x, y]→ R with fxy : tx+ (1− t)y 7→ tf(x) + (1− t)f(y) is convex for every x, y ∈ D. By

Rolle’s theorem, if fxy is twice differentiable, this condition is equivalent to f ′′xy ⩾ 0.

A function f : D → R is concave if −f is convex. The following theorem is one of the most useful inequalities in

analysis.

Theorem 1.2 (Jensen’s inequality). If f : D → R is a concave function, then for every x1, . . . , xn ∈ D and t1, . . . , tn ⩾
0 with

∑n
i=1 ti = 1 we have

t1f(x1) + . . .+ tnf(xn) ⩽ f(t1x1 + . . .+ tnxn).

Furthermore, if f is strictly concave, then the equality holds if and only if all xi are equal.

The most frequently used inequalities in functional analysis are the Cauchy-Schwarz inequality, Hölder’s inequality,

and Minkowski’s inequality.

Theorem 1.3 (Cauchy-Schwarz). If x1, . . . , xn and y1, . . . , yn are complex numbers, then∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣ ⩽
(

n∑
i=1

|xi|2
)1/2( n∑

i=1

|yi|2
)1/2

.
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Hölder’s inequality is an important generalization of the Cauchy-Schwarz inequality.

Theorem 1.4 (Hölder’s inequality). Let x1, . . . , xn and y1, . . . , yn be complex numbers, and p, q > 1 be such that
1
p +

1
q = 1. Then ∣∣∣∣∣

n∑
i=1

xiyi

∣∣∣∣∣ ⩽
(

n∑
i=1

|xi|p
)1/p( n∑

i=1

|yi|q
)1/q

.

The numbers p and q appearing in Theorem 1.4 are called conjugate exponents. Moreover, p = 1 and q = ∞ are

also called conjugate exponents, and Hölder’s inequality in this case becomes:∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣ ⩽
(

n∑
i=1

|xi|

)(
n

max
i=1
|yi|
)
.

Finally, let us state Minkowski’s inequality, which corresponds to the triangle inequality for ℓp norms.

Theorem 1.5 (Minkowski’s inequality). If p ⩾ 1 is a real number, and x1, . . . , xn are complex numbers, then(
n∑
i=1

|xi + yi|p
)1/p

⩽

(
n∑
i=1

|xi|p
)1/p

+

(
n∑
i=1

|yi|p
)1/p

.

The case of p =∞ of Minkowski’s inequality is the following:

n
max
i=1
|xi + yi| ⩽

(
n

max
i=1
|xi|
)
+
(

n
max
i=1
|yi|
)
.

1.2 Measure and Probability Spaces

In this course, we will mainly work with measures over finite sets. However, to provide a reference for the interested

reader and put the concepts in a broader context, we state the following definitions in a more general form.

A σ-algebra over a set Ω is a collection F of subsets of Ω that satisfies the following three properties:

• We have ∅ ∈ F .

• It is closed under taking complements. That is, if A ∈ F , then Ac := Ω \A also belongs to F .

• It is closed under any countable union of its members. That is, if A1, A2, . . . belong to F , then ∪∞i=1Ai ∈ F .

Example 1.6. Let Ω be an arbitrary set. Then F = {∅,Ω} is called the minimal or trivial σ-algebra over Ω. The

power set of Ω, denoted by P(Ω), is the maximal σ-algebra over Ω.

For two σ-algebras F1 and F2 over Ω, if F1 ⊆ F2, then we say that F2 is finer than F1, or that F1 is coarser

than F2. Note that the trivial σ-algebra is the coarsest σ-algebra over Ω, while the maximal σ-algebra is the finest

σ-algebra over Ω.

Definition 1.7 (measure and probability spaces). A measure space is a triple (Ω,F , µ) where F is a σ-algebra over

Ω and the measure µ : F → [0,∞) ∪ {+∞} satisfies the following two axioms:

• Null empty set: µ(∅) = 0.

• Countable additivity: if {Ei}i∈I is a countable set of pairwise disjoint sets in F , then

µ(∪i∈IEi) =
∑
i∈I

µ(Ei).

The function µ is called a measure, and the elements of F are called measurable sets.

If furthermore µ : F → [0, 1] and µ(Ω) = 1, then (Ω,F , µ) is a probability measure. In this case, the sets E ∈ F
are called events, and µ(E) is the probability that the event E occurs.
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Definition 1.8 (Counting Measure). The counting measure on Ω is the triple (Ω,P(Ω), µ) where the measure of a

subset S ⊆ Ω is the number of elements in S. Note that µ(S) =∞ if S is infinite.

When Ω is a finite set, another natural measure is associated with Ω: the uniform probability measure, which

assigns an equal weight of 1
|Ω| to every element.

Definition 1.9 (Uniform Probability Measure). The uniform probability measure on a finite set Ω is the triple

(Ω,P(Ω), µ) with µ(S) = |S|
|Ω| for all S ⊆ Ω.

A measure spaceM = (Ω,F , µ) is called σ-finite if Ω is a countable union of measurable sets of finite measure. In

other words, there exists sets E1, E2, . . . in F such that µ(Ei) < ∞ and Ω =
⋃∞
i=1Ei. The class of σ-finite measures

has many convenient properties.

Every measure space in this course is assumed to be σ-finite.

For many natural measure spacesM = (Ω,F , µ), it is difficult to specify the elements of the σ-algebra F . Instead,
to definite µ, one specifies µ on a subcollection F ′ ⊆ F that uniquely determinesM. To make this rigorous, we need

the following definition.

Definition 1.10. For a set Ω, a collection A of subsets of Ω is called an algebra if

• ∅ ∈ A.

• A,B ∈ A, then A ∪B ∈ A.

• A,B ∈ A, then A \B ∈ A.

The σ-algebra generated by A is the minimal σ-algebra containing A.

Example 1.11. Let A be the set of all finite unions of disjoint (open, closed, or half-open) intervals in R. Then A is

an algebra over R, but it is not a σ-algebra as it is not closed under taking countable unions.

A function µ : A → [0,∞)∪{+∞} is a measure over an algebra A if for every finite set of disjoint E1, . . . , Em ∈ A,
we have

µ(∪mi=1Ei) =

m∑
i=1

µ(Ei).

The following theorem shows that to define a measure space (Ω, µ,F), it suffices to specify µ on an algebra A that

generates F . By this theorem, such a measure extends to F uniquely.

Theorem 1.12 (Carathéodory’s extension theorem). Let A be an algebra of subsets of a given set Ω. One can always

extend a σ-finite measure µ on A to the σ-algebra generated by A; moreover, the extension is unique.

Example 1.13 (Borel measure on R). Let A be the algebra on R, defined in Example 1.11. Set the measure of an

(open, closed, or half-open) interval as its length and, more generally, the measure of a finite union of disjoint intervals

to be the sum of their lengths.

By Carathéodory’s extension theorem, µ extends uniquely to the σ-algebra generated by A. The generated σ-

algebra on R is called the Borel σ-algebra on R, and the resulting measure, the Borel measure.

Product Measure: Consider two σ-finite measure spacesM1 := (Ω1,F1, µ1) andM2 := (Ω2,F2, µ2). Let F1⊗F2

denote the σ-algebra on the Cartesian product Ω1 × Ω2 generated by subsets of the form A1 × A2 with A1 ∈ F1 and

A2 ∈ F2. It should be noted that F × G is not the Cartesian product of the two sets F and G, and instead it is the

σ-algebra generated by this Cartesian product.

We define the product measure M1 ×M2 := (Ω × Σ,F1 ⊗ F2, µ1 × µ2) as follows: For F1 ∈ F1 and F2 ∈ F2, let

µ1 × µ2(F1 × F2) := µ1(F1)µ2(F2). One can use Theorem 1.12 to show that µ1 × µ2 extends uniquely to a measure

over all of F × G, as desired.
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Random Variables: Let P = (Ω,F , µ) be a measure space. Let (Σ, E) be a pair where E is a σ-algebra over Σ.

A function X : Ω → Σ is called measurable if the preimage of every set in E belongs to F . In other words, for every

E ∈ E ,
X−1(E) :=

{
X−1(a) | a ∈ E

}
∈ F .

If P is a probability space, thenX is called a random variable. In this case, the random variableX induces a probability

distribution on (Σ, E): for every E ∈ E , we have

Pr[X ∈ E] := µ(X−1(E)).

Example 1.14. Let Ω = {00, 01, 10, 11}, F = P(Ω), and let µ be the uniform probability measure on Ω. Define

X : Ω→ N as X(00) = 0, X(10) = X(01) = 1, and X(11) = 2, corresponding to the number of 1’s in the string. Here,

N refers to the set of natural numbers endowed with the discrete σ-algebra P(N), which is the power set of N. Note

that X is a random variable, and for example, we have

Pr[X ∈ {1, 2}] = µ({10, 01, 11}) = 3

4
.

We finish this section by stating the Borel-Cantelli theorem.

Theorem 1.15 (Borel-Cantelli). Let (En)
∞
n=1 be a sequence of events in some probability space. If the sum of the

probabilities of En is finite, then the probability that infinitely many of them occur is 0, that is,

∞∑
n=1

Pr[En] <∞⇒ Pr[lim sup
n→∞

En] = 0,

where

lim sup
n→∞

En :=

∞⋂
n=1

n⋃
k=1

Ek.

1.3 Normed spaces

Ametric space is an ordered pair (M,d) whereM is a set and d is ametric onM , that is, a function d :M×M → [0,∞)

such that

• Non-degeneracy: d(x, y) = 0 if and only if x = y.

• Symmetry: d(x, y) = d(y, x), for every x, y ∈M .

• Triangle inequality: d(x, z) ⩽ d(x, y) + d(y, z), for every x, y, z ∈M .

A sequence {xi}∞i=1 of elements of a metric space (M,d) is called a Cauchy sequence if for every ε > 0, there exist an

integer Nε, such that for every m,n ⩾ Nε, we have d(xm, xn) ⩽ ε. A metric space (M,d) is complete if every Cauchy

sequence has a limit in M . A metric space is compact if every sequence has a convergent subsequence.

Next, we define a normed space, a central concept to function analysis.

Definition 1.16. A normed space is a pair (V, ∥ · ∥), where V is a vector space over R or C, and ∥ · ∥ is a function

from V to nonnegative reals satisfying

• (non-degeneracy): ∥x∥ = 0 if and only if x = 0.

• (homogeneity): For every scalar λ, and every x ∈ V , ∥λx∥ = |λ|∥x∥.

• (triangle inequality): For x, y ∈ V , ∥x+ y∥ ⩽ ∥x∥+ ∥y∥.

We call ∥x∥, the norm of x. A semi-norm is a function similar to a norm except that it might not satisfy the

non-degeneracy condition.

Example 1.17. The spaces (C, | · |) and (R, | · |) are respectively examples of 1-dimensional complex and real normed

spaces.
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Every normed space (V, ∥ · ∥) has a metric space structure where the distance of two vectors x and y is ∥x− y∥.
Consider two normed spaces X and Y . A bounded operator from X to Y , is a linear function T : X → Y , such

that

∥T∥ := sup
x ̸=0

∥Tx∥Y
∥x∥X

<∞. (1.1)

The set of all bounded operators from X to Y is denoted by B(X,Y ). Note that the operator norm defined in (1.1)

makes B(X,Y ) a normed space.

A linear functional on a normed space X over C (or R) is a bounded linear map f : X → C (respectively R), where
bounded means

∥f∥ := sup
x ̸=0

|f(x)|
∥x∥

<∞.

The set of all bounded linear functionals on X endowed with the operator norm, is called the dual of X and is denoted

by X∗. So for a normed space X over complex numbers, X∗ = B(X,C), and similarly for a normed space X over real

numbers, X∗ = B(X,R).
For a normed space X, the set BX := {x : ∥x∥ ⩽ 1} is called the unit ball of X. Note that by the triangle

inequality, BX is a convex set, and also by homogeneity, it is symmetric around the origin (i.e., x ∈ BX iff −x ∈ BX).

The non-degeneracy condition implies that BX has a non-empty interior.

Every compact symmetric convex subset of Rn with a non-empty interior is called a convex body. Convex bodies

are in one-to-one correspondence with norms on Rn. A convex body K corresponds to the norm ∥ · ∥K on Rn, where

∥x∥K := sup{λ ∈ [0,∞) : λx ∈ K}.

Note that K is the unit ball of ∥ · ∥K . For a set K ⊆ Rn, define its polar conjugate as

K◦ = {x ∈ Rn :
∑

xiyi ⩽ 1, ∀y ∈ K}. (1.2)

The polar conjugate of a convex body K is a convex body, and furthermore (K◦)◦ = K.

Consider a normed space X on Rn. For x ∈ Rn define Tx : Rn → R as Tx(y) :=
∑n
i=1 xiyi. It is easy to see that

Tx is a linear functional on X, and every functional on X is of the form Tx for some x ∈ Rn. For x ∈ Rn define

∥x∥∗ := ∥Tx∥. This shows that we can identify X∗ with (Rn, ∥ · ∥∗). Let K be the unit ball of ∥ · ∥. It is easy to see

that K◦, the polar conjugate of K, is the unit ball of ∥ · ∥∗.

1.4 Hilbert Spaces

Consider a vector space V over K, where K = R or K = C. An inner product ⟨·, ·⟩ on V , is a function from V × V to

K that satisfies the following axioms.

• Conjugate symmetry: ⟨x, y⟩ = ⟨y, x⟩.

• Linearity in the first argument: ⟨ax+ z, y⟩ = a⟨x, y⟩+ ⟨z, y⟩ for a ∈ K and x, y ∈ V .

• Positive-definiteness: ⟨x, x⟩ > 0 if and only if x ̸= 0, and ⟨0, 0⟩ = 0.

An inner product space is a vector space endowed with an inner product.

Example 1.18. Let Ω be a finite set endowed with the uniform probability measure and consider the vector space V

of all functions f : Ω→ C. For f, g : Ω→ C define

⟨f, g⟩ := Ex∈Ωf(x)g(x) =
1

|Ω|
∑
x∈|Ω|

f(x)g(x).

Note that this is a valid inner product as it satisfies all the axioms of an inner product.
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Example 1.19. More generally, consider a measure space M = (Ω,F , µ), and let H be the space of measurable

functions f : Ω→ C such that
∫
|f(x)|2dµ(x) <∞. For two functions f, g ∈ H define

⟨f, g⟩ :=
∫
f(x)g(x)dµ(x).

An inner product naturally defines a norm on V . For a vector x ∈ V , define ∥x∥ :=
√
⟨x, x⟩.

Lemma 1.20. For an inner product space V , the function ∥·∥ : x 7→
√
⟨x, x⟩ is a norm. Furthermore, it satisfies the

Cauchy-Schwarz inequality

|⟨x, y⟩| ⩽ ∥x∥∥y∥.

Proof. First, note that for every x ∈ V , we have

⟨0, x⟩ = ⟨x− x, x⟩ = ⟨x, x⟩ − ⟨x, x⟩ = 0,

and similarly ⟨x, 0⟩ = 0.

To verify the Cauchy-Schwarz inequality, we may assume that ⟨x, y⟩ ≠ 0 and x, y ̸= 0 as otherwise the Cauchy-

Schwarz inequality is trivial. By the positive-definiteness of the inner product,

0 ⩽ ⟨x+ λy, x+ λy⟩ = ⟨x, x⟩+ |λ|2⟨y, y⟩+ λ⟨x, y⟩+ λ⟨y, x⟩.

Now taking λ :=
√

⟨x,x⟩
⟨y,y⟩ ×

⟨x,y⟩
|⟨x,y⟩| shows that

0 ⩽ 2⟨x, x⟩⟨y, y⟩ − 2
√
⟨x, x⟩⟨y, y⟩|⟨x, y⟩|,

which shows

|⟨x, y⟩| ⩽ 2
√
⟨x, x⟩⟨y, y⟩.

It remains to show that ∥x∥ =
√
⟨x, x⟩ is a norm. The non-degeneracy and homogeneity conditions are trivially

satisfied. To verify the triangle inequality, note that by the Cauchy-Schwarz inequality, we have

∥x+ y∥2 = ⟨x+ y, x+ y⟩ = ⟨x, x⟩+ ⟨x, y⟩+ ⟨y, x⟩+ ⟨y, y⟩ ⩽ ∥x∥∥x∥+ ∥x∥∥y∥+ ∥y∥∥x∥+ ∥y∥∥y∥ = (∥x∥+ ∥y∥)2.

Therefore,

∥x+ y∥ ⩽ ∥x∥+ ∥y∥.

□

A Hilbert space is a real or complex inner product space that is also a complete metric space with respect to the

distance function induced by the norm ∥x∥ :=
√
⟨x, x⟩. It is easy to verify that every finite-dimensional inner product

space is a Hilbert space.

Example 1.21. Consider the vector space V of all functions f : N → R that have finite supports, meaning that

{x : f(x) ̸= 0} is finite. This is a vector space over R and can be turned into an inner product space with the inner

product

⟨u, v⟩ =
∑
i∈N

uivi.

However, this is not a Hilbert space as it is not complete. For example, consider the sequence of vectors

u(k) = (1, 2−1, 2−2, . . . , 2−k, 0, 0, . . .).

It is easy to see that u(1), u(2), . . . is a Cauchy sequence, but it does not have a limit in V , and hence V is not a Hilbert

space. However, we can complete V to a Hilbert space by extending it to include all functions f : N→ R with∑
i∈N
|f(i)|2 <∞.
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1.5 Lp spaces

Consider a measure space M = (Ω,F , µ). For 1 ⩽ p < ∞, the space Lp(M) is the space of all functions f : Ω → C
such that

∥f∥Lp(µ) :=

(∫
|f(x)|pdµ(x)

)1/p

<∞.

When µ is clear from the context, and there is no ambiguity, we write ∥f∥p instead of ∥f∥Lp(µ)

Strictly speaking, every element in Lp(µ) is an equivalent class: Two functions f1 and f2 are equivalent and are

considered identical if they agree almost everywhere or equivalently ∥f1 − f2∥Lp(µ) = 0.

Proposition 1.22. For every measure spaceM = (Ω,F , µ), the vector space Lp(M) is a normed space.

Proof. Non-degeneracy and homogeneity are trivial. It remains to verify the triangle inequality (or equivalently prove

Minkowski’s inequality). By applying Hölder’s inequality:

∥f + g∥pp =

∫
|f(x) + g(x)|pdµ(x) =

∫
|f(x) + g(x)|p−1|f(x) + g(x)|dµ(x)

⩽
∫
|f(x) + g(x)|p−1|f(x)|dµ(x) +

∫
|f(x) + g(x)|p−1|g(x)|dµ(x)

⩽

(∫
|f(x) + g(x)|pdµ(x)

) p−1
p

∥f∥p +
(∫
|f(x) + g(x)|pdµ(x)

) p−1
p

∥g∥p

= ∥f + g∥p−1
p (∥f∥p + ∥g∥p),

which simplifies to the triangle inequality □

Another useful fact about the Lp norms is that when defined on a probability space, they are monotone increasing

in the parameter p.

Theorem 1.23. Let M = (Ω,F , µ) be a probability space, 1 ⩽ p ⩽ q ⩽ ∞ be real numbers, and f ∈ Lq(M). Then

f ∈ Lp(M), and

∥f∥p ⩽ ∥f∥q.

Proof. The case q =∞ is trivial. For the case q <∞, by Hölder’s inequality (applied with conjugate exponents q
p and

q
q−p ), we have

∥f∥pp =
∫
|f(x)|p × 1dµ(x) ⩽

(∫
|f(x)|qdµ(x)

)p/q (∫
1

q
q−p dµ(x)

) q−p
q

= ∥f∥pq .

□

Theorem 1.23 does not hold whenM is not a probability space. For example, consider the set of natural numbers

N with the counting measure. It is common to use the notation ℓp(N) := Lp(N) when we consider the counting measure

on N. In this case,

∥f∥ℓp =

( ∞∑
n=1

|f(n)|p
)1/p

,

and it is not difficult to verify that the ℓp norms are actually decreasing.

Proposition 1.24. Let 1 ⩽ p ⩽ q ⩽∞ be real numbers, and f ∈ ℓp(N). Then f ∈ ℓq(N) and

∥f∥ℓp ⩾ ∥f∥ℓq .

1.6 Exercises

Exercise 1.1. Prove Proposition 1.24.
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Exercise 1.2. Recall that by Hölder’s inequality, if p, q ⩾ 1 are conjugate exponents and a1, . . . , an, b1, . . . , bn are

complex numbers, then ∣∣∣∣∣
n∑
i=1

aibi

∣∣∣∣∣ ⩽
(

n∑
i=1

|ai|p
)1/p( n∑

i=1

|bi|q
)1/q

.

Deduce from this, that if µ(1), . . . , µ(n) are non-negative numbers with
∑n
i=1 µ(i) = 1, then∣∣∣∣∣

n∑
i=1

aibiµ(i)

∣∣∣∣∣ ⩽
(

n∑
i=1

|ai|pµ(i)

)1/p( n∑
i=1

|bi|qµ(i)

)1/q

.

Exercise 1.3. Let X be a probability space, and p, q ⩾ 1 be conjugate exponents (i.e., 1
p + 1

q = 1). Show that for

everyf ∈ Lp(X), we have

∥f∥p = sup
g:∥g∥q=1

|⟨f, g⟩| .

Exercise 1.4. Suppose that (X,µ) is a measure space and 1
p + 1

q + 1
r = 1, for p, q, r ⩾ 1. Show that if f ∈ Lp(X),

g ∈ Lq(X), and h ∈ Lr(X), then ∣∣∣∣∫ f(x)g(x)h(x)dµ(x)

∣∣∣∣ ⩽ ∥f∥p∥g∥q∥h∥r.
Exercise 1.5. Suppose that X is a measure space and 1

p + 1
q = 1

r , for p, q, r ⩾ 1. Show that if f ∈ Lp(X) and

g ∈ Lq(X), then

∥fg∥r ⩽ ∥f∥p∥g∥q.

Exercise 1.6. Let X be a probability space. Let ∥T∥p→q denote the operator norm of T : Lp(X)→ Lq(X). In other

words

∥T∥p→q := sup
f :∥f∥p=1

∥Tf∥q.

Recall that the adjoint of T is an operator T ∗such that

⟨Tf, g⟩ = ⟨f, T ∗g⟩,

for all f, g ∈ L2(X). Prove that for conjugate exponents p, q ⩾ 1, and every linear operator T : L2(X) → L2(X), we

have

∥T∥p→2 = ∥T ∗∥2→q.
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Chapter 2

Fourier analysis of Finite Abelian Groups

This chapter develops the basic Fourier analysis of finite Abelian groups. Recall that the cyclic group ZN is the Abelian

group with elements {0, 1, . . . , N − 1}, where the group operation is a+ b := a+ b (mod N).

The fundamental theorem of finite Abelian groups states that every finite Abelian group is a direct product of

cyclic groups.

Theorem 2.1. Every finite Abelian group G is isomorphic to the group ZN1 × . . . × ZNk
for some positive integers

N1, . . . , Nk.

In this course, we will mainly focus on the group Zn2 := Z2 × . . . × Z2 as it naturally represents the discrete cube

{0, 1}n. This identification of {0, 1}n with Zn2 enables us to use the Fourier analysis as a powerful tool in the study of

Boolean functions f : {0, 1}n → {0, 1}.

2.1 The space of functions on G

Let G be a finite Abelian group G. We endow G with the uniform probability measure, which assigns a probability of
1
|G| to each element. We define the inner product of every two functions f, g : G→ C accordingly as

⟨f, g⟩ := Ex∈Gf(x)g(x) =
1

|G|
∑
x∈G

f(x)g(x). (2.1)

We denote the linear space of all functions f : G→ C with the above inner product by L2(G). Note that L2(G) is

a |G|-dimensional vector space, as it is spanned by the set of functions 1a : G→ {0, 1} for a ∈ G, where

1a(x) :=

{
1 if x = a

0 if x ̸= a
.

Note that the norm defined by the above inner product is

∥f∥2 =
√
⟨f, f⟩ =

√
Ex∈G|f(x)|2.

As we proved in Section 1.4, ∥f∥2 satisfies the axioms of a norm, and we have the Cauchy-Schwarz inequality:

|⟨f, g⟩| ⩽ ∥f∥2∥g∥2.

For 1 ⩽ p <∞, we define

∥f∥p = (Ex∈G|f(x)|p)1/p ,

and for p =∞,

∥f∥∞ = max
x∈G
|f(x)|.
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We proved in Section 1.5 if p ∈ [1,∞], then ∥·∥p satisfies the axioms of a norm. Moreover, we have a generalization of

the Cauchy-Schwarz inequality, called Hölder’s inequality. It states that if p, q ∈ [1,∞] satisfy 1
p +

1
q = 1, then

|⟨f, g⟩| ⩽ ∥f∥p∥g∥q.

2.2 Fourier Analysis

We start with the definition of Fourier characters.

Definition 2.2 (Fourier Character). Let G be a finite Abelian group. A function χ : G→ C \ {0} mapping the group

to the non-zero complex numbers is called a character of G if it satisfies the following two conditions:

• χ(0) = 1, where 0 is the identity of G;

• χ(a+ b) = χ(a)χ(b) for all a, b ∈ G.

In other words, χ is a group homomorphism from G to the group (C \ {0},×).

Note that the constant function 1 is always a character, which is called the principal character of G. Let χ be a

character of G, and consider an element a ∈ G. Since G is a finite group, every element a is of some finite order n

(i.e., na = 0 where na refers to adding a to itself n times). Hence 1 = χ(0) = χ(|G|a) = χ(a)n which shows that χ(a)

is an n-th root of unity. Recall that the n-th roots of unity are of the form

e2πi
k
n = cos

(
2πk

n

)
+ i sin

(
2πk

n

)
where k = 0, . . . , n− 1.

In particular, every character χ of G satisfies χ : G→ T where T is the unit complex circle.

e2πi
0
8

e2πi
1
8

e2πi
2
8

e2πi
3
8

e2πi
4
8

e2πi
5
8

e2πi
6
8

e2πi
7
8

Figure 2.1: The set of 8-th roots of unity. If a ∈ G is an element with 8a = 0, then χ(a) is an 8-th root of unity.

Theorem 2.3 (Pontryagin dual). The set of the characters of every finite Abelian group G equipped with the point-wise

product of complex-valued functions form an Abelian group Ĝ, which is called the Pontryagin dual of G.

Proof. The principal character 1 is the identity of Ĝ as we have χ1 = 1χ = χ for every χ ∈ Ĝ. Note that if χ

and ξ are characters of G, then χξ is also a character. To verify this fact, note χ(ab)ξ(ab) = χ(a)ξ(a)χ(b)ξ(b), and

χ(0)ξ(0) = 1× 1 = 1. To check the existence of the inverse elements, note that if χ is a character, then χ−1 := 1
χ = χ

is also a character as χ(0) = 1 = 1 and χ(ab) = χ(a)χ(b). □

2.2.1 Fourier characters of Zn
2

First, consider the group Z2 ≡ {0, 1}. Let χ be a character of Z2. According to the definition of a character, we must

have χ(0) = 1. Furthermore, since 1 + 1 = 0, we have 1 = χ(1 + 1) = χ(1)2, which shows that χ(1) = 1 or χ(1) = −1.
Therefore, Z2 has only two characters: the principal character χ0 ≡ 1 and χ1 : x 7→ (−1)x for x ∈ Z2.
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Now that we have described the two characters of Z2, we can easily construct the characters of Zn2 . Indeed if χ is

a character of G and ψ is a character of H, then the map χ× ψ : G×H → T defined as χ× ψ(g, h) := χ(g)ψ(h) is a

character of G×H. Since Zn2 is the product of n copies of Z2, by choosing χ0 or χ1, for each copy, we can construct

2n characters for Z2. Let us describe these characters.

For every a = (a1, . . . , an) ∈ Zn2 , we construct a corresponding character χa : Zn2 → {−1,+1} with

χa(x) :=
∏
i:ai=1

(−1)xi = (−1)
∑

i:ai=1 xi .

The principal character is χ0 ≡ 1 where the 0 in the index refers to (0, . . . , 0), the identity element of the group.

It is easy to verify that these are all the characters of Zn2 . In the case of Zn2 , the characters are real-valued (they only

take values 1 and −1), but as we shall see below for all other Abelian groups, some characters take non-real values.

Since the coordinates of a ∈ Zn2 are 0 or 1, we will sometimes identify a with the set S = {i : ai = 1} ⊆ {1, . . . , n},
and denote the characters as χS for S ⊆ {1, . . . , n}. This notation is sometimes more intuitive as

χS(x) = (−1)
∑

i∈S xi ,

furthermore, in future chapters, when we take a probabilistic approach to decomposing functions, this notation extends

to general product spaces (where there is no group structure). In this notation, χ∅ corresponds to the principal

character.

2.2.2 Fourier characters of ZN and ZN1 × . . .× ZNk

Next, consider the group ZN ≡ {0, 1, . . . , N − 1}, where the addition is mod N . Let χ be a character of ZN . According

to the definition of a character, we must have χ(0) = 1. Moreover, as we discussed earlier

χ(1)N = χ(1 + . . .+ 1) = χ(0) = 1,

which shows that χ(1) is an N -th root of unity and therefore, it is of the form

χ(1) = e2πi
a
N ,

for some a ∈ {0, . . . , N − 1}. Note further that for every x ∈ ZN , we have χ(x) = χ(1)x = e2πi
ax
N .

We showed that every character of ZN must be of the form

χa : x 7→ e2πi
ax
N ,

for some a ∈ {0, . . . , N − 1}, and on the other hand, one can easily verify that each such χa is a character.

Finally, now that we have described the characters of ZN , we can multiply these characters to obtain the characters

of any Abelian group G = ZN1
× . . .× ZNk

.

For a = (a1, . . . , ak) ∈ {0, . . . , N1 − 1} × . . . × {0, . . . , Nk − 1}, we define the corresponding character χa : G → T
as

χa(x1, . . . , xk) :=

k∏
i=1

χai(xi) =

k∏
i=1

e
2πi

aixi
Ni = e

2πi
∑k

i=1
aixi
Ni . (2.2)

2.2.3 Self-duality: G ∼= Ĝ

In Theorem 2.3, we showed that the characters form an Abelian group Ĝ under the point-wise multiplication. On the

other hand, in Eq. (2.2), we gave a full description of the characters of a general finite Abelian groupG = ZN1
×. . .×ZNk

.

Let us try to understand the structure of Ĝ using this description of characters.

First, let us consider G = ZN for simplicity. Consider a, b ∈ {0, . . . , N − 1} and their corresponding characters

χa(x) = e2πi
ax
N and χb(x) = e2πi

bx
N .

Which χc corresponds to the character χaχb? Note that

χaχb(x) = χa(x)χb(x) = e2πi
(a+b)x

N = e2πi
cx
N ,
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where c ∈ {0, . . . , N − 1} is the element with c = (a + b) mod N . Note also that χ0 = 1. Indeed, ẐN is isomorphic

to ZN with the isomprphism χa 7→ a for a ∈ ZN ≡ {0, . . . , N − 1}. Note that this argument easily generalizes to

ZN1
× . . .× ZNk

. We obtain the following theorem.

Theorem 2.4. For every finite Abelian group G, we have G ∼= Ĝ.

Remark 2.5. We emphasize that Theorem 2.4 is not necessarily true for infinite Abelian groups. However, the case

of infinite Abelian groups is beyond the scope of this course.

In light of Theorem 2.4, it is convenient to index the characters of G with the elements of G and denote the

characters of G by χa for a ∈ G.

2.2.4 Fourier Transform and Orthogonality of characters

Our next goal will be to prove that the characters form an orthonormal basis with respect to the inner product defined

in Eq. (2.1). First, let us prove a simple lemma regarding the sum of a character over all elements in the group.

Lemma 2.6. Let G be a finite Abelian group, and χ be a non-principal character of G. Then
∑
x∈G χ(x) = 0.

Proof. Suppose to the contrary that
∑
x∈G χ(x) ̸= 0. Consider an arbitrary y ∈ G, and note

χ(y)
∑
x∈G

χ(x) =
∑
x∈G

χ(y + x) =
∑
x∈G

χ(x),

which shows that χ(y) = 1. Since this is true for every y ∈ G, we conclude that χ must be the principal character,

which contradicts the assumption of the lemma. □

Now, we can prove the orthogonality of the characters.

Lemma 2.7. The characters of a finite Abelian group G are orthonormal: For χ, ψ ∈ Ĝ, we have

⟨χ, ψ⟩ =

{
1 if χ = ψ

0 if χ ̸= ψ
.

Proof. Since the range of a character is T, we have

⟨χ, χ⟩ = E
[
|χ(x)|2

]
= E[1] = 1.

It remains to verify the orthogonality. Let χ ̸= ψ be two different characters. Then χψ = χψ−1 is a non-principal

character of G. Hence by Lemma 2.6, we have

⟨χ, ψ⟩ = E
[
χ(x)ψ(x)

]
= E

[
χψ(x)

]
= 0.

□

Since L2(G) is a |G|-dimensional vector space and |Ĝ| = |G|, the orthonormality of the characters implies that

they must form an orthonormal basis for L2(G). Namely, in addition to being orthonormal, they span the whole space

L2(G).

Theorem 2.8. If G is a finite Abelian group, then the characters of G form an orthonormal basis for L2(G).

Since the characters form an orthonormal basis for L2(G), every function f : G→ C has a unique expression as a

linear combination of the characters

f =
∑
a∈G

f̂(a)χa.

The corresponding coefficients f̂(a) ∈ C are the Fourier coefficients of f .
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Definition 2.9. The Fourier transform of a function f : G→ C is the function f̂ : Ĝ→ C defined as

f̂(χ) = ⟨f, χ⟩ = Ef(x)χ(x).

For a ∈ G, we will often use the notation f̂(a) to denote f̂(χa). Similarly, in the case of Zn2 , for S ⊆ [n] := {1, . . . , n},
we use the notation f̂(S) to denote f̂(χS).

The formula

f =
∑
a∈G

f̂(a)χa,

that uniquely expresses f as a linear combination of characters is called the Fourier inversion formula as it shows how

the functions f can be reconstructed from its Fourier transform.

Example 2.10. Let f : Zn2 → {0, 1} be the parity function f : x 7→
∑n
i=1 xi (mod 2). Then

f̂(∅) = Ef(x)χ∅ = Ef(x) =
1

2
.

We also have

f̂([n]) = Ef(x)(−1)
∑n

j=1 xj = −1

2
,

since f(x) = 1 if and only if
∑n
j=1 xj = 1 (mod 2).

Next consider ∅ ⊊ S ⊊ [n], and let Consider j0 ∈ S and j1 ̸∈ S. We have

f̂(S) = Ef(x)χS(x) =
1

2
E [f(x)χa(x) + f(x+ ej0 + ej1)χS(x+ ej0 + ej1)] ,

where ej denotes the vector in Zn2 which has 1 at its jth coordinate and 0 everywhere else. Note that f(x) =

f(x+ ej0 + ej1) and furthermore χS(x) = −χS(x+ ej0 + ej1). We conclude that f̂(S) = 0 for every ∅ ⊊ S ⊊ [n]. The

Fourier expansion of f is

f(x) =
1

2
− 1

2
χ[n](x).

2.2.5 Basic properties of the Fourier Coefficients

The Fourier transform is a linear operator: λ̂f + g = λf̂ + ĝ, and we have the following easy observation.

Lemma 2.11. The Fourier transform satisfies

∥f̂∥∞ := max
a
|f̂(a)| ⩽ ∥f∥1.

Proof. For every a ∈ G, we have

|f̂(a)| =
∣∣∣Ef(x)χa(x)∣∣∣ ⩽ E|f(x)||χa(x)| = E|f(x)| = ∥f∥1.

□

The principal Fourier coefficient f̂(0) is of particular importance as

f̂(0) = E[f(x)].

So if 1A is the indicator function of a subset A ⊆ G, then 1̂A(0) =
|A|
|G| is the density of A.

Next, we prove Parseval’s identity, a simple but extremely useful fact in Fourier’s analysis.

Theorem 2.12 (Parseval). For every f ∈ L2(G),

∥f∥22 =
∑
a∈G
|f̂(a)|2.
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Proof. We have

∥f∥22 = ⟨f, f⟩ =

〈∑
a∈G

f̂(a)χa,
∑
b∈G

f̂(b)χb

〉
=
∑
a,b∈G

f̂(a)f̂(b)⟨χa, χb⟩.

The identity now follows from the orthonormality of characters:

⟨χa, χb⟩ =

{
1 if a = b

0 if a ̸= b
.

□

The proof of the Parseval identity, when applied to two different functions f, g ∈ L2(G), implies the Plancherel

theorem:

⟨f, g⟩ =
∑
a∈G

f̂(a)ĝ(a).

Let 1A denote the indicator function of A ⊆ G. In this case, Parseval’s identity shows

∑
a∈G
|1̂A(a)|2 = E|1A(x)|2 = E|1A(x)| =

|A|
|G|

.

Recall also that

1̂A(0) =
|A|
|G|

.

2.2.6 Physical Space versus Fourier Space

Consider the space L2(G) of the functions f : G→ C. The most natural linear basis for L2(G) is the set of functions

1a : G→ {0, 1} for a ∈ G, where

1a(x) :=

{
1 if x = a

0 if x ̸= a
.

Note that the unique expansion of f in this linear basis is

f =
∑
a∈G

f(a)1a.

This is the expansion of f in the “physical space” where we expanded f in terms of the indicator functions of the

elements in G, and the coefficients are simply the values of f on those elements.

In contrast, in the Fourier space, we expand f as a linear combination of the characters of the group, and the

coefficients are the Fourier coefficients:

f =
∑
a∈G

f̂(a)χa.

The Fourier transform is simply a change of basis from the indicator functions 1a to Fourier characters χa.

Not that with our normalization choice in defining the inner product, the characters are orthonormal, while unfor-

tunately, the indicator functions 1a need to be normalized to |
√
G|1a to become orthonormal.

2.3 Convolution

In this section, we introduce a key notion in functional analysis called convolution.

Definition 2.13 (Convolution). Let G be a finite Abelian group. Given two functions f, g : G→ C, the convolution

f ∗ g : G→ C is defined as

f ∗ g(x) = Ey∈G[f(x− y)g(y)].

Note that f ∗ g(x) is the average of f(a)g(b) over all pairs a, b with a+ b = x.
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Remark 2.14. Consider a set A ⊆ G. Then f ∗ 1A(x) is the average of f over the set x−A := {x− y : y ∈ A}. For
example if A is the Hamming ball1 of radius r around 0 in Zn2 , then f ∗ 1A(x) is the average of f over the Hamming

ball of radius r around x.

Next, we list some basic properties of the convolution.

Lemma 2.15. Consider three functions f, g, h : G→ C.

(a) We have

f ∗ g = g ∗ f.

(b) We have

(f ∗ g) ∗ h = f ∗ (g ∗ h).

(c) We have

f ∗ (λh+ g) = λf ∗ h+ f ∗ g.

(d) We have

∥f ∗ g∥∞ ⩽ ∥f∥1∥g∥∞.

(e) More generally, if p and q are conjugate exponents (i.e., they satisfy 1
p +

1
q = 1), then

∥f ∗ g∥∞ ⩽ ∥f∥p∥g∥q.

(f) We have

∥f ∗ g∥1 ⩽ ∥f∥1∥g∥1.

Proof. (a) For every x ∈ G, we have

f ∗ g(x) = Ey[f(x− y)g(y)] = Ey[f(x− y)g(x− (x− y))] = Ez[f(z)g(x− z)] = g ∗ f(x).

(b) By Part (a),

(f ∗ g) ∗ h(x) = (g ∗ f) ∗ h(x) = EzEy[g(x− z− y)f(y)]h(z) =

= Ey,zg(x− z− y)f(y)h(z) = (h ∗ g) ∗ f(x) = f ∗ (g ∗ h)(x).

(c) is trivial.

(d) is a special case of (e).

(e) For every x ∈ G, by Hölder’s inequality, we have

|f ∗ g(x)| ⩽ Ey∈G|f(x− y)||g(y)| ⩽ (E|f(x− y)|p)1/p (E|g(y)|q)1/q = (E|f(y)|p)1/p ∥g∥q = ∥f∥p∥g∥q.

(f) We have

∥f ∗ g∥1 = Ex |f ∗ g(x)| ⩽ Ex,y|f(x− y)||g(y)| = Ez,y|f(z)||g(y)| = Ez|f(z)|Ey|g(y)| = ∥f∥1∥g∥1.

□

The following lemma states that the Fourier transform of f ∗ g is the point-wise product of the individual Fourier

transforms f̂ and ĝ.

Lemma 2.16. For every f, g : G→ C, we have

f̂ ∗ g = f̂ · ĝ.
1The Hamming ball of radius r around 0 is defined as

{
x ∈ Zn

2 :
∑n

i=1 xi ⩽ r
}
⊆ Zn

2 .
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Proof. We have

f̂ ∗ g(a) = Exf ∗ g(x)χa(x) = Ex (Eyf(x− y)g(y))χa(x) = Ex,yf(x− y)g(y)χa(x− y)χa(y)

= Ez,yf(z)g(y)χa(z)χa(y) = Ezf(z)χa(z)Eyg(y)χa(y) = f̂(a) · ĝ(a).

□

Note that Lemma 2.16 in particular shows that

Exf ∗ g(x) = E[f ]E[g].

We also have the dual version of Lemma 2.16,

f̂g(x) =
∑
y∈G

f̂(x− y)ĝ(y). (2.3)

2.4 Exercises

Exercise 2.1. Suppose that for f : Zn2 → {0, 1} satisfies f̂(S) = 0 for all |S| ⩾ 2 (that is degF (f) ⩽ 1). Show that

either f ≡ 0, f ≡ 1, f(x) = xi, or f(x) = 1− xi for some i ∈ [n].

Exercise 2.2. Let G be a finite Abelian group and let f : G→ {0, 1}. Prove that

∥f̂∥1 :=
∑
a∈G
|f̂(a)| ⩽

√
|G|.

Exercise 2.3. Let G be a finite Abelian group and let f : G→ {0, 1}. Prove that

∥f̂∥4∞ ⩽
∑
a∈G
|f̂(a)|4 ⩽ ∥f̂∥2∞.
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Chapter 3

An Application: Linearity Testing

Blum, Luby, and Rubinfeld [BLR90] made a beautiful observation that given a function f : Zn2 → Z2, it is possible

to inquire the value of f on a few random points to probabilistically distinguish between the case that f is a linear

function and the case that f has to be modified on at least ε > 0 fraction of points to become a linear function. This

result is known as the BLR linearity testing in theoretical computer science.

Inspired by the BLR test, Rubinfeld and Sudan [RS93] defined the concept of property testing, which is now an active

area of research in theoretical computer science. Roughly speaking, to test a function for a property means to examine

the value of the function on a few random points and accordingly (probabilistically) distinguish between the case that

the function has the property and the case that it is not too close to any function with that property. Interestingly, and

to some extent surprisingly, these tests exist for various basic properties. The first substantial investigation of property

testing occurred in Goldreich, Goldwasser, and Ron [GGR98], who showed that several natural combinatorial properties

are testable. Since then, significant research has been conducted on classifying testable properties in combinatorial

and algebraic settings.

The BLR test is a fundamental result in computer science, and its significance goes beyond property testing. It is a

crucial component of many results in coding theory, the study of pseudo-random generators, and PCP (probabilistically

checkable proofs) theorems. Its proof is surprisingly elementary. It only relies on the orthogonality of the Fourier

characters and the Parseval identity.

3.1 Linearity testing

In this section, we will state and analyze the BLR linearity test. We start by formally defining a linear function.

Definition 3.1. A function f : Zn2 → Z2 is called linear if f(x+ y) = f(x) + f(y) for all x, y ∈ Zn2 .

Note that every linear function is of the form ℓa : x 7→ a1x1 + . . .+ anxn(mod 2) where a = (a1, . . . , an) ∈ Zn2 .
We are interested in the following problem: given access to the truth table of a function f : Zn2 → Z2, how quickly

can we verify whether f is linear? Note that any method for determining exact linearity would require probing the

function at every point as f could be almost linear, except corrupted on a single input. Therefore, we relax this

requirement slightly: can we quickly determine whether the function is approximately linear?

The BLR test says that it is possible to query the value of a function f : Zn2 → Z2 on a few points, and with some

non-negligible positive probability distinguish correctly between the following two cases

1. f is linear.

2. f is ε-far from every linear function: for every linear ℓ : Zn2 → Z2,

Pr[f(x) ̸= ℓ(x)] ⩾ ε.

More precisely, for every ε > 0, there exists a δ > 0 such that the following holds. Given a function f : Zn2 → Z2,

we can query the value of f on only 3 points and output accept or reject such that the following holds.

1. Always accept f if it is linear;
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2. Reject f with probability at least δ > 0 if f is ε-far from every linear function.

In this description, the error is one-sided as we always accept f if it satisfies the property. We can easily boost the

probability of the success of such a test by applying it several times. More precisely, we can run the test N independent

times and accept f only if all the N executions accept f . In this case, if f is ε-far from every linear function, then the

test will reject it with probability at least 1 − (1 − δ)N , which can be made very close to 1, by setting, for example,

N = 103δ−1. Note that such an error reduction makes 3N queries to f . Now let us finally state the BLR test:

Blum, Luby, and Rubinfeld’s [BLR90] linearity test:

• Given a function f : Zn2 → Z2.

• Pick two random points x, y ∈ Zn2 .

• If f(x) + f(y) ̸= f(x+ y), then Reject, otherwise Accept.

Note that as we claimed above, if f is linear, then the BLR test always succeeds; that is, it never rejects a linear

function. The main part of the analysis lies in proving that if f is ε-far from every linear function, then the test rejects

f with probability at least δ > 0.

3.1.1 Analysis of the BLR test

Theorem 3.2 (Blum, Luby, and Rubinfeld’s [BLR90]). Consider f : Zn2 → Z2.

• If f is linear, then the BLR test accepts with probability 1;

• If f is ε-far from every linear function, then the BLR test rejects with probability at least δ := ε > 0.

Proof. First, note that if f is a linear function, the BLR test always succeeds; that is, it never rejects a linear function.

We need to prove that if f is ε-far from every linear function, then f is rejected with probability at least δ > 0 for

some δ depending only on ε.

To analyze the test, it is more convenient to work with g : Zn2 → {−1, 1} with g(x) := (−1)f(x) instead of f . Note

that for a linear function ℓa : x 7→ a1x1 + . . .+ anxn, we have (−1)ℓa(x) = χa(x), and thus

Pr[f(x) ̸= ℓa(x)] = Pr[g(x) ̸= χa(x)] = E
[
1− g(x)χa(x)

2

]
=

1

2
− 1

2
E[g(x)χa(x)] =

1

2
− 1

2
ĝ(a).

So if f is ε-far from every linear function, then

ε ⩽
1

2
− 1

2
max
a

ĝ(a),

or equivalently

max
a

ĝ(a) ⩽ 1− 2ε. (3.1)

Next, let us analyze the probability that the BLR test does not reject f . By the definition of g, we have

Pr
x,y

[f(x) + f(y) = f(x+ y)] = Pr
x,y

[g(x)g(y)g(x+ y) = 1] =
1

2
+

1

2
Ex,y[g(x)g(y)g(x+ y)].

Replacing g with its Fourier expansion, we get

E[g(x)g(y)g(x+ y)] = E

∑
a,b,c

ĝ(a)ĝ(b)ĝ(c)χa(x)χb(y)χc(x+ y)


=

∑
a,b,c

ĝ(a)ĝ(b)ĝ(c)Ex[χa+c(x)]Ey[χa+b(y)].
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Note that a+ c = 0 if and only if a = c, and thus by Lemma 2.6,

E[χa+c(x)] =

{
1 if a = c

1 if a ̸= c
.

Similarly

E[χb+c(x)] =

{
1 if b = c

1 if b ̸= c
.

Therefore, the above expression for E[g(x)g(y)g(x+ y)] simplifies to

E[g(x)g(y)g(x+ y)] =
∑
a

ĝ(a)3.

Consequently,

Pr
x,y

[f(x)f(y) = f(x+ y)] =
1

2
+

1

2

∑
a

ĝ(a)3 ⩽
1

2
+

1

2

(
max
a

ĝ(a)
)∑

a

ĝ(a)2. (3.2)

Note that by Parseval identity and the fact that g : Zn2 → {−1, 1}, we have∑
a∈G

ĝ(a)2 = ∥g∥22 = Eg(x)2 = 1.

Therefore, Eq. (3.2) shows

Pr
x,y

[f(x) + f(y) = f(x+ y)] ⩽
1

2
+

1

2
max
a

ĝ(a). (3.3)

To conclude the proof note that by (3.1) and (3.3), if f is ε-far from every character, then

Pr
x,y

[f(x) + f(y) = f(x+ y)] ⩽ 1− ε.

In other words, the test rejects with probability at least ε > 0. □

3.2 Linear functions as error-correcting codes

An error-correcting code is an injective map C : {0, 1}n → {0, 1}m that maps a binary message of length n to a longer

code-word of length m. Since C is injective, we can uniquely recover the original message a if we receive the intact

code-word C(a).
However, what happens if we receive a slightly corrupted version y ∈ {0, 1}m instead of the exact code-word C(a)?

The code can still correct the errors, provided the following conditions are met. If the minimum Hamming distance

between the code-words {C(a)}a∈{0,1}n is at least 2k + 1 and the number of corrupted bits in y is at most k, then

there is a unique codeword C(a) that is the closest to y in Hamming distance. Thus, we can correctly recover C(a),
and consequently a, even when the received message is corrupted in up to k bits.

A key example of an error-correcting code with strong error-correcting capabilities is the Hadamard code. The

Hadamard code H : {0, 1}n → {0, 1}2
n

maps every element a ∈ {0, 1}n to

H(a) := (ℓa(x))x∈{0,1}n ∈ {0, 1}2
n

.

In other words, we map a to the truth table of the linear function ℓa.

A simple observation demonstrates that the Hamming distance between any two distinct codewords in the Hadamard

code is 2n−1, which implies that error correction is possible as long as fewer than 1/4 of the bits are corrupted.

Claim 3.3. For distinct a, b ∈ Zn2 , there are exactly 2n−1 elements x ∈ Zn2 with ℓa(x) = ℓb(x).

Proof. Note that ℓa(x) = ℓb(x) is equivalent to ℓc(x) = 0 where c = a+b ∈ Zn2 . Since c ̸= (0, . . . , 0), the set of solutions

to ℓc(x) = 0 is a subspace of codimension 1 in Zn2 . The size of such a subspace is 2n−1, completing the proof. □
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A remarkable property of the Hadamard code is its local decodability. Local decodability means that we can

(probabilistically) recover any individual bit of C(a) by querying only a small number of positions in the corrupted

copy y. This holds as long as the fraction of corrupted bits in y is small.

Proposition 3.4. Let a ∈ Zn2 and let f : Zn2 → Z2 satisfy

Pr
x
[f(x) ̸= ℓa(x)] ⩽ δ.

Then, given any x ∈ Zn2 , the probability that we can recover ℓa(x) by querying only two positions y and x+ y in f is

Pr
y
[f(y) + f(x+ y) = ℓa(x)] ⩾ 1− 2δ.

Proof. We have

Pr[f(y) + f(x+ y) ̸= ℓa(x)] ⩽ Pr
y
[f(y) ̸= ℓa(y)] +Pr

y
[f(x+ y) ̸= ℓa(x+ y)] = 2Pr

y
[f(y) ̸= ℓa(y)] ⩽ 2δ.

□

3.3 Exercises

Exercise 3.1. Note that every function f : Zn2 → Z2 of polynomial degree at most 1 satisfies f(x) + f(x+ y + z) =

f(x+ y) + f(x+ z). Use this property to design a test with one-sided error for the property of being of degree (over

Z2) at most 1. Prove that the test works correctly.
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Chapter 4

An Application: Roth’s theorem

Our next application of Fourier analysis concerns a problem in number theory with a rich history.

What is the largest possible size of a set A ⊆ {1, . . . , N} without nontrivial 3-term arithmetic progressions?

In 1927, van der Waerden proved that for any given positive integers r and k, for any sufficiently large N , every

colouring of the integers {1, . . . , N} using r colours will result in a monochromatic arithmetic progression of length k.

Note that in any such colouring, at least one colour class is of size at least N/r. Erdős and Turán [ET36] conjectured

that this size constraint was the key reason behind the existence of monochromatic progressions in van der Waerden’s

theorem. They proposed a strengthening of van der Waerden’s theorem that for any k ∈ N any subset A ⊆ 1, . . . , N

without k-term progressions must be of size o(N).

In 1953, Roth [Rot53] used Fourier analysis to confirm Erdös and Turán’s conjecture for 3-term arithmetic pro-

gressions, showing that any set A ⊆ {1, . . . , N} without nontrivial 3-term progressions must have size O
(

N
log logN

)
.

This result, now known as Roth’s theorem, became a cornerstone in additive number theory and spurred decades of

further research. Determining the optimal bound in Roth’s theorem became one of the central problems in additive

number theory.

Heath-Brown[HB87] and Szemerédi[Sze90], and later Bourgain[Bou99a] refined Roth’s argument to attain the bound

O( N
logcN ) for c = 1

2 − ε. Heath-Brown [HB87], Szemerédi [Sze90], and Bourgain [Bou99a] refined Roth’s methods,

improving the bound to O
(

N
logcN

)
for c = 1

2 − ε. Further progress by Sanders [San11a], followed by Bloom and

Sisask [BS21b], led to an improved bound of O
(

N
log1+εN

)
for some small ε > 0. In a remarkable breakthrough, recently

Kelley and Meka [KM23] improved the bound to N2−Ω(log1/12N), which was subsequently refined to N2−Ω(log1/9N) by

Bloom and Sisask [BS23]. On the other hand, Behrand’s classical construction [Beh46] shows that there are sets of

size N2−O(log1/2N) that are free of non-trivial 3-progressions.

Regarding the general case of Erdös and Turán’s conjecture, in 1975, Szemerédi [Sze75], using a completely new

approach, proved the full conjecture and showed that for any fixed k, a set A ⊆ {1, . . . , N} without k-term progressions

must be of size o(N). However, in contrast to Roth’s Fourier-analytic proof, all the various known proofs of Szemerédi’s

theorem give much weaker bounds. Indeed, it was considered a breakthrough when Gowers [Gow01] proved an upper

bound of O

(
N

(log logN)2−2k+9

)
on the size of sets of integers without k-term arithmetic progressions. Very recently,

Leng, Sah, and Sawhney posted a preprint [LSS24] improving Gowers’ bound to an impressive bound ofO
(

N
2(log log N)ck

)
,

where ck > 0 is a constant depending on k.

Finite field model: The study of many problems in additive combinatorics, such as Szemerédi’s theorem on arith-

metic progressions, is often made easier by first studying the problem in Znp for some fixed small prime p. This setting

is most relevant to applications in combinatorics and theoretical computer science, and it also serves as an elegant

model for tackling additive problems concerning integers.

In [Mes95], Meshulam carried out Roth’s argument in the case of Znp for odd fixed prime p, and the asymptotics

is as n grows to infinity. Since the particular choice of p is unimportant, we will assume p = 3. The rich subgroup
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structure of Zn3 simplifies some of the nuances in Roth’s argument. Moreover this simplification leads to the stronger

bound of O( N
logN ), where N := |Zn3 | = 3n. In this chapter, we will present Meshulam’s proof.

4.1 Roth’s theorem in Zn3
Throughout this section, we denote G := Zn3 and N := |Zn3 | = 3n.

The density of 3-term progressions in a subset A ⊆ G is captured by

t3AP(A) := Ex,y∈G [A(x)A (x+ y)A(x+ 2y)] , (4.1)

where we identified A with its indicator function.

A set A ⊆ G is a cap set if it is free of nontrivial 3-term progressions. More precisely, there are no x, y ∈ G such

that y ̸= 0 and x, x+ y, x+ 2y ∈ A.

Theorem 4.1. For sufficiently large n, every cap set A ⊆ Zn3 satisfies |A|
3n ⩽ 16

n .

Proof. Let α := |A|
3n ⩽ 16

n denote the density of A, and N := |G| = 3n the size of the group.

Replacing A with its Fourier expansion A(x) =
∑
a∈G Â(a)χa(x) in Eq. (4.1) yields

t3AP(A) = Ex,y∈G

(∑
a∈G

Â(a)χa(x)

)(∑
b∈G

Â(b)χb(x+ y)

)(∑
c∈G

Â(c)χc(x+ 2y)

)
= Ex,y∈G

∑
a,b,c∈G

Â(a)Â(b)Â(c)χa(x)χb(x+ y)χc(x+ 2y)

=
∑

a,b,c∈G

Â(a)Â(b)Â(c)Ex∈G [χa+b+c(x)]Ey∈G [χb+2c(y)]

Note that

Ex∈G [χa+b+c(x)]Ey∈G [χb+2c(y)] =

{
1 if a+ b+ c = 0 and b+ 2c = 0

0 otherwise
.

Note that a+ b+ c = 0 and b+ 2c = 0 imply a = c and b = −2c. Therefore,

t3AP(A) =
∑
a∈G

Â(a)2Â(−2a). (4.2)

Since A is a cap set, it only contains trivial 3-term progressions, and therefore,

t3AP(A) = Pr
y∈G

[y = 0] Pr
x∈G

[x ∈ A] = α

N
, (4.3)

which is tiny, assuming G is a large group. On the other hand, the sum on the right-hand side of Eq. (4.2) contains

at least one large term: Â(0)3 = α3. We will show that there must be at least one other large Fourier coefficient to

cancel Â(0)’s contribution.

We have

t3AP(A) =
∑
a∈G

Â(a)2Â(−2a) = α3 +
∑
a̸=0

Â(a)2Â(−2a) ⩾ α3 −
(
max
a
|Â(−2a)|

)∑
a

|Â(a)|2.

By Parseval, we have
∑
a |Â(a)|2 = Ex|A(x)|2 = α, and therefore,

t3AP(A) ⩾ α3 − αmax
a ̸=0
|Â(a)|.

Recalling that A is a cap set and satisfies t3AP(A) ⩽ α
N ⩽ α2

2 as shown in Eq. (4.3), we have

max
a̸=0
|Â(a)| ⩾ α2

2
.
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Density increment: Let a ̸= 0 satisfy |Â(a)| ⩾ α2

2 . We will use this assumption to show that A is significantly

denser in some large affine subspace of Zn3 .
For ℓ ∈ {0, 1, 2}, let

Vℓ = {x ∈ Zn3 : a · x = ℓ mod 3} .

The set V0 is an (n − 1)-dimensional linear subspace of Zn3 , and V1 and V2 are its cosets. In particular, all V0, V1, V2
are affine subspaces of dimension n− 1, and therefore, have the same linear structure as Zn−1

3 . We will show that the

density of A in at least one is significantly higher than α.

Denoting ω = e2πi/3, by the definition of χa(x), we have

Â(a) = Ex∈GA(x)ω
a·x =

|A ∩ V0|
3n

+
|A ∩ V1|

3n
ω +

|A ∩ V1|
3n

ω2.

Let µℓ := |A ∩ Vℓ|/3n. Since |Â(a)| ⩾ α2

2 , we have

α2

2
⩽ µ0 + µ1ω + µ2ω

2.

On the other hand, since

µ0 + µ1 + µ2 = α and 1 + ω + ω2 = 0,

it easily follows that, for some ℓ ∈ {0, 1, 2}, we must have

µℓ ⩾
α

3
+
α2

12
.

We showed that for some ℓ ∈ {0, 1, 2}, we have

α+
α2

4
⩽
|A ∩ Vℓ|
3n−1

=
|A ∩ Vℓ|
|Vℓ|

.

Putting things together: As mentioned earlier, Vℓ is an affine subspace of dimension (n− 1), and therefore it has

the same linear structure as Zn−1
3 . Note also that since A is a cap set, A ∩ Vℓ is free of 3-progressions. Therefore,

we have shown the existence of a cap set in Zn−1
3 with density α + α2

4 . We can repeat this process c = 4
α ⩽ n

4 many

times, with each repetition increasing the density by at least α2

4 , to arrive at a cap set in Zn−c3 with density at least

α+ cα
2

4 ⩾ 2α.

We showed that 8
α repetition of the above process doubles the density from α to 2α. Now let us repeat this doubling

of the density k = log(1/α) many times. This results in a cap set in Zm3 with

m = n− 4

α
− 4

2α
− . . .− 4

2kα
⩾ n− 8

α
⩾
n

2
,

with density 2kα > 1. Since the density of a set cannot be larger than 1, this is a contradiction. □

An interesting consequence of the above proof is the following counting lemma, which states that if all the non-

principal Fourier coefficients of A are small, then t3AP(A) ≈ α3.

Corollary 4.2. Let p be an odd number, and let A ⊆ Znp be any subset with density α. We have

|t3AP(A)− α3| ⩽ αmax
a̸=0
|Â(a)|.

Finally, let us mention that in 2017, [CLP17, EG17] found an extremely elegant and short proof based on the

polynomial method showing that cap sets in Zn3 are of size at most (3 − ε)n = N1−δ for some fixed ε, δ > 0. Note

that such a strong bound is not valid in ZN due to Behrand’s construction. The significance of the Fourier analytic

approach lies in the integer case, where there is no known analog of the polynomial method. Moreover, compared to

the Fourier analytic approach, even in Zn3 , the polynomial method appears to be much limited in dealing with linear

structures other than arithmetic progressions.
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4.1.1 Roth’s original case A ⊆ {1, . . . , N}
To study the number of occurrences of a linear pattern (e.g., 3-progressions) in a subset of the interval {1, . . . ,M}, it
suffices to embed {1, . . . ,M} in ZN for a primeN = O(M) chosen sufficiently large to avoid wraparound. Consequently,

rather than working with the interval, one can focus on the finite Abelian group ZN .

Let A ⊆ ZN be a cap set of density α. Similar to the Zn3 , one can apply Corollary 4.2 to show the existence of a

large non-principal Fourier coefficient: |Â(a)| ⩾ α2

2 . Unlike Zn3 , the group ZN does not have a rich collection of large

subgroups. Therefore, we cannot deduce that A is significantly denser in a large coset. Instead, we need to work with

some notion of an “approximate subgroup”.

In the case of ZN , Roth’s argument shows that |Â(a)| ⩾ α2

2 implies the existence of a set P ⊆ ZN such that the

following conditions hold.

• (Density increment) |A∩P |
|P | ⩾ α+ α2

100 .

• (Approximate subgroup) P is an arithmetic progression of size m := |P | ⩾ N1/3.

Note that P has the same linear structure as an interval. In particular, since A ∩ P is a cap set in P , we can

deduce that there exists a cap set A′ ⊆ {1, . . . ,m} with density at least α + α2

100 . To be more precise, if P =

{x+ jy : j ∈ {1, . . . ,m}}, then we take

A′ := {j ∈ {1, . . . ,m} : x+ jy ∈ A} .

Note that each step of this proof increases the density by α2

100 , which is similar to the case of G = Zn3 . However,

this density increment comes at a higher cost of decreasing the group size from N to approximately N1/3. This large

decrease in the group size is the reason behind the extra logarithm in the denominator of Roth’s bound O
(

N
log logN

)
.

Later improvements use more efficient notions of “approximate subgroups”. In particular, Szemerédi [Sze90] uses

the so-called generalized arithmetic progressions, which are sets of the form x + j1y1 + . . . + jdyd where x, y1, . . . , yd
are fixed and each ji ranges over some interval [0, ki]. In Bourgain[Bou99a], Bohr sets were used to develop a theory

of approximate subgroups. Bohr sets are a key component of many recent improvements in the bounds of Roth’s

theorem.

4.2 Exercises

Exercise 4.1. Let H = (V,E) be a small undirected graph. Let A ⊆ Zn2 . Consider

tH(A) = E
∏

(u,v)∈E

A(xu + xv),

where {xu : u ∈ V } are independent random variables taking values in Zn2 uniformly at random.

In each of the following cases, express tH(A) in terms of the Fourier coefficients of A. Your formula must be as

simple as possible.

1. H is a tree.

2. H is a cycle on k vertices.

3. H is the graph with vertex set {1, 2, 3, 4} and edges {(1, 2), (1, 3), (1, 4), (3, 2), (4, 2)}. In this case, your final

formula will involve two sums.

4. Similarly, for A ⊆ ZN , give a Fourier analytic formula for

EA(x)A(x+ y)A(x+ 2y)A(x+ 3y).
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Chapter 5

Pseudorandomness: Fourier Uniformity

Pseudo-randomness is one of the most useful concepts in computer science and several branches of mathematics.

Broadly speaking, we consider a mathematical object pseudo-random if it mimics the typical behaviour of truly

random objects according to specific criteria.

For instance, by the law of large numbers, a random sequence of ±1’s typically contains an approximately equal

number of each. Based on this criterion, we could define a notion of pseudo-randomness, where any sequence with a

roughly balanced count of ±1’s is considered pseudo-random. Interestingly, even such a basic notion can lead to deep

and notoriously difficult problems in mathematics.

To be more rigorous, consider a random sequence a = (a1,a2,a3, . . .) where each ai is chosen randomly and

independently from the set {−1, 0, 1}. It follows from Hoeffding’s concentration inequality (Lemma 5.1 below) that,

with probability 1, we have ∣∣∣∣∣
n∑
i=1

ai

∣∣∣∣∣ = n
1
2+o(1). (5.1)

Now consider the Möbius function µ : N→ {−1, 0, 1}, defined as

µ(n) =

{
0 p2|n for some prime p;

(−1)k n = p1 . . . pk for distinct primes p1, . . . , pk.

We might ask whether the Möbius function behaves similarly to a typical random function f : N → {−1, 0, 1} in
regards to having a balanced count of ±1’s: Is it true that |

∑n
i=1 µ(i)| = O(n

1
2+o(1))?

Remarkably, this seemingly basic question is equivalent to one of the most important unsolved problems in math-

ematics, the Riemann Hypothesis! The weaker statement that |
∑n
i=1 µ(i)| = o(n) is equivalent to the prime number

theorem, which was first proved independently by Hadamard and Poussin in 1896.

For a notion of pseudo-randomness to be truly useful, it must ensure that a pseudo-random object behaves similarly

to a random one in multiple ways beyond the specific criteria used to define it. For example, the Riemann Hypothesis

is of great interest in number theory because, if true, it would show that, in many ways, the distribution of primes is

similar to the numbers generated according to specific random heuristics.

In this chapter, we will discuss a notion of pseudo-randomness based on Fourier coefficients. Let us first recall

Hoeffding’s concentration inequality, which we will frequently apply to establish various properties of random functions.

Lemma 5.1 (Hoeffding’s Inequality). Suppose that x1, . . . ,xn are independent random variables with |xi| ⩽ 1 for

each 1 ⩽ i ⩽ n. Let X =
∑n
i=1 xi. For every t > 0,

Pr [|X− E[X]| > t] < 2e
−t2

2n .

5.1 Fourier Uniformity

Let G be a finite group. The simplest statistic we can use to define pseudo-randomness for functions f : G → {0, 1}
is their average, E[f ] = f̂(0). By Hoeffding’s inequality, for a random f : G→ {0, 1}, we expect f̂(0) to be close to 1

2 .
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Thus, we may call f pseudorandom if |E[f ]− 1
2 | is small. However, this notion is too weak, as functions that meet this

criterion do not exhibit many interesting properties of truly random functions. We will introduce a stronger notion

of pseudo-randomness, called Fourier uniformity. Since we wish to apply this notion to sets A ⊆ G of a given fixed

density α ∈ [0, 1], we will discard the principal Fourier coefficient Â(0) = E[A], and consider A− E[A].

Definition 5.2. Let G be a finite Abelian group and δ > 0 be a parameter. A function f : G → R is δ-Fourier

uniform if

∥ ̂f − E[f ]∥∞ = max
a ̸=0
|f̂(a)| ⩽ δ.

Fourier uniformity measures the correlation of f with non-principal characters of G. We will show in Section 5.1.1

that, in certain aspects, a Fourier uniform function f : G→ {0, 1} with E[f ] = α behaves similar to a random function

f : G→ {0, 1} conditioned on Ex[f(x)] = α.

First, let’s establish that Fourier uniformity is a meaningful measure of pseudo-randomness by showing that a truly

random function f : G→ {0, 1} is typically Fourier uniform.

Proposition 5.3. Let G be a finite Abelian group of size N , and let A ⊆ G be a random subset of G. We have

Pr
A

[
max
a̸=0
|Â(a)| > 2

√
logN√
N

]
= oN→∞(1). (5.2)

Proof. By Hoeffding’s inequality, for a ∈ G with a ̸= 0, we have

Pr
A

[
|Â(a)| > δ

]
= Pr

A

[∣∣∣∣∣∑
x∈G

A(x)χa(x)

∣∣∣∣∣ > δN

]
⩽ 2e

−δ2N2

2N = 2e−δ
2N/2

Then, the union bound over all non-principal characters implies

Pr

[
max
a̸=0
|Â(a)| > δ

]
⩽ 2Ne−δ

2N/2 .

Setting δ = 2
√
logN√
N

establishes Eq. (5.2). □

Remark 5.4. Note that the proof of Proposition 5.3 holds even if we sampleA by including each element independently

with any fixed probability α ∈ [0, 1]. Moreover, one can extend Proposition 5.3 further to the case where A ⊆ G is a

random subset of a given density α > 0. However, in that case, since A(x) are not independent, the proof is slightly

more involved as one cannot simply apply Hoeffding’s inequality.

On the other hand, the following proposition shows that no subset A ⊆ G with density bounded away from 0 and 1

can achieve Fourier uniformity with parameters significantly stronger than those of a random subset. The assumption

on density is crucial, as extreme cases like the empty set A = ∅ and the entire group A = G are 0-Fourier uniform.

Proposition 5.5. Let ε ∈ (0, 1) be a fixed constant. Every set A ⊆ G with density ε < |A|
|G| < 1− ε satisfies

max
a∈G
|Â(a)| ⩾ ε(1− ε)√

N
.

Proof. Let α := |A|
|G| . By Parseval’s identity, we have

α = ∥A∥22 =
∑
a∈G
|Â(a)|2 = |Â(0)|2 +

∑
a ̸=0

|Â(a)|2 = α2 +
∑
a̸=0

|Â(a)|2,

which shows that

max
a̸=0
|Â(a)| ⩾ α(1− α)√

N
.

□
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5.1.1 Fourier Uniformity and Counting Linear Patterns

In this section, we prove that Fourier uniformity is sufficient to guarantee that a subset A of a finite Abelian group G

contains the “expected” number of certain linear patterns. We have already seen this result for the particular case of

3-term progressions in the proof of Roth’s theorem in Chapter 4. As the reader may recall, every set A ⊆ ZN with

density |A|
N = α satisfies

|t3AP(A)− α3| ⩽ αmax
a̸=0
|Â(a)|.

In particular, t3AP(A) ≈ α3 if A is δ-Fourier uniform for a small δ. Note that a truly random subset A ⊆ ZN with

density α is expected to satisfy t3AP(A) ≈ α3 with high probability.

We aim to generalize this result to a larger class of linear patterns.

Systems of linear forms. A linear form in d variables is a vector L = (λ1, . . . , λd) ∈ Zd. The linear form L

defines a linear map Gd → G by L(x1, . . . , xd) :=
∑
i λixi. A system of m linear forms in d variables is a tuple

L = (L1, . . . , Lm) of linear forms. A tuple (a1, . . . , am) ∈ Gm is called an instance of L if there exists x ∈ Gd with

L(x) := (L1(x), . . . , Lm(x)) = (a1, . . . , am). It is called a non-degenerate instance if additionally a1, . . . , am are all

distinct.

We emphasize that the choice of the system of linear forms that defines a linear pattern is not unique. For example,

3-term arithmetic progressions are instances of the system of linear forms (x1, x1 + x2, x1 + 2x2), or alternatively, one

can take the system of linear forms L := (2x1 − 2x2, x1 − x3, 2x2 − 2x3).

We often require that |G| be coprime with all the coefficients of the linear forms that define L. Otherwise, it would

be possible to have sets that do not contain instances of even a single linear form. For example, let L(x) = 2x and

G = Zn4 . Then the set A = {x ∈ G : x mod 2 ≡ 1} does not contain any instance of L(x) for x ∈ G.
Let L = (L1, . . . , Lm) be a system of linear forms in d variables and let A ⊆ G. Let x1, . . . ,xd be independent

random variables taking values in G uniformly at random. The probability that L(x1, . . . ,xd) ∈ Am is given by the

expectation

tL(A) := E

[
m∏
i=1

A(Li(x1, . . . ,xd))

]
.

Definition 5.6 (Binary Systems of Linear forms). A system of linear forms L = (L1, . . . , Lm) in the d variables

x1, . . . , xd is binary if every linear form in L is supported on exactly two variables, and moreover, no two linear forms

in L are supported on the same two variables.

Example 5.7. The system of linear forms (2x1 − 2x2, x1 − x3, 2x2 − 2x3) that defines 3-term arithmetic progressions

is a binary system. As another example, (x1 + x2, x1 + x3, x1 + x4, x2 + x3, x2 + x4, x3 + x4) is a binary system of

6-linear forms in 4 variables.

Let L be a system of m linear forms. A simple second-moment argument shows that if A is a random subset of G

with density α, then with high probability tL(A) ≈ αm. We will show that if L is a binary system, then tL(A) ≈ αm
for any Fourier uniform set A ⊆ G. We will need the following lemma.

Lemma 5.8. Let G be a finite Abelian group and f : G→ R. We have

max
g,h:G→[−1,1]

|Ex,y∈Gf(x+ y)g(x)h(y)| ⩽ ∥f̂∥∞.

Proof. By replacing f, g, h with their Fourier expansion and using the orthogonality of Fourier characters, we obtain

Ex,y∈Gg(x)f(x+ y)h(y) =
∑
a

f̂(a)ĝ(−a)ĥ(−a).

Note that g, h : G→ [−1, 1], and therefore, ∥g∥2, ∥h∥2 ⩽ 1. By using the Cauchy-Schwarz inequality and then Parseval,
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we have ∑
a

f̂(a)ĝ(−a)ĥ(−a) ⩽ ∥f̂∥∞
∑
a

|ĝ(a)||ĥ(a)|

⩽ ∥f̂∥∞

(∑
a

|ĝ(a)|2
)1/2(∑

a

|ĥ(a)|2
)1/2

= ∥f̂∥∞∥g∥2∥h∥2 ⩽ ∥f̂∥∞.

□

Theorem 5.9. Let L = (L1, . . . , Lm) be a binary system of linear forms. Suppose G is a finite Abelian group such

that |G| is coprime with all the coefficients in L. If A ⊆ G is δ-Fourier uniform, then

|tL(A)− αm| ⩽ mδ

Proof. We will use induction on m. The statement is trivial for m = 1, since in that case, tL(A) = α.

Consider m > 1. Suppose that the first linear form is L1(x1, . . . , xd) = λ1x1 + λ2x2 for constants λ1, λ2 ∈ Z that

are coprime with |G|. We may apply1 the change of variables x′1 = λ1x1 and x′2 = λ2x2, and assume, without loss of

generality, that L1(x1, . . . , xd) = x1 + x2. We have

tL(A) := E

[
A(x1 + x2)

m∏
i=2

A(Li(x1, . . . ,xd))

]
.

Denote f := A− α, and note that δ-Fourier uniformity of A means ∥f̂∥∞ ⩽ δ. By substituting A = α+ f in the first

linear form, we obtain

tL(A) = αE

[
m∏
i=2

A(Li(x1, . . . ,xd))

]
+ E

[
f(x1 + x2)

m∏
i=2

A(Li(x1, . . . ,xd))

]
. (5.3)

Since (L2, . . . , Lm) is a binary system of (m − 1)-linear forms, we can apply the induction hypothesis to the first

expected value and obtain ∣∣∣∣∣E
[
m∏
i=2

A(Li(x1, . . . ,xd))

]
− αm−1

∣∣∣∣∣ ⩽ (m− 1)δ. (5.4)

Next, we will study the second expected value. By the definition of a binary system, L1 is the only linear form involving

both x1 and x2. Let S be the set of i ∈ {2, . . . ,m} such that Li involves x1, and let S′ = {2, . . . ,m} \ S. For any

choice of x3, . . . , xn ∈ G, we can decompose

m∏
i=2

A(Li(x1, . . . , xd)) =
∏
i∈S

A(Li(x1, . . . , xd))
∏
i∈S′

A(Li(x1, . . . , xd)) = gx3,...,xn(x1)hx3,...,xn(x2),

for some functions gx3,...,xn
, hx3,...,xn

: G→ {0, 1}. With this notation, we have

E

[
f(x1 + x2)

m∏
i=2

A(Li(x1, . . . ,xd))

]
= Ex3,...,xd

Ex1,x2f(x1 + x2)gx3,...,xn(x1)hx3,...,xn(x2).

Since ∥f̂∥∞ ⩽ δ, we can apply Lemma 5.8 to the inner expected value Ex1,x2
f(x1 + x2)g(x1)h(x2) and upper-bound

it by δ. We obtain

E

[
f(x1 + x2)

m∏
i=2

A(Li(x1, . . . ,xd))

]
⩽ δ,

1Since λ1, λ2 are coprime with |G|, there exist λ−1
1 and λ−1

2 such that x1 = λ−1
1 x′

1 and x2 = λ−1
2 x′

2.
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which combined with Eq. (5.4) and Eq. (5.3) gives

|tL(A)− αm| ⩽ δ + αδ(m− 1) ⩽ δm.

□

Remark 5.10. By more careful analysis, one can improve the assertion of Theorem 5.9 to |tL(A)− αm| ⩽ mαδ. See

Exercise 5.1.

Theorem 5.9 shows that binary linear patterns are controlled by Fourier uniformity. On the other hand, many

interesting linear form systems are not controlled by Fourier uniformity. For example, there are sets A ⊆ ZN that

are o(1)-Fourier uniform, but the count of 4-term arithmetic progressions in them is far from what is expected from a

random set of the same density [Gow01].

5.2 Gowers Uniformity Norms

In [Gow01], Gowers introduced a way of quantifying Fourier uniformity that operates entirely in the physical space

without relying on Fourier coefficients.

Definition 5.11. Let G be a finite Abelian group and f : G→ C be a function. The U2 norm of f is defined as

∥f∥U2 :=
(
Ex,y,z∈Gf(x)f(x+ y)f(x+ z)f(x+ y + z)

)1/4
. (5.5)

We must establish that the ∥·∥U2 is a norm. Note that a priori, it is not even clear that the expected value in the

right-hand side of (5.5) is a non-negative real number. Replacing f by its Fourier expansion and expanding, we have

∥f∥4U2 = Ef(x)f(x+ y)f(x+ z)f(x+ y + z)

=
∑
a,b,c,d

f̂(a)f̂(b)f̂(c)f̂(d)E [χa(x)χ−b(x+ y)χ−c(x+ z)χd(x+ y + z)]

=
∑
a,b,c,d

f̂(a)f̂(b)f̂(c)f̂(d)E [χa−b−c+d(x)χ−b+d(y)χ−c+d(z)] .

Since

E [χa−b−c+d(x)χ−b+d(y)χ−c+d(z)] =

{
1 a− b− c+ d = 0,−b+ d = 0,−c+ d = 0;

0 otherwise

=

{
1 a = b = c = d;

0 otherwise,

we have ∥f∥4U2 =
∑
a∈G |f̂(a)|4. Therefore,

∥f∥U2 =

(∑
a∈G
|f̂(a)|4

)1/4

= ∥f̂∥4, (5.6)

and the U2 norm coincides with the ℓ4 norm of the Fourier coefficients of f . The following lemma shows that for

functions f : G → [0, 1] or more generally f : G → C with ∥f∥∞ ⩽ 1, the ∥f∥U2 and ∥f̂∥∞ are within a quadratic

factor of each other.

Lemma 5.12. Let G be a finite Abelian group, and f : G→ C satisfy ∥f∥∞ ⩽ 1. Then

∥f̂∥∞ ⩽ ∥f∥U2 ⩽
√
∥f̂∥∞.

Proof. By (5.6), we have

∥f∥4U2 =
∑
a∈G
|f̂(a)|4 ⩾ max

a∈G
|f̂(a)|4 = ∥f̂∥4∞,

33



which establishes the first inequality. To prove the second inequality, note that ∥f∥2 ⩽ ∥f∥∞, and therefore by

Parseval’s identity,

∥f∥4U2 =
∑
a∈G
|f̂(a)|4 ⩽

(
max
a∈G
|f̂(a)|2

)∑
a∈G
|f̂(a)|2 ⩽ max

a∈G
|f̂(a)|2 = ∥f̂∥2∞.

□

In light of Lemma 5.12, a set A is Fourier uniform if and only if ∥A− E[A]∥U2 is small. The advantage of the U2

norm over ∥f̂∥∞ is that its definition does not involve the Fourier transform and can be fully described in the physical

space without any reference to Fourier coefficients.

Gowers’s interpretation of Fourier uniformity using the U2 norm enabled him to generalize it to stronger notions of

pseudo-randomness. In his proof [Gow01] of Szemerédi’s theorem, he introduced a hierarchy of increasingly stronger

notions of pseudo-randomness based on the so-called Gowers uniformity norms ∥·∥Uk for k ⩾ 1.

Definition 5.13 (Gowers Uniformity Norms). Let G be a finite Abelian group and f : G → C be a function. For

k ∈ N, the Uk uniformity norm of f is

∥f∥Uk :=

Ex,y1,...,yk∈G
∏
S⊆[k]

C|S|f(x+
∑
i∈S

yi)

1/2k

,

where C denotes the complex conjugation operator. In other words, the terms with odd |S| are conjugated.

He used iterated applications of the classical Cauchy–Schwarz inequality to prove∣∣Ex,y [A(x)A(x+ y) · · ·A(x+ (k − 1)y)]− αk
∣∣ ⩽ k∥A− α∥Uk−1 ,

showing that the density of k-progressions in A is controlled by the pseudo-randomness condition ∥A−α∥Uk−1 = o(1).

5.3 Conclusion

Green and Tao [GT10] determined the most general class of systems of linear forms that can be handled by Gowers’

iterated Cauchy-Shwarz argument.

Definition 5.14 (The Cauchy–Schwarz Complexity). Let L = {L1, . . . , Lm} be a system of linear forms. The

Cauchy-Schwarz complexity of L is the minimal k such that the following holds. For every 1 ⩽ i ⩽ m, we can partition

{Lj}j∈[m]\{i} into k + 1 subsets, such that Li does not belong to the linear span of any of these subsets.

In particular, Green and Tao [GT10] showed that if the Cauchy–Schwarz complexity of L is k, then

|tL(A)− αm| ⩽ m∥A− α∥Uk+1 . (5.7)

Remark 5.15. It is easy to see that binary systems of linear forms have CS-complexity 1. The system of linear forms

(x, x+ y, . . . , x+ (k − 1)y), which represents k-term arithmetic progressions, has CS-complexity k − 2.

Later, in a series of articles [GW11, GW10], Gowers and Wolf initiated a systematic study of classifying the systems

of linear forms controlled by the k-th Gowers uniformity norm. They defined the true complexity of a system of linear

forms L = (L1, . . . , Lm) as the smallest k such that the pseudo-randomness condition of ∥A − α∥Uk+1 = o(1) implies

|tL(A)− αm| = o(1). Note that by (5.7), the true complexity is at most the CS-complexity.

In connection to Theorem 5.9, we have

{L : L is binary} ⊆ {L : L has CS-complexity 1} ⊆ {L : L has true complexity 1} .
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Randomness versus structure The dichotomy between pseudorandomness and structure refers to a general phe-

nomenon that non-pseudo-random behaviour indicates resemblance to a highly structured object. Like many proofs in

extremal and additive combinatorics, Roth’s argument on 3-term progressions exploits this dichotomy. It shows that

if the number of 3-progressions in A ⊆ Zn3 significantly deviates from what is expected from a random set of density α,

then A has a large non-principal Fourier coefficient. Equivalently, it has a notable positive correlation with an affine

subspace V ⊆ Zn3 of codimension 1 (a highly structured object).

5.4 Exercises

Exercise 5.1. Improve the assertion of Theorem 5.9 to |tL(A)− αm| ⩽ mαδ.

Exercise 5.2. This exercise shows that for some linear patterns, the Fourier uniformity (i.e. having small non-principal

Fourier coefficients) is insufficient to guarantee that a set behaves similarly to a random set in terms of the density of

the pattern. Let n = 2m be an even integer, and let

An =

{
x ∈ Zn2 :

m∑
i=1

x2i−1x2i ≡ 0 mod 2

}
.

1. Directly calculate all the Fourier coefficients of An.

2. What are Ân(0) and maxa̸=0 |Ân(a)|?

3. Prove that

lim
n→∞

∣∣∣∣∣∣E
 ∏
1⩽i<j<k⩽6

An(xi + xj + xk)

− |Ân(0)|(63)
∣∣∣∣∣∣ ̸= 0,

where x1, . . . ,x6 are independent random variables taking values uniformly in Zn2 .

Exercise 5.3. Extend Theorem 5.9 to systems of linear forms of CS-complexity 1.
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Chapter 6

Degree and Granularity of Fourier

Coefficients

By identifying {False,True} with Z2, {−1, 1}, or {0, 1} we obtain different representation of functions on Boolean

domain.

(I) f : Zn2 → {0, 1}. This representation allows us to consider the Fourier transform of f over the Abelian group Zn2 ,
and write

f(x) =
∑
S⊆[n]

f̂(S)χS(x), (6.1)

with χS(x) = (−1)
∑
xi .

(II) f : {−1, 1}n → {0, 1}. This representation will allow us to consider the unique representation of f as a multilinear

polynomial

f(y) =
∑
S⊆[n]

f̂(S)
∏
i∈S

yi, (6.2)

where

f̂(S) = Ey

[
f(y)

∏
i∈S

yi

]
for S ⊆ [n].

To verify that the correct coefficients are indeed the Fourier coefficients f̂(S), note that the change of variable

(−1)x = y converts the character χS(x) = (−1)
∑
xi to the monomial

∏
i∈S yi.

(III) f : {0, 1}n → {0, 1}. This representation will allow us to consider the polynomial representation of f as

f(z) =
∑
S⊆[n]

aS
∏
i∈S

zi, (6.3)

with the coefficients given by the inclusion-exclusion formula

aS =
∑
T⊆S

(−1)|S\T |f(1T ),

where 1T ∈ {0, 1}n denotes the vector that is 1 for the coordinates in T and 0 in other coordinates. We emphasize

that, unlike Fourier coefficients, the coefficients aS are integers in this representation.

The change of variable zi =
yi+1
2 between zi ∈ {0, 1} and yi ∈ {−1, 1} shows

∑
S⊆[n]

aS
∏
i∈S

zi =
∑
S⊆[n]

aS
∏
i∈S

yi + 1

2
=
∑
S⊆[n]

∑
T⊇S

2−|T |aT

∏
i∈S

yi.
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Consequently, we obtain the following relations between the coefficients aS and the Fourier coefficients:

f̂(S) =
∑
T⊇S

2−|T |aT . (6.4)

and conversely

aS =
∑
T⊇S

2|S|(−1)|T\S|f̂(T ). (6.5)

6.1 Real Degree

A crucial fact about the representations Eq. (6.2) and Eq. (6.3) is that whether we define f : {−1, 1}n → R or

f : {0, 1}n → R, the degree of the polynomial remains the same: The largest S such that aS ̸= 0 also satisfies f̂(S) ̸= 0

and vice versa.

Definition 6.1 (Degree). The real degree (degree for short) of f : Zn2 → R denoted by deg(f), is the largest |S| such
that f̂(S) ̸= 0.

Remark 6.2. In Definition 6.1, we called deg(f) the “real” degree to differentiate it from the degree of polynomials

p : Zn2 → Z2. For example, the parity function as a polynomial from Zn2 the Z2 is of degree 1 since Parity(x1, . . . , xn)

is the sum (over Z2) of the coordinates. However, as the Example 6.3 below shows, the real degree of the parity

function is n.

Example 6.3. Consider the function Parity : Zn2 → {0, 1} defined as

Parity(x) =

n∑
i=1

xi mod 2.

We have

Parity(x) =
1

2
+

1

2
χ[n](x),

and therefore, deg(Parity) = n.

6.2 Granularity of Fourier Coefficients

The following theorem shows that non-zero Fourier coefficients of a low-degree function f : Zn2 → {0, 1} are large in

magnitude.

Theorem 6.4 (Granularity of Fourier Coefficients). Consider f : Zn2 → {0, 1} and let d := deg(f). Every Fourier

coefficient of f is of the form f̂(S) = bS
2d

for some integer bS ∈ Z. In particular, non-zero Fourier coefficients satisfy

|f̂(S)| ⩾ 1
2d
.

Proof. In Eq. (6.4), we have aS ∈ Z and aT = 0 if |T | > deg(f). The assertion immediately follows. □

Remark 6.5. Theorem 6.4 shows that for G = Zn2 , every non-zero Fourier coefficient of a Boolean function f :

G → {0, 1} must satisfy |f̂(S)| ⩾ 1
|G| . Such a strong lower bound is not true for general finite Abelian groups. In

particular, there exist Boolean functions f : ZN → {0, 1} that have non-zero Fourier coefficients with |f̂(a)| ⩽ O(1)
2N

.

See Exercise 6.1.

It is also possible to prove Theorem 6.4 directly, without referring to the polynomial representation of f as a real

function on {0, 1}n.
Define the discrete derivative of f : Zn2 → {0, 1} in direction ei as ∂if : x 7→ f(x)−f(x+ei)

2 . Since

χT (x+ ei) =

{
−χT (x) if i ∈ T
χT (x) if i ̸∈ T

,
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we have

∂if =
∑
T :i∈T

f̂(T )χT .

Note that ∂i is a linear operator on the space of function f : Zn2 → R. Given S = {i1, . . . , ik} ⊆ [n], let ∂S := ∂i1◦. . .◦∂ik
and note

∂Sf = ∂i1 ◦ . . . ◦ ∂ikf = 2−|S|
∑
T⊆S

(−1)|S\T |f(x+
∑
i∈T

ei) (6.6)

and

∂Sf =
∑
T⊇S

f̂(T )χT . (6.7)

A second proof of Theorem 6.4. Let f : Zn2 → {0, 1} be a polynomial of degree d. We prove the statement by induction

on |S| with the base case |S| = d. To verify the base of induction, consider S ⊆ [n] with |S| = d. Since f̂(T ) = 0 for

any T whose size is larger than d, Equation (6.7) shows

∂Sf(0) = f̂(S)χS(0) = f̂(S).

Therefore, f̂(S) = ∂Sf(0), which verifies the base of induction since by Equation (6.6), we have ∂Sf(0) ∈ 2−|S| · Z.
Next, consider S ⊆ [n] with |S| < d. By Equation (6.7), we have

∂Sf(0) =
∑
T⊇S

f̂(S)χT (0) =
∑
T⊇S

f̂(T ),

and therefore,

f̂(S) = ∂Sf(0)−
∑
T⊋S

f̂(T ).

By the induction hypothesis, for every T ⊋ S, we have f̂(T ) = bT
2d

with bT ∈ Z. Consequently, f̂(S) = bS
2d

with

bS ∈ Z. □

6.3 Low-degree functions are dictators and juntas

Theorem 6.4 shows that the non-zero Fourier coefficients of a low-degree function f : Zn2 → {0, 1} are large in

magnitude. On the other hand, by the Parseval identity, we have
∑
S |f̂(S)|2 = Exf(x)

2 ⩽ 1. Therefore, a low-

degree Boolean function cannot have many non-zero Fourier coefficients. This observation allows us to obtain certain

classifications of low-degree Boolean functions.

The following two definitions are crucial in the analysis of Boolean functions. They describe functions that are

“local” in that a few variables determine their values.

Definition 6.6 (Dictator). Let f : Zn2 → {0, 1} is a dictator if there exists i ∈ [n], such that one of the following cases

hold:

• f(x) = xi for all x ∈ Zn2 .

• f(x) = 1− xi for all x ∈ Zn2 .

In other words, the value of f(x) is dictated by only one variable. More generally, we can consider the functions

that depend on a few variables.

Definition 6.7 (Junta). Let f : Zn2 → R and J = {j1, . . . , jk} ⊆ [n]. We call f a J-junta if there exists g : Zk2 → R
such that f(x) = g(xj1 , . . . , xjk) for all x ∈ Zn2 . We call f a k-junta if f is a J-junta for a set J of size at most k.

We have the following characterization of low-degree Boolean functions.

Proposition 6.8. Let f : Zn2 → {0, 1}.

1. If deg(f) = 0, then f ≡ 0 or f ≡ 1.
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2. If deg(f) = 1, then f is a dictator.

3. If deg(f) = d, then f is a d22d-junta.

Proof. The first item is trivial. To prove the second item, suppose deg(f) = 1. Since f ̸≡ 0 and f ̸≡ 1, we have

0 < f̂(0) < 1, and therefore, by Theorem 6.4, we have f̂(0) = 1
2 . By Parseval, we have

∑
S ̸∅ |f̂(S)|2 = E[f2]−E[f ] = 1

4 .

Then Theorem 6.4, implies that there exists exactly one non-zero Fourier coefficient f̂({i}) ̸= 0 and it satisfies

f̂({i}) = ± 1
2 . Depending on the sign, either f(x) = xi or f(x) = 1− xi.

To prove the third item, note that by Theorem 6.4, all the non-zero Fourier coefficients satisfy |f̂(S)| ⩾ 1
2d
.

Combined with Parseval
∑
|f̂(S)|2 = E[f2] ⩽ 1, we conclude that there are at most 22d non-zero Fourier coefficients.

Then f =
∑
S f̂(S)χS is a J-junta with

J =
⋃

S:f̂(S)̸=0

S,

which satisfies |J | ⩽ d22d, where we used the fact that χS is an S-Junta. □

6.4 Exercises

Exercise 6.1. TO BE COMPLETED.
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Chapter 7

Degree, decision trees, and sensitivity

In Chapter 6, we obtained a characterization of low-degree boolean functions: The real degree of a k-junta is at most k,

and we prove that, conversely, a boolean function with degree at most k is a k22k-junta. In particular, deg(f) = O(1)

if and only if f is a O(1)-junta.

In this chapter, we will obtain a more refined characterization of low-degree boolean that does not suffer the

exponential loss of the degree versus junta characterization. This new characterization shows that the real degree is

polynomially equivalent to the decision tree complexity.

deg(f) ⩽ dt(f) ⩽ 28 deg(f)6.

7.1 Decision trees

We define the decision tree complexity of boolean functions f : {0, 1}n → {0, 1}.

Definition 7.1 (decision tree). A decision tree over variables x1, . . . , xn is a binary tree where each internal node has

two children, left and right. Moreover, each internal node is labelled with a variable, and each leaf is labelled with a

value of 0 or 1. To evaluate a decision tree at a point x = (x1, . . . , xn) ∈ {0, 1}n, we start from the root, and at each

internal node with label xi we query the value of xi, go left if xi = 0 and right if xi = 1 until we reach a leaf. The

leaf’s value is the decision tree’s output on x. For a boolean function f : {0, 1}n → {0, 1}, we let dt(f) denote the

smallest depth of a decision tree computing f .

x1

x2 x3

0 1 0 1

1 0

1 0 1 0

Figure 7.1: A depth 2 decision tree computing f : {0, 1}3 → {0, 1} with f(x1, x2, x3) := (¬x1 ∧ ¬x3) ∨ (x1 ∧ ¬x2).

The following proposition shows that the decision tree complexity is an upper bound on the real degree.

Proposition 7.2. For every f : {0, 1}n → {0, 1}, we have deg(f) ⩽ dt(f).

Proof. Recall that the real degree is equal to the degree of f : {0, 1}n → {0, 1} as a multilinear polynomial {0, 1}n → R.
Consider a decision tree of f with depth dt(f). Let L be the set of the leaves of this tree, and let L1 be the set of

leaves with label 1.
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For every x ∈ {0, 1}n, let ℓ(x) ∈ L denote the leaf reached by the tree when computing f(x). Note

f(x) =
∑
l∈L1

1[ℓ(x)=l].

For every l ∈ L1, consider the path from the root to l, and let Tl be the indices of variables on this path that

returned the value 1, and Fl be the indices of the variables that returned the value 0. We have(∏
i∈Tl

xi

)(∏
i∈Fl

(1− xi)

)
= 1⇐⇒ ℓ(x) = l,

and the degree of
(∏

i∈Tl
xi
) (∏

i∈Fl
(1− xi)

)
is |Tl|+ |Fl| ⩽ dt(f). Therefore,

f(x) =
∑
l∈L1

1[ℓ(x)=l] =
∑
l∈L1

(∏
i∈Tl

xi

)(∏
i∈Fl

(1− xi)

)
,

which shows deg(f) ⩽ dt(f). □

7.2 Certificate complexity

Next, we will discuss a complexity measure closely related to decision trees.

Definition 7.3 (Certificate). A certificate for an input x ∈ {0, 1}n to a boolean function f : {0, 1}n → {0, 1} is a set

S ⊆ [n] of indices such that f is constant on all inputs that match x on S.

• We denote by Cf (x) the size of a smallest certificate for x.

• The certificate complexity of f is C(f) := maxx Cf (x).

The following theorem shows that certificate and decision tree complexities are polynomially equivalent.

Theorem 7.4. For every boolean function f : {0, 1}n → {0, 1}, we have

C(f) ⩽ dt(f) ⩽ C(f)2.

Proof. To prove C(f) ⩽ dt(f), consider a decision tree of depth at most dt(f) for f . The set of the variables queried

by the decision tree on an input x determines the value of f(x) and, therefore, forms a certificate of size at most dt(f)

for x.

Next, we prove dt(f) ⩽ C(f)2. Observe that if S is a certificate for x ∈ f−1(0) and T is a certificate for y ∈ f−1(1),

then x|S cannot be compatible with y|T , and therefore, S ∩ T ̸= ∅. Define

C0(f) := max
x∈f−1(0)

Cf (x) ⩽ C(f) and C1(f) := max
x∈f−1(1)

Cf (x) ⩽ C(f).

Pick any input x with f(x) = 0. If such an x does not exist, dt(f) = 0, and the theorem trivially follows. Let S be

the smallest certificate for x. Construct a partial decision tree of depth |S| ⩽ C0(f) by querying all the variables in S.

Since S intersects all the certificates for inputs y ∈ f−1(1), each leaf ℓ of this partial tree corresponds to a function fℓ
with C1(fℓ) ⩽ C1(f)−1 and C0(fℓ) ⩽ C0(f). By induction, fℓ has a decision tree of depth at most C0(f)(C1(f)−1),

and therefore

dt(f) ⩽ C0(f) + C0(f)(C1(f)− 1) = C0(f)C1(f) ⩽ C(f)2.

□

7.3 Degree of univariate polynomials and symmetrization

Our primary tool for proving lower bounds on the real degree of boolean functions is the following lower bound on the

degree of univariate polynomials.
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Theorem 7.5. Let q : R→ R be a univariate polynomial that satisfies

(i) q(0) = 0 and q(1) = 1;

(ii) |q(k)| ⩽ 1 for every k ∈ {0, . . . ,m}.

Then deg(q) ⩾
√
m/2.

To prove Theorem 7.5, we need the following classical theorem from approximate theory.

Theorem 7.6 (Markov). Let q : R→ R be a univariate polynomial of degree d such that any real number x ∈ [a1, a2]

satisfies q(x) ∈ [b1, b2]. Then for all x ∈ [a1, a2], the derivative of q satisfies |q′(x)| < d2 b2−b1a2−a1 .

Proof of Theorem 7.5. Let d = deg(q). By the mean value theorem, there exists a point x ∈ [0, 1] with |q′(x)| ⩾ 1.

Let c = maxx∈[0,m] |q′(x)| ⩾ 1. The mean value theorem implies that every real x ∈ [0,m] satisfies

− c
2
⩽ q(x) ⩽ 1 +

c

2
.

Therefore, by Theorem 7.6, we have

c ⩽ d2
1 + c

m
,

or equivalently,

d ⩾

√
cm

1 + c
⩾

√
m

2
,

where the last inequality uses c ⩾ 1. □

We can symmetrize a multivariate polynomial p : Rn → R by averaging it over all permutations of the variables

psym(x1, . . . , xn) :=
1

n!

∑
π∈Sn

p(xπ1
, . . . , xπn

),

where Sn denotes the set of all permutations of {1, . . . , n}. Note that deg(p) ⩽ deg(psym).

The following theorem, often attributed to Minsky and Paper [MP88], shows that psym(x1, . . . , xn) corresponds to

a univariate polynomial evaluated at x1 + . . .+ xn.

Theorem 7.7. For every multilinear polynomial p : Rn → R, there is a univariate polynomial q : R → R with

deg(q) ⩽ deg(p) such that

psym(x1, . . . , xn) = q(x1 + . . .+ xn),

for all (x1, . . . , xn) ∈ {0, 1}n.

Proof. Define

Pk(x) :=
∑

S∈([n]
k )

∏
i∈S

xi

as the sum of all degree k monomials. Let d be the degree of p. Using the symmetry of psym, we have

psym(x) = c0 + c1P1(x) + · · ·+ cdPd(x),

where ci ∈ R. Notice that Pk(x) can be written as
(
x1+...+xn

k

)
, and define the univariate polynomial q(t) as

q(t) := c0 + c1

(
t

1

)
+ · · ·+ cd

(
t

d

)
sp that psym(x) = q(x1 + . . .+ xn). Finally, note that deg(q) ⩽ deg(

(
t
d

)
) = d. □

Symmetrization combined with Theorem 7.5 provides a method for proving lower bounds on the real degree of

certain boolean functions.
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Corollary 7.8. Let f : {0, 1}n → {0, 1} satisfy f(0, . . . , 0) = 0 and f(e1) = f(e2) = . . . = f(en) = 1. Then

deg(f) ⩾
√
n/2.

Proof. Let p : Rn → R be the unique representation of f as a multilinear polynomial of degree deg(f). Let q : R→ R
be the univariate polynomial provided by Theorem 7.7. Note that

q(0) = psym(0, . . . , 0) = 0,

and

q(1) = psym(e1) =

∑n
i=1 p(ei)

n
= 1.

Moreover, |q(k)| ⩽ 1 for all k ∈ {0, . . . , n}. Theorem 7.5 shows deg(q) ⩾
√
n/2. □

7.4 Sensitivity

We define another important parameter in the study of boolean functions, which measures the sensitivity of a function

f : {0, 1}n → {0, 1} to the changes in the input bits at a given point x. Note that given x ∈ {0, 1}n and i ∈ [n], x⊕ ei
corresponds to flipping the i-th bit of x.

Definition 7.9 (Sensitivity). The sensitivity of f : {0, 1}n → {0, 1} at a point x, denoted by sf (x), is the number of

bits in x such that flipping any one of these bits changes the value of the function. More formally,

sf (x) := | {i ∈ [n] : f(x) ̸= f(x⊕ ei)} .

The sensitivity of f is

s(f) := max
x∈{0,1}n

sf (x).

The function f in Corollary 7.8 satisfies s(f) = sf (0, . . . , 0) = n. Corollary 7.8 easily generalizes to the following

lower bound on the degree.

Theorem 7.10 (Nisan and Szegedy [NS94]). Every f : {0, 1}n → {0, 1} satisfies deg(f) ⩾
√
s(f)/2.

Proof. Let y ∈ {0, 1}n be such that s := sf (y) = s(f), and let i1, . . . , is ∈ [n] be the sensitive coordinates at y.

Without loss of generality, we may assume that f(y) = 0 since replacing f with 1 − f does not change the degree or

the sensitivity.

Define g : {0, 1}s → {0, 1} as g(z) := f(y ⊕ z1ei1 ⊕ . . . ⊕ zseis). The multilinear polynomial representation of g is

given by substituting

xi =


yi if i ̸∈ {i1, . . . , is}
zi if i ∈ {i1, . . . , is} and yi = 0

1− zi if i ∈ {i1, . . . , is} and yi = 1

,

in the polynomial representation of f(x1, . . . , xn). Each xi is a polynomial of degree 1 or 0 in zi. Therefore, deg(g) ⩽
deg(f).

On the other hand, g satisfies the assumption of Corollary 7.8, and therefore, deg(g) ⩾
√
s/2. □

7.5 Block Sensitivity

To relate the decision trees to the degree. we need to generalize Theorem 7.10 further. Given B ⊆ [n], let 1B ∈ {0, 1}n

denote the indicator vector of B.

Definition 7.11 (Block Sensitivity). The block sensitivity of f : {0, 1}n → {0, 1} at a point x, denoted by bsf (x), is

the maximum number of disjoint subsets B1, . . . , Bk ⊆ [n] such that f(x) ̸= f(x⊕ 1Bi
) for all i = 1, . . . , k. The block

sensitivity of f is

bs(f) := max
x∈{0,1}n

bsf (x).
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Note that bs(f) ⩾ s(f) since s(f) corresponds to block sensitivity with blocks of size 1. Finally, we are ready to

show that low-degree boolean functions have small decision tree complexity.

Theorem 7.12 (Nisan and Szegedy [NS94]). Every f : {0, 1}n → {0, 1} satisfies deg(f) ⩾
√

bs(f)/2.

Proof. The proof is almost identical to the proof of Theorem 7.10. Let y ∈ {0, 1}n be such that s := bsf (y) = bs(f),

and let B1, . . . , Bs ∈ [n] be disjoint sensitive blocks at y. Again, without loss of generality, we may assume that

f(y) = 0 since replacing f with 1− f does not change the degree or the block sensitivity.

The theorem follows by applying Corollary 7.8 to g : {0, 1}s → {0, 1}, defined as

g(z) := f(y ⊕ z11B1 ⊕ . . .⊕ zs1Bs).

□

Theorem 7.13 (Nisan [Nis91]). Every function f : {0, 1}n → {0, 1} satisfies

C(f) ⩽ bs(f)s(f).

Consequently,

dt(f) ⩽ bs(f)4 ⩽ 28 deg(f)8.

Proof. First note that by Theorem 7.4, we have dt(f) ⩽ C(f)2, and by Theorem 7.12, we have s(f) ⩽ bs(f) ⩽
4 deg(f)2. These facts verify the second inequality in the assertion. It remains to prove C(f) ⩽ bs(f)s(f).

Let x be any input, and consider a maximal set of disjoint blocks B1, . . . , Bs ⊆ [n] such that f(x) ̸= f(x⊕1Bi
) for

all i. By the definition of block sensitivity s ⩽ bs(f).

Without loss of generality, we may assume that Bi is minimal, in the sense that f(x) = f(x ⊕ 1B̃i
) for every

B̃i ⊊ Bi, as otherwise, we may replace Bi with B̃i.

Since Bi is minimal, for every j ∈ Bi, we have

f(x⊕ 1Bi\{j}) = f(x) ̸= f(x⊕ 1Bi
),

and therefore, on the input x⊕ 1Bi
, f is sensitive to all the bits j ∈ Bi, and we must have |Bi| ⩽ s(f). We conclude

that B :=
⋃s
i=1Bi is of size at most bs(f)s(f).

Recall that B1, . . . , Bs ⊆ [n] is a maximal set of disjoint sensitive blocks at x. The maximality implies that B is

a certificate for x and fixing the variables in B to x|B must determine the value of f to be f(x); otherwise, we could

find another sensitive block for x that is disjoint from B.

□

Theorem 7.13 and Proposition 7.2 show that deg(f) and dt(f) are polynomially equivalent

deg(f) ⩽ dt(f) ⩽ 28 deg(f)8.

7.6 Approximate degree and randomized decision trees

A randomized decision tree T of depth d is a random variable that takes values in the set of decision trees of depth at

most d.

The randomized decision tree complexity of f : {0, 1}n → {0, 1}, denoted by rdt(f), is the smallest d such that

there exists a randomized decision tree T of depth d with

Pr
T
[T(x) ̸= f(x)] ⩽

1

3
∀x ∈ {0, 1}n . (7.1)

Consider such a randomized decision tree, and let µ be the distribution of T. Define g : {0, 1}n → R as

g(x) := Pr
T
[T(x) = 1] = ETT(x) =

∑
T

µ(T )T (x),
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where the sum is over all decision trees of depth at most d. Since each T (x) is a polynomial of degree at most d, we

have deg(g) ⩽ d. On the other hand, by Eq. (7.1), we have ∥f − g∥∞ ⩽ 1
3 .

Definition 7.14 (Approximate degree). The approximate degree of f , denoted by d̃eg(f), is the smallest d such that

there exists g : {0, 1}n → R with deg(g) ⩽ d and ∥f − g∥∞ ⩽ 1
3 .

The discussion above shows that the approximate degree is a lower bound on the randomized decision tree com-

plexity.

Proposition 7.15. Every f : {0, 1}n → {0, 1} satisfies d̃eg(f) ⩽ rdt(f).

The proof of Theorem 7.12 easily extends to the approximate degree and shows that the block sensitivity also

provides a strong lower bound for this parameter.

Theorem 7.16 (Nisan and Szegedy [NS94]). Every f : {0, 1}n → {0, 1} satisfies d̃eg(f) ⩾
√

bs(f)/6.

Proof. Recall Theorem 7.5 about univariate polynomials. If we replace Theorem 7.5 (i) with q(0) ⩽ 1
3 and q(1) ⩾ 2

3 ,

then there exists x ∈ [0, 1] with |q′(x)| ⩾ 1
6 . Now, the application of Markov’s inequality shows deg(q) ⩾

√
m/6. Using

this lower bound in the proof of Theorem 7.12 yields the desired result. □

Combining these facts with the bound dt(f) ⩽ bs(f)4 from Theorem 7.13, we conclude

dt(f)1/8√
6

⩽
√
bs(f)/6 ⩽ d̃eg(f) ⩽ rdt(f) ⩽ dt(f).

Therefore, randomized decision tree complexity is polynomially equivalent to the deterministic decision tree complexity!

Similarly, the approximate real degree is polynomially equivalent to the real degree!

7.7 Conclusion

In this chapter, we proved that several complexity measures of boolean functions f : {0, 1}n → {0, 1} are polynomially

equivalent:

• real degree deg(f);

• approximate real degree d̃eg(f);

• decision tree complexity dt(f);

• randomized decision tree complexity rdt(f);

• certificate complexity C(f);

• block sensitivity bs(f).

We also discussed the sensitivity of f and showed that s(f) ⩽ bs(f). In [NS94], Nisan and Szegedy conjectured

that s(f) is also polynomially equivalent to the abovementioned parameters. Their conjecture remained open for more

than three decades. Scott Aaronson, in his blog, writes:

Ever since it was posed by Nisan and Szegedy in 1989, this conjecture has stood as one of the most

frustrating and embarrassing open problems in all of combinatorics and theoretical computer science. It

seemed so easy, and so similar to other statements that had 5-line proofs. But a lot of the best people in

the field sank months into trying to prove it.

Finally, in 2019, Hao Huang [Hua19] proved the longstanding sensitivity conjecture in a short and beautiful paper.

We will discuss Huang’s proof in the next chapter.
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7.8 Exercises

Exercise 7.1. Prove that every f : {0, 1}n → {0, 1} satisfies

dt(f) ⩽ C(f) deg(f) ⩽ 16 deg(f)5.

Exercise 7.2. Consider the stronger model of a parity decision tree, where at every internal node of the decision

tree, we can query
⊕

i∈S xi for any S ⊆ [n], and branch left or right accordingly. Let dt⊕(f) and rdt⊕(f) denote the

deterministic and randomized decision tree complexities of f : {0, 1}n → {0, 1}, respectively. Note dt⊕(f) ⩽ dt(f) and

rdt⊕(f) ⩽ rdt(f).

Given any a ∈ {0, 1}n, let the point mass 1a : {0, 1}n → {0, 1} be defined as 1a(x) = 1 iff x = a.

1. Prove that dt⊕(1a) = n for any a ∈ {0, 1}n.

2. Prove that rdt⊕(1a) ⩽ 10 for any a ∈ {0, 1}n. .

Exercise 7.3. Consider the stronger model of an and-decision tree, where at every internal node of the decision

tree, we can query
∧
i∈S xi for any S ⊆ [n], and branch left or right accordingly. Let dt∧(f) and rdt∧(f) denote the

deterministic and randomized and-decision tree complexities of f : {0, 1}n → {0, 1}, respectively.
Let t : {0, 1}n → {0, 1} be defined as t(x) = 1 iff

∑
xi ⩽ n− 1.

1. Prove that dt∧(t) = n.

2. Prove that rdt∧(t) ⩽ 10.
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Chapter 8

The sensitivity theorem

This chapter presents Huang’s elegant and short proof of the longstanding sensitivity conjecture, showing that sensi-

tivity is polynomially equivalent to the real degree.

In Chapter 7, we proved s(f) ⩽ bs(f) ⩽ 2 deg(f)2. Conversely, the sensitivity theorem provides a lower bound on

the sensitivity in terms of the degree.

Theorem 8.1 (Sensitivity Theorem [Hua19]). Every f : {0, 1}n → {0, 1} satisfies s(f) ⩾
√

deg(f).

The proof of Theorem 8.1 uses spectral techniques to show that every large induced subgraph of the hypercube

contains a vertex of large (graph) degree. Before presenting proof of the sensitivity conjecture, let us recall the

definition of the hypercube and state a few simple facts about it.

8.1 The hypercube graph

Definition 8.2 (hypercube). For n ∈ N, the n-dimensional hypercube Qn is the undirected graph with vertex set

{0, 1}n, where two vertices are connected by an edge iff they differ by exactly one bit. See Figure 8.1.

000 001

011010

100 101

111110

Figure 8.1: The hypercube Q3. The colours red and blue represent the bipartition of Q3.

The hypercube Qn is an n-regular graph as every vertex x ∈ {0, 1}n has exactly n neighbours x ⊕ e1, . . . , x ⊕ en.
Note also that hypercube is a bipartite graph with the bipartition

Veven :=

{
x ∈ {0, 1}n :

n∑
i=1

xi ≡ 0 mod 2

}
and Vodd :=

{
x ∈ {0, 1}n :

n∑
i=1

xi ≡ 1 mod 2

}
.

We can alternatively construct Qn by taking two disjoint copies Qn−1 and adding a perfect matching connecting

each vertex in one copy of Qn−1 to the corresponding vertex in the other copy. Consequently, the following recursive

formula describes the adjacency matrix An of Qn.

A1 =

[
0 1

1 0

]
and An =

[
An−1 I

I An−1

]
. (8.1)
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8.2 Two theorems from matrix theory

For a symmetric matrix A ∈ Rm×m, we denote the i-th largest eigenvalue of A by λi(A) so that

λ1(A) ⩾ λ2(A) ⩾ · · · ⩾ λm(A).

The following well-known theorem bounds maxmi=1 |λi| by the maximum L1-norm of the rows of A.

Theorem 8.3. Every eigenvalue λ of a symmetric matrix A ∈ Rm×m satisfies

|λ| ⩽ max
i

m∑
j=1

|Aij |.

Proof. Let u = (u1, . . . , un) be an eigenvector corresponding to λ so that Au = λu. Let i∗ = argmaxi |ui|. We have

|λui∗ | = |(Au)i∗ | =
m∑
j=1

Ai∗juj ⩽

(
max
j
|uj |
) m∑

j=1

|Ai∗j |

 = |ui∗ |

 m∑
j=1

|Ai∗j |

 ,

which shows

|λ| ⩽
m∑
j=1

|Ai∗j | ⩽ max
i

m∑
j=1

|Aij |.

□

Finally, let us recall the Cauchy interlacing theorem, a useful fact from matrix theory.

Theorem 8.4 (Cauchy interlacing theorem). Let A ∈ Rm×m be a symmetric matrix, and let B ∈ Rk×k be a principal

submatrix of A. Then denoting r := m− k, we have

λi(A) ⩾ λi(B) ⩾ λi+r(A) for every i = 1, . . . , k.

8.3 Proof of the sensitivity theorem

Given an undirected graph G = (V,E) and a subset T ⊆ V , let G[T ] denote the subgraph induced by G on T . Denote

the largest degree of a vertex in an undirected graph G by ∆(G). The following theorem lies at the core of Huang’s

proof of the sensitivity conjecture.

Theorem 8.5 (Huang [Hua19]). For every T ⊆ {0, 1}n with |T | > 2n−1, the subgraph H := Qn[T ] induced by the

hypercube Qn on T satisfies

∆(H) ⩾
√
n.

Proof. Define the 2n × 2n symmetric matrices Ãn recursively as

Ã1 :=

[
0 1

1 0

]
and Ãn :=

[
Ãn−1 I

I −Ãn−1

]
. (8.2)

By comparing these formulas to Eq. (8.1), note that

|Ãn(x, y)| = An(x, y) for all x, y ∈ {0, 1}n ,

where An is the adjacency matrix of the hypercube Qn.

Let B denote the T × T principal submatrix of Ãn. By Theorem 8.3, we have

λ1(B) ⩽ max
x∈T

∑
y∈T
|B(x, y)| = max

x∈T

∑
y∈T
|Ãn(x, y)| = max

x∈T

∑
y∈T

An(x, y) ⩽ ∆(H).
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Next, we wish to determine the eigenvalues of Ãn. An easy induction shows that Ã2
n = nI2n , and therefore, all the

eigenvalues of Ãn are of the form ±
√
n. On the other hand, since Tr(Ãn) = 0, each of

√
n and −

√
n have multiplicity

2n−1.

Since |T | > 2n−1, by the Cauchy interlacing theorem, we have

λ1(B) ⩾ λ1+2n−|T |(Ãn) ⩾ λ2n−1(Ãn) =
√
n.

□

The sensitivity conjecture easily follows from Theorem 8.5, through the following reductions observed by [GL92].

Proof of Theorem 8.1. Without loss of generality, we may assume that deg(f) = n. Otherwise, pick any monomial of

maximum degree with a non-zero coefficient in the polynomial representation of f and assign 0 to the variables not

involved in this monomial. The restricted function has the same degree as f and, by induction, has sensitivity at least√
deg(f), and consequently s(f) ⩾

√
deg(f). We will assume deg(f) = n in the sequel.

We will change the range of f to ±1. Define g : Zn2 → {−1, 1} as g(x) := 1− 2f(x) and note deg(g) = deg(f) = n

and s(g) = s(f). Therefore, it suffices to prove s(g) ⩾
√
n.

Since deg(g) = n, we have ĝ([n]) ̸= 0 in the Fourier expansion of g:

g(x) =
∑
S⊆[n]

ĝ(S)χS(x).

Define h : Zn2 → {−1, 1} as h(x) := g(x)χ[n](x) = g(x)(−1)
∑n

i=1 xi . We make the following observations.

(i) We have h(x) =
∑
S⊆[n] ĝ([n] \ S)χS(x), and therefore E[h] = ĝ([n]) ̸= 0.

(ii) We have g(x) ̸= g(x+ ei)⇔ h(x) = h(x+ ei), and therefore,

sg(x) = | {i : h(x) = h(x+ ei)} |.

In other words, sg(x) is the (graph) degree of x in Qn[T ] where T = {y : h(y) = h(x)}.

Let T be the larger of the two sets T+ = h−1(1) and T− = h−1(−1). By (i), these two sets are not of equal size

and therefore |T | > 2n−1. By Theorem 8.5, the largest vertex degree in Qn[T ] is at least
√
n, which by (ii), shows

s(g) ⩾
√
n. □
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Chapter 9

Influences, Isoperimetry, and Efron-Stein

inequality

This chapter introduces another fundamental concept in studying Boolean functions: the notion of influence.

Let (X,µ) be a probability space. Given a function f : (X,µ) → R, the variance of f provides a natural measure

of how sensitive the output of f is to changes in the input. For instance, if the variance of f is zero, f is constant,

meaning that the input does not influence the value of f(x). Conversely, a larger variance implies that the output of

f varies more significantly, and therefore, the input has a greater influence on f(x).

More generally, consider a function f : (Xn, µn)→ R. We wish to measure the influence of a single variable xi on

f(x1, . . . , xn). Fixing x[n]\{i} = (x1, . . . , xi−1, xi+1, . . . , xn) in f(x1, . . . , xn) = f(x[n]\{i}, xi), reduces it to a function

of the single variable xi. We can then apply the variance to quantify the influence of xi. Finally, by taking the

expected value of this variance, we obtain a natural way to measure the overall influence of the individual variable xi
on f(x1, . . . , xn).

Definition 9.1 (Influence). Let (X,µ) be a probability space, and let f : (Xn, µn) → R. The influence of the ith

variable on f is defined as

Ii(f) := Ex[n]\{i}∼µn−1 Var
xi∼µ

[f(x[n]\{i},xi)].

The sum of the influences is called the total influence of f :

If =

n∑
i=1

Ii(f).

One can express the influences in terms of the following notion of Laplacian.

Definition 9.2 (ith coordinate Laplacian). Let (X,µ) be a probability space. The ith coordinate Laplacian of the

function f : (X,µ)n → R is ∂if := f − Exi
f .

Note that we have

Ii(f) = Ex[n]\{i}Exi
(f − Exi

f)2 = ∥∂if∥22.

Uniform measure on {0, 1}n: When f : {0, 1}n → R, where {0, 1}n is endowed with the uniform probability

measure, we have

∂if(x) = f(x)− Exi
f(x) = f(x)− f(x) + f(x⊕ ei)

2
=
f(x)− f(x+ ei)

2
.

If we further assume that f : {0, 1}n → {0, 1} is Boolean valued, then

Ii(f) =
1

4
Pr
x
[f(x) ̸= f(x⊕ ei)],

and
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Example 9.3. For the parity function

Parity : x 7→ x1 + . . .+ xn(mod 2),

we have Ii(Parity) =
1
4 for all i, and IParity = n/4.

9.1 Sensitivity and influences

Recall that we defined the sensitivity of f as s(f) = maxx sf (x). It is also natural to consider the average sensitivity of

f defined as savg(f) := Exsf (x). The following simple observation connects the total influence to average sensitivity.

Proposition 9.4. Every f : Zn2 → {0, 1} satisfies

If =
savg(f)

4
.

where savg(f) := Exsf (x).

Proof. We have

If =
1

4

n∑
i=1

Pr
x
[f(x) ̸= f(x+ ei)] =

1

4

n∑
i=1

Ex1[f(x)̸=f(x+ei)] =
1

4
Ex

n∑
i=1

1[f(x) ̸=f(x+ei)] =
1

4
Exsf (x).

□

9.2 Isoperimetric Inequalities for the Hypercube

Isoperimetric problems in mathematics ask for the minimum possible “boundary size” of a set with a given “size,”

where the precise definitions of these terms depend on the specific problem. The classic example is minimizing the

perimeter among all shapes in the plane with area 1. The solution to this problem – that the circle is optimal – was

known to the Ancient Greeks, but the first rigorous proof was found by Karl Weierstrass in the 1870s.

In the discrete setting, isoperimetric inequalities are studied within graphs, where the goal is to find the minimum

edge or vertex boundary among subsets of vertices of a given size.

Definition 9.5 (Edge and vertex boundary). Let G = (V,E) be an undirected graph, and let A ⊆ V . The edge

boundary of A is the set E(A,Ac) of edges with one endpoint is A and one in Ac = V \A. The vertex boundary of A

is the set

∂A = {v ∈ V \A : v has a neighbour in A} .

Recall from Definition 8.2 that the hypercube Qn is the undirected graph with vertex set Zn2 where two vertices are

adjacent if they differ in exactly one coordinate. The following proposition shows that the size of the edge boundary

in a subset of the hypercube is equivalent to its total influence.

Observation 9.6. Give a set of vertices A ⊆ V (Qn) = Zn2 in the hypercube, let f = 1A. We have

If =
|E(A,Ac)|

2n+1
.

Proof. We have

|E(A,Ac)| =
∑
x∈A

sf (x) =
∑
x∈Ac

sf (x),

and therefore, by Proposition 9.4,

2|E(A,Ac)| =
∑
x∈Zn

2

sf (x) = 2nsavg(f) = 2n+2If .

□
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The edge isoperimetric inequality on the hypercube states that subcubes have the smallest edge boundaries.

Theorem 9.7 (Harper’s edge isoperimetric inequality). Every subset A of the vertices of the hypercube Qn satisfies

|E(A,Ac)| ⩾ |A| log 2n

|A|
,

with equality when A is a subcube. Equivalently, every f : Zn2 → {0, 1} satisfies

If ⩾
1

2
E[f ] log

1

E[f ]
. (9.1)

Proof. The proof is straightforward using induction on n. The base case, n = 1, is easily verified, so we directly move

to the induction step. Partition Qn into two disjoint subcubes Q1
n−1 and Q2

n−1 of dimension n − 1 each. Similarly

partition A into two sets A1 = A ∩ V (Q1
n−1) and A2 = A ∩ V (Q2

n−1). Let a1 = |A1| and a2 = |A2|. Without loss of

generality, assume a1 = a2 + t for t ⩾ 0. The edge boundary of S will have edges from the boundary of A1 in A1
n−1,

edges from the boundary of A2 in A2
n−1, and also at least t edges that must go between the two subcubes. Using the

induction hypothesis, we have

|E(A,Ac)| ⩾ a1(n− 1− log a1) + a2(n− 1− log a2) + t

= a1n− a1 − a1 log a1 + a2n− a2 − a2 log a2 + t

= a1n− a1 log a1 + a2n− a2 log a2 − 2a2.

Since |A| log 2n

|A| = a1n+ a2n− (a1 + a2) log(a1 + a2), it suffices to show

a1 log a1 + a2 log a2 + 2a2 ⩽ (a1 + a2) log(a1 + a2),

for a2 ⩽ a1. This inequality can be easily proved using simple manipulations. □

On the other hand, Harper’s theorem [Har66] states that Hamming balls have the smallest vertex boundaries.

Given 0 ⩽ r ⩽ n and x ∈ Z2, let Br(x) denote the Hamming ball of radius r centered at x. Note that |Br(x)| =∑r
i=0

(
n
r

)
=
(
n
⩽r

)
.

Theorem 9.8 (Harper’s vertex isoperimetric theorem). Every set A of vertices in the hypercube Qn with
(
n
⩽r

)
⩽ |A| <(

n
⩽r+1

)
satisfies |A ∪ ∂A| ⩾

(
n

⩽r+1

)
.

We will refer the reader to [FF81] for a short proof of Harper’s vertex isoperimetric theorem.

9.3 Fourier expansion and Influences

Let f : Zn2 → R. One can easily describe the Fourier expansion of ∂if from the Fourier expansion of f . Since the

characters satisfy

χS(x+ ei) =

{
−χS(x) if i ∈ S
χS(x) if i ̸∈ S

,

we have1

∂if =
∑
S:i∈S

f̂(S)χS . (9.2)

Equation (9.2) allows us to express the influences and the total influence in terms of the Fourier coefficients.

Proposition 9.9. For every f : Zn2 → R, we have

Ii(f) = ∥∂if∥22 =
∑
S:i∈S

|f̂(S)|2,

1Compare this formula to ∂
∂xi

f =
∑

S:i∈S aS
∏

j∈S\{i} xj , which holds for multilinear polynomials f(x1, . . . , xn) =
∑

S⊆[n] aS
∏

i∈S xi.
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and consequently,

If =
∑
S⊆[n]

|S||f̂(S)|2.

Since Var[f ] = E[f2] − E[f ]2 =
∑
S:S ̸=∅ |f̂(S)|2, Proposition 9.9 immediately implies the following Poincaré in-

equality

If ⩾
∑
S ̸=∅

|f̂(S)|2 = Var[f ].

From its proof, it is apparent that this inequality is only tight for Boolean functions of degree at most 1, namely,

the constant functions and the dictators. Note that Harper’s edge isoperimetric inequality Equation (9.1) provides a

stronger lower bound for If in terms of E[f ].

9.4 General product spaces

Consider the Fourier expansion of a function f : Zn2 → R,

f =
∑
S⊆[n]

f̂(S)χS . (9.3)

Many key properties of this expansion stem from the product structure of Zn2 . For example, the property that

FS = f̂(S)χS is a S-junta since it only depends on the variables in S, is inherently about the product structure. In

[Hoe48], Hoeffding introduced an analogous expansion for functions on arbitrary product spaces, which shares many of

the key features of Eq. (9.3). Fourier-Walsh expansion often called the Fourier-Walsh expansion, is particularly useful

for analyzing functions on domains such as [0, 1]n where there is no group structure to define a Fourier expansion.

Let (X,µ) be a probability space on a finite set X, and let µn be the corresponding product measure on Xn. We

only assume X is finite to avoid discussing measurability and integrability conditions. However, if we require that

f : Xn → R is integrable, the following discussion easily generalizes to infinite settings such as [0, 1] or the Gaussian

measure on R.

Notation: For S ⊆ [n], we will sometimes denote the complement of S by S := Sc = [n] \ S. For x ∈ Xn and

S ⊆ [n], let xS ∈ XS denote the restriction of x to the coordinates in S. For disjoint sets S, T ⊆ X, and y ∈ XS

and z ∈ XT , let (y, z) denote the unique element in XS∪T satisfying (y, z)S = y and (y, z)T = z. In the sequel, by

an abuse of notation, we sometimes identify a function f : XS → R with its corresponding S-junta on Xn defined as

x 7→ f(xS) for x ∈ Xn.

Given a function f : Xn → R and S ⊆ X, we use the notation ESf to denote the function ESf : Xn → R with

(ESf)(y) = ExS
f(xS , yS) =

∫
XS

f(xS , yS)dµ
S(xS).

For example,

(Eif)(y) = Exif(y1, . . . , yi−1,xi, yi+1, . . . , yn) =

∫
X

f(xi, y[n]\{i})dµ(xi).

Note that ESf is a S-junta.

9.4.1 Hoeffding’s Fourier-Walsh Expansion

Given a function f : Xn → R, we define the Fourier-Walsh expansion f =
∑
S⊆[n] FS based on two key properties of

the functions FS .

Definition 9.10 (Hoeffding [Hoe48]). The Fourier-Walsh expansion of f : Xn → R is the unique decomposition

f =
∑
S⊆[m] FS that satisfies the following two properties.

(i) For every S ⊆ [n], the function FS is an S-junta, meaning it depends only on the coordinates in S.

(ii) EiFS ≡ 0 for every S ⊆ [n] and i ∈ S.
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The two properties (i) and (ii) uniquely determined the functions FS from f . Notably, by (i) and (ii), we have

ET f =
∑
S⊆T

FS .

For example, taking T = [n] shows F∅ = E[f ], representing the mean of f similar to the principal Fourier coefficient.

More generally, More generally, this yields the following inclusion-exclusion formula for FS :

FS =
∑
T⊆S

(−1)|S\T |ET f.

Remark 9.11. Note that for f : Zn2 → R, we have FS = f̂(S)χS in the Hoeffding expansion f =
∑
S⊆[n] FS . More

generally, for f : Znk → R, we have FS =
∑
a:supp(a)=S f̂(a)χa, as it satisfies (i) and (ii).

Proposition 9.12 (Orthogonality of Hoeffding terms). The Hoeffding expansion f =
∑
S FS of f : Xn → R satisfies

⟨FS , FT ⟩ := ExFS(x)FT (x) =

{
0 if S ̸= T

∥FS∥22 if S = T
.

In particular, we have Parseval’s identity

Ef2 =
∑
S

∥FS∥22.

Proof. If S ̸= T , there exists an element i ∈ (S \ T )∪ (T \ S). Then by Definition 9.10 (ii), we have ⟨FS , FT ⟩ = 0. □

9.5 The Efron-Stein Inequality

As an application of Fourier-Walsh expansion, we will prove the Efron-Stein inequality [ES81], which extends the

Poincaré inequality If ⩾ Var[f ] to general product spaces.

Theorem 9.13 (Efron-Stein [ES81]). Let (X,µ) be a probability space. Every integrable function f : Xn → R, satisfies

Var[f ] ⩽ If .

Proof. Consider the Fourier-Walsh expansion f =
∑
S⊆[n] FS . By Definition 9.10 (i) and (ii), we have

Eif =
∑
S:i ̸∈S

FS and ∂if = f − Eif =
∑
S:i∈S

FS .

In particular, by Parseval,

Ii(f) = ∥∂if∥22 =
∑
S:i∈S

∥FS∥22,

which summing over all i gives

If =

n∑
i=1

Ii(f) =
∑
S⊆[n]

|S|∥FS∥22.

On the other hand,

Var[f ] = E[f2]− E[f ]2 =
∑
S ̸=∅

∥FS∥22.

□

9.6 Fourier levels

The discussions in this chapter, particularly the formula for the total influence and the proof of the Efron-Stein

inequality, suggest a decomposition of functions over product spaces into different levels.
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Given a function f : Xn → R represented by its Hoeffding expansion f =
∑
S⊆[n] FS , we define the k-th level

projection of f as

f=k :=
∑

S:|S|=k

FS .

Note that for f : Zn2 → R, the k-th level is given by

f=k :=
∑

S:|S|=k

f̂(S)χS ,

and our formula for the total influences, given in Proposition 9.9, translates to

If =

n∑
k=0

k∥f=k∥22.

When considering the characters χS of Zn2 it is helpful to think of |S| as an analogue of the frequency a
N for

characters χa(x) = e2πaxi/N of ZN. As the frequency a
N increases, χa(x) becomes more sensitive to the changes in x

(see Figure 9.1). Similarly, larger |S| indicates a higher sensitivity to the input bits for χS .

Finally, we also introduce the notations

f⩽k :=
∑

S:|S|⩽k

f̂(S)χS ,

and

f⩾k :=
∑

S:|S|⩾k

f̂(S)χS .

Figure 9.1: Blue illustrates ℜ(e2πi x
40 ) which has frequency 1

40 . Red illustrates ℜ(e2πi 10x40 ) which has frequency 1
4 . The

character with a smaller frequency is more stable under small changes in x.
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Chapter 10

Introduction to hypercontractivity

This chapter explores an important phenomenon in functional analysis known as hypercontractivity. For functions

defined on the discrete cube {0, 1}n, hypercontractivity was first proved by Bonami [Bon70] and later developed further

by Beckner [Bec75] and Gross [Gro75].

Consider the vector space of functions f : Zn2 → R and recall that ∥f∥p ⩽ ∥f∥q if 1 ⩽ p ⩽ q ⩽ ∞. The difference

in Lp norms is closely connected to the concentration of |f |. If f is a constant function, all the Lp norms coincide.

More generally, if f is nearly constant, we expect that ∥f∥p does not increase significantly as p increases. Conversely,

moment concentration inequalities (e.g. Chebyshev’s inequality) suggest that when two distinct Lp norms are close,

then |f | is somewhat concentrated1.

To “smooth” a function f : Zn2 → R and increase its concentration, we can average f over a neighbourhood of

each point x such as a Hamming ball of a fixed radius centred at x. More specifically, we will consider a smoothing

operator that averages f over noisy versions of the inputs x. Define Tf(x) := Ezf(z) where z is obtained from x by

independently flipping each bit of x with probability γ for some fixed γ ∈ [0, 1]. Since T is a stochastic operator, the

convexity of norms implies that it is contractive under the Lp norms, i.e., ∥Tf∥p ⩽ ∥f∥p. However, the smoothing

effect of the averaging operator allows us to make an even stronger assertion: The operator T is hypercontractive,

meaning that ∥Tf∥q ⩽ ∥f∥p for some q > p depending on γ.

10.1 Hypercontractivity in dimension one

We introduce the noise operator in dimension one, i.e. on the space of functions f : Z2 → R. Let µγ denote the

Bernoulli distribution with success probability γ (i.e., µγ(1) = γ and µγ(0) = 1− γ).

Definition 10.1 (The 1-dimensional noise operator). Let 0 ⩽ ρ ⩽ 1 be a parameter, and let γ := 1
2 (1− ρ). Given a

function f : Z2 → R, define Tρf : Z2 → R by

Tρf(x) := Ey∼µγ
f(x+ y).

Remark 10.2. In Definition 10.1, the value p = 1
2 (1− ρ) is chosen so that Ey∼µγ

(−1)y = ρ.

Remark 10.3. We have Tρf(x) = Ez [f(z)], where the random variable z is a noisy copy of x with corruption

probability p. More formally,

z :=

{
x with probability 1− γ
1− x with probability γ

. (10.1)

The operator Tρ is linear

Tρ(f + λg) = Tρf + λTρg,

and since [
Tρf(0)

Tρf(1)

]
=

[
(1− γ)f(0) + γf(1)

(1− γ)f(1) + γf(0)

]
=

[
1− γ γ

γ 1− γ

] [
f(0)

f(1)

]
,

1Since the Lp norm of f and |f | are equal, the values of ∥f∥p can only imply concentration for |f |.
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its corresponding matrix is

Tρ =

[
1− γ γ

γ 1− γ

]
. (10.2)

Since Ey∼µγχ1(x+y) = Ey∼µγ (−1)x+y = ρ(−1)x = ρχ1(x), the two characters χ0 and χ1 of Z2 are the eigenvectors

of Tρ with corresponding eigenvalues 1 and ρ:

Tρχ0 = χ0 and Tρχ1 = ρχ1 (10.3)

In particular, for every f : Z2 → R with Fourier expansion f = f̂(0) + f̂(1)χ1, we have

Tρf = f̂(0) + ρf̂(1)χ1.

Next, we show that since Tρ is an averaging operator, it is a contraction for the Lp norm.

Theorem 10.4 (contractivity in dimension one). For every f : Z2 → R, we have

∥Tρf∥p ⩽ ∥f∥p .

Proof. Let µ := µ 1
2 (1−ρ)

. Given y ∈ Z2, define the y-translation of f , fy : Z2 → R as fy(x) = f(x+ y). By convexity

of norms, we have

∥Tρf∥p = ∥Ey∼µfy(x)∥p ⩽ Ey∼µ ∥fy(x)∥p = Ey∼µ ∥f∥p = ∥f∥p .

□

Remark 10.5. The proof of Theorem 10.4 generalizes to any norm that satisfies ∥f∥ = ∥fy∥ for all y, i.e., any

translation invariant norm.

The operator Tρ satisfies a stronger property called hypercontractivity.

Theorem 10.6 (Hypercontractivity in dimension one). Let 1 < p ⩽ q <∞ and f : Z2 → R. We have

∥Tρf∥q ⩽ ∥f∥p for every 0 ⩽ ρ ⩽

√
p− 1

q − 1
.

Proof. Consider f : Z2 → R and set γ = 1
2 (1− ρ). Denoting a = |f(0)| and b = |f(1)|, using standard methods from

calculus, for 0 ⩽ ρ ⩽
√

p−1
q−1 , we have

∥Tρf∥q =
(
Ex

∣∣Ey∼µγ
f(x+ y)

∣∣q)1/q
=

(
1

2

(
(1− γ)a+ γb

)q
+

1

2

(
γa+ (1− γ)b

)q)1/q

⩽

(
1

2
ap +

1

2
bp
)1/p

= ∥f∥p .

□

10.2 Hypercontactivity

In Section 10.1, we discussed the noise operator and hypercontractivity in dimension one. In this section, we will

generalize these concepts to arbitrary dimensions.

Let µnγ denote the product probability measure on {0, 1}n defined by the Bernoulli measure µγ . More formally, for

y ∈ {0, 1}n, we have µnγ (y) = γ
∑
yi(1− γ)n−

∑
yi .

Definition 10.7 (Noise operator in arbitrary dimension). Let 0 ⩽ ρ ⩽ 1 and set γ = 1
2 (1 − ρ). Given a function

f : Zn2 → R, define Tρf : Zn2 → R as

Tρf(x) := Ey∼µn
γ
f(x+ y).
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We can write Tρf(x) = Ez [f(z)], where

zi :=

{
xi with probability 1− γ
1− xi with probability γ

, (10.4)

independently for each i. In other words, z is a noisy copy of x, where each coordinate is flipped with probability γ.

Similar to the one dimension, Tρ is a linear operator. We have

Tρ(f + λg) = Tρf + λTρg,

and the corresponding matrix of this operator is the the nth tensor power of the 2× 2 matrix in (10.2).

The operator Tρ has a smoothing effect. When ρ = 1, we have Tρf = f , but as one decreases ρ, the function Tρf

approaches to the constant E[f ] and when ρ = 0, we have Tρf = E[f ]. Note Tρf(x) takes the average of f evaluated

at points sampled according to z. When ρ = 1, the random variable z is concentrated on the original point x, and we

obtain f(x). As ρ decreases, the random variable z increasingly spreads over the whole group Zn2 . Finally, at ρ = 0,

we lose the information about x and z is distributed uniformly over all points in Zn2 . Therefore, Ezf(z) = E[f ] in this

case.

Let us now investigate the effect of the noise operator on the Fourier expansion.

Lemma 10.8. Given f : Zn2 → R, we have

Tρf =
∑
S⊆[n]

ρ|S|f̂(S)χS .

Proof. Since Tρ is linear, it suffices to show that for every S ⊆ [n], we have

TρχS = ρ|S|χS .

Namely, χS are the eigenvectors of Tρ with corresponding eigenvalues ρ|S|. We have

TρχS(x) = Ey∼µn
γ
χS(x+ y) = χS(x)Ey∼µn

γ
χS(y) = χS(x)Ey∼µn

γ

∏
i∈S

(−1)yi

= χS(x)
∏
i∈S

Eyi∼µγ
(−1)yi = χS(x)ρ

|S|.

□

Lemma 10.8 shows that the noise operator dampens the Fourier coefficients, and the dampening effect increases

exponentially as a function of |S|.

Remark 10.9. For every x ∈ Zn2 , we have

Ey∼µn
γ
[f(x+ y)] = 2nEy∈Zn

2

[
f(x+ y)µnγ (y)

]
= 2nf ∗ µnγ (x).

where in the second expectation, y ∈ Zn2 is chosen according to the uniform distribution. The Fourier expansion of µnγ

is given by µ̂nγ (S) =
ρ|S|

2n , which also implies T̂ρf(S) = 2nµ̂nγ (S)f̂(S) = ρ|S|f̂(S).

In light of Lemma 10.8, we can extend the definition of the noise operator Tρ to include arbitrary values of ρ ∈ R
beyond the interval ρ ∈ [0, 1].

Definition 10.10. For ρ ∈ R and f : Zn2 → R, define

Tρf :=
∑
S⊆[n]

ρ|S|f̂(S)χS .

In the proof of Lemma 10.8, we used the fact that the noise operator acts independently on each coordinate. This

approach applies to many results involving the noise operator: we first analyze the effect of noise on a single coordinate

and then extend this analysis to the entire space using its product structure.
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Theorem 10.11 (contractivity). For 1 ⩽ p ⩽∞, the operator Tρ is a contractive operator from Lp to Lp. That is,

∥Tρf∥p ⩽ ∥f∥p .

Proof. The proof of contractivity from Theorem 10.4 remains valid for the general setting of functions f : Zn2 → R. □

Next, we will show that Tρ is hypercontractive. Before stating this theorem and presenting its proof, we introduce

some notation.

For a distribution µ over X and a distribution ν over Y , consider the product probability distribution µ× ν. For

a function f : (X × Y, µ × ν) → R, let ∥f∥Lp(ν)
denote the function x 7→ ∥fx∥Lp(ν)

with fx = f(x, ·). Similarly, let

∥f∥Lp(µ)
denote the function y 7→ ∥fy∥Lp(µ)

, where fy = f(·, y).
Given a subset S ⊂ [n], we can view a function f : Zn2 → R as a function f : ZS2 × ZS̄2 → R. It is instructive to see

how
∥∥∥∥f∥Lp(ZS

2 )

∥∥∥
Lq(ZS̄

2 )
expands. We have

∥∥∥∥f∥Lp(ZS
2 )

∥∥∥
Lq(ZS̄

2 )
=
(
Ey∈ZS̄

2

∣∣∣∥fy∥Lp(ZS
2 )

∣∣∣q)1/q = (Ey∈ZS̄
2

∣∣∣∣(Ex∈ZS
2
|fy(x)|p

)1/p∣∣∣∣q)1/q

. (10.5)

Since fy(x) = f(x, y), we have

∥f∥q =
∥∥∥∥f∥Lq(ZS

2 )

∥∥∥
Lq(ZS̄

2 )
. (10.6)

As in the proof of Theorem 10.4, convexity of the norms show∥∥∥∥f∥L1(µ)

∥∥∥
Lp(ν)

= ∥Ex∼µ|f(x, ·)|∥Lp(ν)
⩽ Ex∼µ ∥ |f(x, ·)| ∥Lp(ν)

=
∥∥∥∥f∥Lp(ν)

∥∥∥
L1(µ)

.

This is a special case of a more general inequality:

Theorem 10.12 (Generalized Minkowski’s Inequality). For 1 ⩽ p ⩽ q ⩽∞, we have∥∥∥∥f∥Lp(ν)

∥∥∥
Lq(µ)

⩽
∥∥∥∥f∥Lq(µ)

∥∥∥
Lp(ν)

.

Now, we have all the tools to prove the hypercontractivity of Tρ.

Theorem 10.13 (Hypercontractivity). Let 1 < p ⩽ q <∞ and f : Zn2 → R. We have

∥Tρf∥q ⩽ ∥f∥p for every 0 ⩽ ρ ⩽

√
p− 1

q − 1
.

Proof. The proof is by induction on n. We have already verified the inequality for n = 1 in Theorem 10.6. Next, we

exploit the product structure to prove the inequality for arbitrary n.

Consider f : Zn2 → R. For S ⊆ [n], let TSρ denote the noise operator applied only to the coordinates in S. More

formally, TSρ is an operator on the function f(·, xS̄), where xS̄ denotes the variables xi for i ̸∈ S. Let S = {1}. By

Equation (10.5), we have

∥Tρf∥q =
∥∥∥TSρ T S̄ρ f∥∥∥

q

=

∥∥∥∥∥∥∥TSρ T S̄ρ f∥∥∥
Lq(ZS

2 )

∥∥∥∥
Lq(ZS̄

2 )

(Equation (10.6))

⩽

∥∥∥∥∥∥∥T S̄ρ f∥∥∥
Lp(ZS

2 )

∥∥∥∥
Lq(ZS̄

2 )

(Induction Hypothesis)

⩽

∥∥∥∥∥∥∥T S̄ρ f∥∥∥
Lq(ZS̄

2 )

∥∥∥∥
Lp(ZS

2 )

(Generalized Minkowski)

⩽
∥∥∥∥f∥Lp(ZS̄

2 )

∥∥∥
Lp(ZS

2 )
(Induction Hypothesis)

= ∥f∥p (Equation (10.6)).

62



□

10.3 Degree and hypercontractivity

In most applications, we will apply the hypercontractivity in the following form.

Theorem 10.14 (hypercontractivity and projection to low degrees). Let f : Zn2 → R be a function and k > 0 an

integer.

(i) For 2 ⩽ q <∞, we have ∥∥f⩽k∥∥
q
⩽ (q − 1)

k
2 ∥f∥2 .

(ii) For 1 ⩽ p ⩽ 2, ∥∥f⩽k∥∥
2
⩽ e(

2
p−1)k ∥f∥p .

Proof. Proof of (i): Let ρ = 1√
q−1

and let g := T√q−1f =
∑√

q − 1
|S|
f̂(S)χS so that f = Tρg. By hypercontractivity

(Theorem 10.13), we have

∥∥f⩽k∥∥
q
=
∥∥Tρg⩽k∥∥q ⩽ ∥∥g⩽k∥∥2 =

∑
|S|⩽k

√
q − 1

2|S|
f̂(|S|)2

1/2

⩽ (q − 1)k/2

(∑
S

f̂(|S|)2
)1/2

= (q − 1)k/2 ∥f∥2 .

Proof of (ii): Instead of directly applying the hypercontractivity, we first use the duality of norms and apply the

hypercontractivity to some q > 2.

Let ε > 0 be a parameter and set q := 2+ ε. Let θ be the solution to 1
2 = θ

p +
1−θ
q , which is θ = p(q−2)

2(q−p) =
εp

2(2+ε−p) .

By Hölder’s inequality and Part (i), we have

∥∥f⩽k∥∥
2
=
√
⟨f⩽k, f⟩ ⩽

∥∥f⩽k∥∥1−θ
q
∥f∥θp ⩽ (q − 1)

k(1−θ)
2

∥∥f⩽k∥∥1−θ
2
∥f∥θp ,

which simplifies to ∥∥f⩽k∥∥
2
⩽ (q − 1)

k(1−θ)
2θ ∥f∥p = (1 + ε)

k(1−θ)
2θ ∥f∥p ⩽ e

kε(1−θ)
2θ ∥f∥p .

Substituting θ = εp
2(2+ε−p) and taking the limit as ε→ 0 yields the desired bound. □

Remark 10.15. In Theorem 10.14 (ii), it is more straightforward to show a weaker bound. Let q satisfy 1
p + 1

q = 1,

which is equivalent to q − 1 = 1
p−1 . By Hölder’s inequality and Theorem 10.14 (i),

∥∥f⩽k∥∥2
2
=
〈
f⩽k, f

〉
=
∥∥f⩽k∥∥

q
∥f∥p ⩽ (q − 1)

k
2

∥∥f⩽k∥∥
2
∥f∥p = (p− 1)−k/2

∥∥f⩽k∥∥
2
∥f∥p ,

which simplifies to
∥∥f⩽k∥∥

2
⩽ (p − 1)−k/2 ∥f∥p. However, this bound deteriorates rapidly when p tends to 1, and it

becomes meaningless at p = 1.

10.3.1 Equivalence of norms for low degree polynomials

If f is a constant function, all the Lp norms coincide. The following immediate consequence of Theorem 10.14 states

that similarly, for low-degree functions, all the Lp norms are within constant factors of each other.

Corollary 10.16 (equivalence of norms for low degree polynomials). Let f : Zn2 → R have degree at most k.

(i) For 2 ⩽ q <∞, we have

∥f∥2 ⩽ ∥f∥q ⩽ (q − 1)
k
2 ∥f∥2 .

(ii) For 1 ⩽ p ⩽ 2,

e(1−
2
p )k ∥f∥2 ⩽ ∥f∥p ⩽ ∥f∥2 .

By setting f =
∑
i aiχ{i} to be a degree 1 function, we immediately obtain the so-called Khintchine inequality.
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Theorem 10.17 (Khintchine inequality). Let a1, a2, . . . , an ∈ R, and let ε1, . . . , εn be ±1-valued i.i.d. random

variables with Pr[εi = 1] = 1/2. For q ⩾ 2, we have(∑
i

|ai|2
)1/2

⩽

(
E

∣∣∣∣∣∑
i

εiai

∣∣∣∣∣
q)1/q

⩽
√
q − 1

(∑
i

|ai|2
)1/2

,

and for 1 ⩽ p ⩽ 2,

e(1−
2
p )

(∑
i

|ai|2
)1/2

⩽

(
E

∣∣∣∣∣∑
i

εiai

∣∣∣∣∣
p)1/p

⩽

(∑
i

|ai|2
)1/2

,

10.4 Noise and hypercontractivity for general distributions

Let (X,µ) be a probability space, and consider the product space (Xn, µn). Given a parameter ρ ∈ [0, 1], the ρ-equal

copy of x ∈ Xn is the random variable y that is sampled from Xn through the following process: for each i ∈ [n], with

probability ρ, set yi = xi and with probability 1− ρ, sample yi from (X,µ).

Definition 10.18 (Noise Operator). Let (X,µ) be a probability space, and ρ ∈ [0, 1] a parameter. Given a function

f : (Xn, µn)→ R, define Tρf : (Xn, µn)→ R as

Tρf(x) := Eyf(y),

where y is the ρ-equal copy of x.

Recall from Section 9.4.1 that for every probability distribution (X,µ), every function f : (X,µ)n → R has a unique

Fourier-Walsh expansion f =
∑
S⊆[n] FS , where the functions FS are S-juntas, and satisfy EiFS ≡ 0 for every i ∈ S.

By the definition of the noise operator, we have

TρFS(x) =
∑
T⊆S

ρ|T |(1− ρ)|S|−|T |ES\TFS(x).

Since ES\TFS(x) ≡ 0 unless S = T , we get TρFS(x) = ρ|S|FS(x) and

Tρf =
∑
S⊆[n]

ρ|S|FS ,

similar to the uniform distribution on Zn2 .
It is straightforward to verify that Tρ is a contractive operator on the Lp spaces. In Theorem 10.13, we saw that

for the uniform distribution on Zn2 , we have hypercontractivity ∥Tρf∥q ⩽ ∥f∥p for 1 < p < q < ∞, when ρ =
√

p−1
q−1 .

Naturally, one may ask whether a similar hypercontractive inequality holds for general product distributions µn.

However, for general product measures, it turns out that one cannot choose a ρ > 0 depending solely on p and q.

When µ contains atoms with small probability masses, ρ must be significantly smaller for hypercontractivity to hold.

Unfortunately, this means that for continuous spaces such as [0, 1]n, hypercontractivity does not hold unless ρ = 0.

We will only state the general form of hypercontractivity for the case where one of the norms is the L2 norm, as

this is the most relevant form for applications.

Theorem 10.19 (General hypercontractivity [?]). Let (X,µ) be a probability space, and let λ := mina∈X µ(a) be the

minimum probability of any outcome according to µ. For every f : (Xn, µn)→ R, the following holds.

(i) For 2 ⩽ q <∞, we have

∥Tρf∥q ⩽ ∥f∥2 for every 0 ⩽ ρ ⩽
1√
q − 1

λ
1
2−

1
q .

(ii) For 1 < p ⩽ 2,

∥Tρf∥2 ⩽ ∥f∥p for every 0 ⩽ ρ ⩽
√
p− 1λ

1
p−

1
2 .
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We get the following corollary, analogues to Corollary 10.16. To keep the exposition simple, we do not optimize it

for when p is close to or equals 1.

Corollary 10.20. Let (X,µ) be a probability space, and let λ := mina∈X µ(a) be the minimum probability of any

outcome according to µ. Let f : (Xn, µn)→ R be a function and k > 0 an integer.

(i) For 2 ⩽ q <∞, we have ∥∥f⩽k∥∥
q
⩽ (q − 1)

k
2 λk(

2
q−1) ∥f∥2 .

(ii) For 1 ⩽ p ⩽ 2, ∥∥f⩽k∥∥
2
⩽ (p− 1)−

k
2 λk(1−

2
p ) ∥f∥p .

Proof. To prove (i), let ρ = 1√
q−1

λ
1
2−

1
q and let g := T 1

ρ
f =

∑
ρ−|S|FS so that f = Tρg. By Theorem 10.19, we have

∥∥f⩽k∥∥
q
=
∥∥Tρg⩽k∥∥q ⩽ ∥∥g⩽k∥∥2 =

∑
|S|⩽k

ρ−2|S|∥FS∥22

1/2

⩽ ρ−k

(∑
S

∥FS∥22

)1/2

= ρ−k ∥f∥2 .

Part (ii) easily follows from (i) for 1
p +

1
q = 1 by duality. □

Remark 10.21. Note that this dependency of Corollary 10.20 on λ := mina∈X µ(a) is essential, and it is of the right

order of magnitude. For example, consider the p-biased distribution2 with p = λ, and define f : ({0, 1} , µnλ)n → {0, 1}
as f(x) = x1. Even though f is a 1-junta, we have ∥f∥q = λ1/q and ∥f∥2 = λ1/2, which shows that the bounds in

Corollary 10.20 have the opetimal dependency on λ.

10.5 Exercises

2The p-biased Bernoulli distribution, denoted by µp, is the probability distribution on {0, 1} with µp(1) = p and µp(0) = 1− p.
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Chapter 11

Level-k inequality, Chang’s lemma, and

the FKN theorem

In this chapter, we study three theorems in the analysis of Boolean functions whose proofs rely on hypercontractivity.

We begin with the level-k inequality, which shows that Boolean functions that have small density assign a small weight

to the low-degree Fourier levels. In contrast, when the density is larger, as illustrated by the dictator functions and

juntas, the Fourier mass can be entirely concentrated on lower-degree coefficients.

Afterwards, we turn our attention to a key tool in additive combinatorics introduced by Chang [Cha02]. This

theorem, which is closely related to the level-1 inequality, states that the large Fourier coefficients of a Boolean function

must all reside in a low-dimensional subspace. Chang’s lemma has numerous applications in additive combinatorics,

and in particular, many recent quantitative improvements over Roth’s theorem on 3-term arithmetic progressions

utilize this lemma.

Finally, we study a result of Friedgut, Kalai, and Naor [FKN02], known as the FKN theorem. In Chapter 6, we

showed that Boolean functions of degree at most one are either constant functions or dictators. The FKN theorem

provides a robust version of this result by showing that if a Boolean function is close to a degree-1 real-valued function,

then it must be close to a degree-1 Boolean function, i.e., a constant function or a dictator.

11.1 Level-k inequality

Let f : Zn2 → {0, 1} be a function with mean E[f ] = α. By Parseval’s identity, the Fourier mass of f satisfies∑
a |f̂(a)|2 = α. The level-k inequality states that when α is small, the contribution of the lower levels to this sum is

very small. In contrast, functions such as dictators and juntas illustrate that when α is relatively large, the Fourier

mass can be entirely on the lower levels.

Theorem 11.1 (Level-k inequality). Let f : Zn2 → {0, 1} have mean E[f ] = α ⩽ 1
10 , and let k be a positive integer.

We have

∥f⩽k∥22 ⩽ e2 ln(1/α)kα2.

Proof. Assume ∥f⩽k∥2 ̸= 0 since otherwise the theorem is trivial. Let 1 < p ⩽ 2 to be determined, and let q ⩾ 2 be

its conjugate exponent satisfying 1
p +

1
q = 1. By applying Hölder’s inequality and hypercontractivity, we have

∥f⩽k∥22 =
〈
f⩽k, f

〉
⩽ ∥f⩽k∥q∥f∥p ⩽ (q − 1)

k
2 ∥f⩽k∥2∥f∥p,

which shows

∥f⩽k∥2 ⩽ (q − 1)
k
2 ∥f∥p = (q − 1)

k
2 α1/p ⩽ q

k
2 α1− 1

q .

Thus

∥f⩽k∥22 ⩽ qkα− 2
qα2.

Substituting q = ln(1/α) ⩾ 2 yields the desired result. □
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11.2 Chang’s lemma

In Chapter 5, we discussed a notion of pseudo-randomness based on Fourier uniformity. We showed that functions

that do not have significant non-principal Fourier coefficients mimic the behaviour of random functions in that they

contain the “expected” number of certain linear patterns.

Let ε > 0 be a parameter, and consider a Boolean function f : Zn2 → {0, 1} with density E[f ] = α. Note that every

Fourier coefficient of f satisfies |f̂(a)| = |E[f(x)χa(x)]| ⩽ E[f ] = α. Let us denote the set of large Fourier coefficients

of f by

Specε(f) :=
{
a : |f̂(a)| ⩾ εα

}
.

The non-principal characters in Specε(f) are the obstacles to the Fourier uniformity of f . In many applications,

one wishes to extract some structure about f from this set or to eliminate these large Fourier coefficients by restricting

to a subgroup (or approximate subgroup).

First, note that by Parseval’s identity, we have

α = E[f2] =
∑
a

|f̂(a)|2 ⩾ |Specε(f)|(εα)2,

showing

|Specε(f)| ⩽
1

ε2α
.

Even though Specε(f) can be of size Ω(1/α), Chang, in her work [Cha02] on Frieman’s theorem, proved that

all these significant Fourier coefficients must lie within a subspace of dimension at most O(log( 1
α )). In other words,

large Fourier coefficients cannot be arbitrarily scattered, and their distribution has some inherent structure. Chang’s

lemma has been used in several central works in additive combinatorics. In particular, it is a key step in Sander’s

quasi-polynomial bound on Frieman’s theorem [San12, Lov15], and most of the recent improvements in the bounds for

Roth’s theorem [San11a, KM23].

Theorem 11.2 (Chang’s lemma [Cha02]). Let ε > 0 be a parameter, and let f : Zn2 → {0, 1} satisfy E[f ] = α ⩽ 1
10 .

The linear span of Specε(f) in Zn2 has dimension at most e
ε2 ln(1/α).

Proof. Let a1, . . . , ad ∈ Specε(f) be a maximal set of linearly independent elements in Specε(f). We can apply a

change of coordinates for Zn2 and, without loss of generality, assume that ai = ei for 1 ⩽ i ⩽ d.

After this change of variables, f̂(a1)χa1 , . . . , f̂(ad)χad are all in level-one, and therefore, contribute at least d(εα)2

to ∥f⩽1∥22. By applying the level-1 inequality (Theorem 11.1 with k = 1), we have

d(εα)2 ⩽ ∥f⩽1∥22 ⩽ e2 ln(1/α)α2,

which shows

d ⩽
e2

ε2
ln(1/α).

□

Remark 11.3. Alternatively, we can prove Chang’s lemma with a direct probabilistic argument. Define g =
∑d
i=1 χai .

We wish to upper-bound and lower-bound E[fg]. By Parseval, the lower bound is εαd. For the upper bound, first note

that the linear independence of a1, a2, . . . , ad translates to probabilistic independence for the corresponding characters,

i.e., when x is chosen uniformly at random, g(x) is a sum of d i.i.d. ±1-valued random variables. Consequently, g(x)

is strongly concentrated, and one can use the concentration of g(x) to upper-bound E[fg].

11.3 The FKN dictator theorem

In Proposition 6.8, we showed that a Boolean function f : Zn2 → {0, 1} with degree at most one is either a constant

function or a dictator. In this section, we examine the robustness of this statement. Instead of requiring the degree

to be at most one, we assume that the Fourier mass is highly concentrated on the characters of degree at most one.

Friedgut, Kalai, and Naor [FKN02] proved that every such function must be close to either a constant function or a

dictator.

68



As it is more convenient, we will state the proof of the FKN theorem for functions f : {−1, 1}n → {−1, 1}. To

translate Theorem 11.4 to a statement about functions f : {−1, 1}n → {0, 1}, note that 2f − 1 : {−1, 1}n → {−1, 1}
satisfies ∥(2f − 1)>1∥22 = 2∥f>1∥22.

Theorem 11.4 (FKN theorem [FKN02]). Suppose f : {−1, 1}n → {−1, 1} satisfy ∥f>1∥22 = δ. There exists g :

{−1, 1}n → {−1, 1} such that g is either a constant function or a dictator, and it satisfies

Pr[f(x) ̸= g(x)] ⩽ 103δ.

Proof. Denoting the coefficients as f⩽1 = a0 +
∑n
i=1 aixi and let h := (f⩽1)2. Note that

E[h] =
n∑
i=0

a2i = ∥f⩽1∥22 = ∥f∥22 − ∥f⩽1∥22 = 1− δ.

We will show that h is almost a constant function, i.e., it has a small variance. Since deg(h) ⩽ 2, by hypercontractivity

(Theorem 10.14 with p = 1), we have √
Var[h] = ∥h− E[h]∥2 ⩽ e2E|h− E[h]|.

By f2 ≡ 1, the Cauchy-Schwarz inequality, and the triangle inequality, we have

E|h− E[h]| ⩽ E|h− f2|+ E[|1− E[h]|]
= E

∣∣(f⩽1 − f)(f⩽1 + f)
∣∣+ δ

⩽ ∥f⩽1 − f∥2∥f⩽1 + f∥2 + δ

⩽ ∥f>1∥2(∥f⩽1∥2 + ∥f∥2) + δ = 2
√
δ + δ ⩽ 3

√
δ.

Therefore, √
Var[h] ⩽ 3e2

√
δ ⩽ 30

√
δ.

On the other hand,

h =

(
a0 +

n∑
i=1

aixi

)2

=

n∑
i=0

a2i +

n∑
i=1

2a0aixi +
∑
i<j

2aiajxixj ,

which shows

Var[h2] = 4a20

n∑
i=1

a2i +
∑
i<j

4a2i a
2
j = 2

( n∑
i=0

a2i

)2

−
n∑
i=0

a4i

 ⩾ 2

(
n∑
i=0

a2i

)2

− 2

(
n∑
i=0

a2i

)
max

i∈{0,...,n}
|ai|2.

Substituting
∑n
i=0 a

2
i = 1− δ and using Var[h2] ⩽ (30

√
δ)2 ⩽ 103δ, we have

2 (1− δ)2 − 2 max
i∈{0,...,n}

|ai|2 ⩽ 103δ.

Therefore, there exists m ∈ {0, . . . , n} with |am| ⩾ |am|2 ⩾ 1− 103δ.

If m = 0, let g : {−1, 1}n → {−1, 1} be the constant function g ≡ sgn(am). If m ̸= 0, let g(x) := sgn(am)xm. We

have

Pr[f(x) ̸= g(x)] =
1

4
∥f − g∥22 =

1

4

(
E[f2] + E[g2]− 2E[fg]

)
=

1

4
(2− 2|am|) ⩽ 103δ.

□

11.4 Exercises

Exercise 11.1. Prove Chang’s lemma using the argument sketched in Remark 11.3.
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Chapter 12

Junta Theorem and KKL Inequality

In this chapter, we study two central results in the analysis of Boolean functions: the KKL inequality of Kahn,

Kalai, and Linial [KKL88], and Friedgut’s junta theorem [Fri98]. The KKL inequality is the first result in discrete

mathematics and theoretical computer science to use hypercontractivity. This inequality asserts that every balanced

Boolean function must have at least one influential variable.

Building on the techniques from KKL, Friedgut showed that a Boolean function with a small total influence is

essentially a junta. Note that conversely, every junta has a small total influence.

We will present the proof of Friedgut’s junta theorem in Section 12.2, and then present the KKL inequality in

Section 12.3.

12.1 A rule of thumb for applying hypercontractivity

The proofs of Friedgut’s junta theorem, the KKL inequality, as well as many other applications of hypercontractivity in

the analysis of Boolean functions use the fact the Lp norms of sparse Boolean functions grow very rapidly as p increases.

To see this, note that if f is a {0, 1}-valued function with E[f ] = α, then ∥f∥p = (E[fp])1/p = (E[f ])1/p = α1/p, which

for small α, grows very rapidly as p increases. On the other hand, hypercontractivity implies that for low-degree

functions g : Zn2 → R, all the Lp norms are within constant factors of each other. Consequently, sparse Boolean

functions cannot have significant weights on low-degree Fourier coefficients.

Proposition 12.1. Consider f : Zn2 → {0, 1} with E[f ] = α. For every integer k, we have

∥f⩽k∥2 ⩽ (3kα1/4)∥f∥2.

Proof. By applying hypercontractivity (Remark 10.15) with p = 4/3, we have1

∥f⩽k∥2 ⩽ 3k∥f∥4/3 = 3kE[f ]3/4 = 3kE[f ]1/4E[f ]1/2 = 3kα1/4∥f∥2.

□

In the proof of Proposition 12.1, we used the fact that for Boolean functions E[fp] ⩽ E[f ]. The following proposition

shows a similar statement for the ith coordinate Laplacian when 1 ⩽ p ⩽ 2.

Proposition 12.2. Let (X,µ) be a probability space and f : (X,µ)n → {0, 1}. For every p ∈ [1, 2], we have

E|∂if |p ⩽ E|∂if | = 2E|∂if |2 = 2Ii(f),

where ∂if := f − Exi
f .

1The choice of p = 4/3 is quite arbitrary, and we can use any 1 < p < 2. Optimizing the value of p will only affect the hidden constants

in 2O(If/ε) in the assertion of the theorem.
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Proof. For every z ∈ (X,µ)[n]\{i}, let αz = Pryi∼µ[f(z,yi) = 1]. Since f is Boolean, for z ∈ (X,µ)[n]\{i} and

yi ∈ (X,µ), we have

|∂if(z, yi)| =

{
1− αz if f(z, yi) = 1

−αz if f(z, yi) = 0
.

Therefore,

E|∂if |2 = EzEyi |∂if(z,yi)|2 = Ez[αz(1− αz)
2 + (1− αz)α

2
z] = Ezαz(1− αz),

and

E|∂if | = Ez[αz(1− αz) + (1− αz)αz] = 2Ezαz(1− αz),

which shows E|∂if | = 2E|∂if |2. Let θ ∈ [0, 1] be such that 1
p = θ

1 + 1−θ
2 . By Hölder’s inequality

∥∂if∥pp ⩽ ∥∂if∥
pθ
1 ∥∂if∥

p(1−θ)
2 ⩽ ∥∂if∥pθ1 ∥∂if∥

p(1−θ)/2
1 = ∥∂if∥1.

□

12.2 Friedgut’s Junta Theorem

Recall from Chapter 9 that the influence of the ith variable on a function f : Zn2 → {0, 1} is

Ii(f) =
1

4
Pr
x
[f(x) ̸= f(x+ ei)] = ∥∂if∥22 =

∑
S:i∈S

|f̂(S)|2.

The total influence of f is defined as follows.

If =
∑
i

Ii(f) =
∑
S⊆[n]

|S||f̂(S)|2.

If f is a k-junta, then If ⩽ k. Friedgut’s theorem gives a partial converse to this statement. It states that Boolean

functions with small total influences are nearly juntas.

Theorem 12.3 (Friedgut’s junta theorem [Fri98]). Let f : Zn2 → {0, 1} be a Boolean function. There exists a

2O(If/ε)-junta g : Zn2 → {0, 1} such that

Pr[f(x) ̸= g(x)] ⩽ ε.

Proof. Let J be the set of most influential variables of f , i.e., J := {i ∈ [n] : Ii(f) ⩾ δ} for some parameter δ > 0 to

be determined. It is natural to try to find a g that depends only on the variables in J . The function

h :=
∑
S⊆J

f̂(S)χS .

depends only on the variables in J , but it is not necessarily a Boolean function. We shall round h to a Boolean function

g as follows.

g(x) :=

{
1 if h(x) ⩾ 1

2

0 if h(x) < 1
2

.

Note f(x) ̸= g(x) implies |f(x)− h(x)|2 ⩾ 1/4, and therefore,

Pr[f(x) ̸= g(x)] = ∥f − g∥22 ⩽ 4 ∥f − h∥22 .

Therefore, our task was reduced to showing

∥f − h∥22 =
∑
S ̸⊆J

f̂(S)2 ⩽
ε

4
. (12.1)

We will divide the sum in (12.1) into the low-degree and high-degree parts and deal with them separately.
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Bounding high-degree coefficients: Intuitively, if the total influence is small, we cannot have a large L2 mass on

high-degree characters since high-degree characters have large total influences. We can easily formalize this intuition.

Set k := 8If/ε. We have

If =
∑
S

|S||f̂(S)|2 ⩾ 8k
∑
|S|⩾k

|f̂(S)|2,

which implies ∑
S:|S|⩾k

|f̂(S)|2 ⩽
If
8k

⩽
ε

8
.

Thus,

∥f − h∥22 ⩽
ε

8
+

∑
S:|S|<k
S ̸⊆J

f̂(S)2. (12.2)

Bounding low-degree coefficients: We will use hypercontractivity to bound the low-degree part. Every S ̸⊆ J in

Equation (12.1) contains at least one non-influential variable i ̸∈ J . Therefore,∑
S:|S|<k
S ̸⊆J

f̂(S)2 =
∑
i ̸∈J

∑
S:|S|<k
i∈S

f̂(S)2 =
∑
i̸∈J

∥∥∂if<k∥∥22 . (12.3)

Denote fi(x) := ∂if(x) and recall Ii(f) = E|fi|2. By applying hypercontractivity (Remark 10.15) with p = 4/3, we

have ∥∥f<ki ∥∥
2
⩽ 3k ∥fi∥4/3 ,

and by Proposition 12.2, we have E|fi(x)|4/3 ⩽ 2Ii(f). We obtain

∥∥f<ki ∥∥2
2
⩽ 3k

(
Ex|fi(x)|4/3

)3/2
= 3k(2Ii(f))

3/2 ⩽ 3k+2Ii(f)
3/2.

For i ̸∈ J , we have Ii(f) < δ, and therefore, ∥∥f<ki ∥∥2
2
⩽ 3k+2δ1/2Ii(f).

Equivalently, ∑
S:|S|<k
i∈S

f̂(S)2 ⩽ 3k+2δ1/2Ii(f).

Going back to (12.3), we have ∑
i ̸∈J

∑
S:|S|<k
i∈S

f̂(S)2 ⩽
∑
i̸∈J

3k+2δ1/2Ii(f) ⩽ 3k+2δ1/2If .

Substituting in (12.2), yields

∥f − h∥22 ⩽
ε

8
+ 3k+2δ1/2If .

Since If = kε/8, by setting δ = 1/33k+100, we have

∥f − h∥22 ⩽
ε

8
+ 3kδ1/2If ⩽

ε

8
+
ε

8
=
ε

4
,

which verifies (12.1). With this choice of δ, we have

|J | ⩽ If
δ

⩽ 2O(If/ε).

□
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12.3 KKL inequality

A Boolean function f is called balanced function if E[f ] = 1/2. In this section, we will prove the Kahn-Kalai-Linial

(KKL) inequality [KKL88] that says every balanced function f : Zn2 → {0, 1} satisfies

max
i
Ii(f) = Ω

(
log n

n

)
.

The proofs of the KKL inequality and Friedgut’s junta theorem share many similarities. Historically, the KKL

inequality was proven first, and Friedgut later applied ideas from the KKL result to establish the junta theorem.

Note that a balanced function satisfies Var[f ] = 1
4 , and therefore, the Poincare inequality Var[f ] ⩽ If immediately

implies Imax := maxi Ii(f) ⩾ 1
4n . To prove the KKL inequality, we will prove a stronger upper bound on the variance,

which is of independent interest. More precisely, we will prove

Var(f) ≲
If

log(1/Imax)
,

which shows that when Imax is small, If must be large. Since If ⩽ Imaxn, it easily follows that Imax = Ω
(
Var[f ] lognn

)
.

Theorem 12.4 (KKL inequality [KKL88]). Consider f : Zn2 → {0, 1} and denote Imax := maxi Ii(f). We have

Var(f) ⩽
20If

log(1/Imax)
,

Consequently,

Imax = Ω

(
Var(f)

log n

n

)
.

Proof. We have ∑
S ̸=∅

|f̂(S)|2 = Var(f).

Bounding high-degree coefficients: Let k ≈ log 1
Imax

to be determined later. Since

If =
∑
S

|S||f̂(S)|2 ⩾ k
∑
|S|>k

|f̂(S)|2,

we have ∑
|S|>k

|f̂(S)|2 ⩽
If
k

≲
If

log(1/Imax)
.

Bounding low-degree coefficients: To handle the low degree part, let fi(x) := ∂if(x). By applying hypercon-

tractivity (Remark 10.15) to fi with p = 4/3, we have

∑
1⩽|S|⩽k

|f̂(S)|2 ⩽
n∑
i=1

∑
i∈S

|S|⩽k

|f̂(S)|2 =

n∑
i=1

∥∥∥f⩽ki ∥∥∥2
2
⩽

n∑
i=1

3k ∥fi∥24/3 .

By Proposition 12.2,, we have

n∑
i=1

3k ∥fi∥24/3 = 3k
n∑
i=1

(2Ii(f))
3/2 ⩽ 3k+2I1/2max

n∑
i=1

Ii(f) = 3k+2I1/2maxIf .

Combining the bounds for low-degree and high-degree parts, we get

Var(f) =
∑

S:|S|⩾1

|f̂(S)|2 ⩽
If
k

+ 3k+2I1/2maxIf .
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Setting k = 1
10 log

1
Imax

shows

Var(f) ⩽
10If

log(1/Imax)
+ 9I

1
2−

1
5

max If ⩽
20If

log(1/Imax)
.

Combining with If ⩽ nImax, a straightforward calculation implies

Imax = Ω

(
Var(f)

log n

n

)
.

□

We have the following immediate corollary, which is, for example, applicable when f : Zn2 → {0, 1} is invariant

under a transitive action on its variables.

Corollary 12.5. If a balanced function f : Zn2 → {0, 1} satisfies I1(f) = I2(f) = · · · = In(f), then If ≳ log n.

Remark 12.6. Bourgain and Kalai [BK99] show that the KKL inequality will significantly improve under strong

symmetry assumptions. For instance, if f is a symmetric function, i.e., f ’s output only depends on the Hamming

weight of the input, then If ≳
√
n and maxi Ii(f) ≳ 1√

n
.

12.3.1 Tribes function

The KKL inequality is tight, which can be seen by considering the tribes function, an important example in the analysis

of Boolean functions. Let

f(x) =

m∨
i=1

k∧
j=1

xi,j ,

where k = log n− log lnn and m = n/k. To study the influences of variables, consider one of the variables, say, x1,1.

For x1,1 to be able to change the output, all other variables in the clause
∧k
j=1 x1,j must be 1, and all other clauses

must evaluate to 0. Therefore, the influence of the variable x1,1 is at most

1

4
(1− 2−k)m−1 · 2−k+1 = 2−k−1(1− 2−k)m−1 =

lnn

2n

(
1− lnn

n

)m−1

=
lnn

2n
(1− o(1)).

12.3.2 Monotone functions

A Boolean function f : {0, 1}n → {0, 1} is monotone if f(x) ⩽ f(y) whenever xi ⩽ yi for all i. Consider a monotone

f : {0, 1}n → {0, 1} and a variable, say, x1. Since f is monotone, we have

I1(f) =
1

4
E[f(1,x2, . . . ,xn)− f(0,x2, . . . ,xn)] =

f̂(∅)− f̂({1})
4

− f̂(∅) + f̂({1})
4

= − f̂({1})
2

.

Proposition 12.7. For every monotone function f : {0, 1}n → {0, 1}, the influence of the ith variable on f satisfies

Ii(f) = −
f̂({i})

2
.

Consequently,

If ⩽
√
n.

Proof. We have already showed Ii(f) = − f̂({i})2 . This identity and the Cauchy-Schwarz inequality imply

If ⩽
∑
i

|f̂({i})| ⩽
√
n

(∑
i

|f̂({i})|2
)1/2

⩽
√
n∥f∥22 ⩽

√
n.

□
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Note that for non-monotone functions, it is possible to have If = Ω(n) (e.g., f = Parity). The bound If = O(
√
n)

for monotone functions is tight since IMaj = Θ(
√
n), where Maj denotes the majority function:

Maj(x) :=

{
1 if

∑
i xi ⩾ n/2

0 otherwise
.

Next, we will discuss an application of the KKL inequality. The following corollary shows that for every monotone

balanced function, some coalition of o(n) variables can collectively shift the expected value of f to be close to either

0 or 1.

Corollary 12.8. Let f : {0, 1}n → {0, 1} be a monotone balanced function. There is a set J ⊆ [n] of size Oε

(
n

logn

)
such that

E
[
f(x)|xJ = 1⃗

]
⩾ 1− ε,

and

E
[
f(x)|xJ = 0⃗

]
⩽ ε.

Proof Sketch. Let i ∈ [n] have the highest influence. Then, by the KKL inequality, fixing xi = 1 will increase the

average of f by at least Ω( lognn ). We can repeatedly apply this argument, each time increasing the expected value by

Ω( lognn ), to obtain a set J1 of size Oε(
n

logn ) with

E
[
f(x)|xJ1 = 1⃗

]
⩾ 1− ε.

Note that the variance remains at least ε(1− ε) through these iterations, and at least step we can find a variable with

influence Ω
(
ε(1− ε) lognn

)
.

Repeating the same process but setting the variables to 0 leads to another set J2 of size Oε

(
n

logn

)
with

E
[
f(x)|xJ2 = 0⃗

]
⩽ ε.

The set J := J1 ∪ J2 satisfies the desired properties. □

Ajtai and Linial constructed examples to show that there are functions for which Corollary 12.8 cannot be improved

significantly in any direction.

Theorem 12.9 ([AL93]). There exists a balanced monotone function f : {0, 1}n → {0, 1} such that for every set J of

size o
(

n
log2 n

)
, we have

E
[
f(x)|xJ = 1⃗

]
=

1

2
+ o(1),

and

E
[
f(x)|xJ = 0⃗

]
=

1

2
− o(1).

12.4 A few open problems

It is believed that in Theorem 12.9, the bound o( n
log2(n)

) can be improved to close to o( n
log(n) ) matching the bound in

Corollary 12.8

Conjecture 12.10. The bound in Theorem 12.9 can be improved to O
(

n
log1+ε n

)
for every ε > 0.

Friedgut [Fri04] conjectures that an analogue of Corollary 12.8 is true over the continuous domain [0, 1]n.

Conjecture 12.11 (Friedgut [Fri04]). Let f : [0, 1]n → {0, 1} be an increasing function and ε > 0 be a parameter.

There exists a subset J ⊆ [n] with |J | = oε(n) such that

E
[
f(x)|xJ = 0⃗

]
⩽ ε or E

[
f(x)|xJ = 1⃗

]
⩾ 1− ε.
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12.4.1 The Aaronson-Ambainis conjecture

In Theorem 7.13, we showed that for Boolean functions f : {0, 1}n → {0, 1}, the degree and decision complexity

are polynomially equivalent. The following conjecture extends this idea and speculates that low-degree real-valued

bounded functions can be well-approximated by low-complexity decision trees.

Conjecture 12.12 (folklore). Suppose f : {0, 1}n → [0, 1] have degree at most d. For every ε > 0, there exists a

decision tree T of depth at most poly(d, 1/ε) such that

∥f − T∥22 ⩽ ε.

Conjecture 12.12 is particularly significant in the context of quantum query complexity. Suppose a quantum

algorithm Q makes t queries to a Boolean input string x. Can a classical algorithm, making only poly(t) queries to

x, approximate Q’s acceptance probability for most inputs x? Conjecture 12.12 would imply a positive answer to this

question.

Aaronson and Ambainis [AA14] showed that Conjecture 12.12 is equivalent to the following conjecture about

maximum influence.

Conjecture 12.13 (Aaronson-Ambainis conjecture [AA14]). If f : {0, 1}n → [0, 1] have degree at most d, then

max
i
∥∂if∥22 ⩾ poly(1/d,Var[f ]).

77



78



Chapter 13

Phase transition and influences

One major motivation for studying the influences of variables on Boolean functions is a deep connection to the threshold

phenomenon, discovered independently by Margulis [Mar74] (in Russian) and later by Russo [Rus81]. This phenomenon

refers to the rapid transition of a property from being highly unlikely to hold to highly likely as a parameter p increases.

This abrupt change is observed in various contexts. It is analogous to a phase transition, a concept from statistical

physics that captures the sudden shifts in the behaviour of physical systems as parameters, like temperature, change.

One of the main questions in studying phase transitions is determining the speed at which the phase transition

occurs. How sharp is the threshold? In other words, how narrow is the critical interval in which the transition occurs?

As an example, consider the Erdös-Rényi random graph G(n, p), where each of the possible
(
n
2

)
edges is included

independently with probability p. Erdös and Rényi [EoR59] proved that when p = (1− ε) ln(n)n , with high probability,

G(n, p) contains several isolated vertices and is therefore disconnected. On the other hand, when p = (1 + ε) ln(n)n ,

then, with high probability, the random graph is connected. This illustrates a sharp phase transition: within a narrow

interval around p = ln(n)
n , the random graph rapidly shifts from being very unlikely to be connected to very likely.

Margulis [Mar74] and Russo [Rus81] showed that the total influence of the underlying Boolean function controls

the sharpness of such thresholds. To characterize properties that do not exhibit sharp thresholds, one must understand

the structure of Boolean functions with small total influences.

13.1 The p-biased distribution

To study random objects such as the Erdös-Rényi random graph G(n, p), we often need to work with the p-biased

distribution on the Boolean cube, which models the randomness in such structures.

Definition 13.1 (p-biased distribution). The p-biased Bernoulli distribution, denoted by µp, is the probability dis-

tribution on {0, 1} with µp(1) = p and µp(0) = 1− p. The p-biased distribution on {0, 1}n is the product distribution

µnp , where each coordinate is sampled independently from µp.

Recall from Section 9.4.1 that for every probability distribution (X,µ), every function f : (X,µ)n → R has a unique

Fourier-Walsh expansion f =
∑
S⊆[n] FS , where the functions FS are S-juntas and satisfy EiFS ≡ 0 for every i ∈ S.

Fourier-Walsh expansion for the p-biased distribution: Consider the function w : {0, 1} → R with

w(x) :=


√

p
1−p if x = 0

−
√

1−p
p if x = 1

,

which satisfies Eµp
w(x) = 0 and Eµp

w(x)2 = 1. For S ⊆ [n], define wS : ({0, 1}n , µnp )→ R as

wS(x) =
∏
i∈S

w(xi),
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with the convention w∅ ≡ 1. It follows easily from Eµp
w(x) = 0 and Eµp

w(x)2 = 1 that

⟨wS , wT ⟩µp
:= Ex∼µn

p
wS(x)wT (x) =

{
0 S ̸= T

1 S = T
.

We conclude the following proposition.

Proposition 13.2. The functions {wS}S⊆[n] form an orthonormal bases for the space of functions f : ({0, 1}n , µnp )→
R with the inner product ⟨·, ·⟩µp

.

By Proposition 13.2, we can write the Fourier-Walsh expansion of f : ({0, 1}n , µnp )→ R as

f =
∑
S⊆[n]

⟨f, wS⟩µp
wS .

13.2 Phase transitions

We can represent an n-vertex undirected graph G with a vector xG ∈ {0, 1}(
n
2) possible edges, and the value indicates

whether the edge is present in G. A graph property can be viewed as a subset of all finite graphs, specifically consisting

of those graphs that satisfy a certain condition or characteristic. Given a graph property P and a positive integer n,

we denote the set of n-vertex graphs in P by Pn.
We can identify Pn with Boolean function f : {0, 1}(

n
2) → {0, 1} defined as f(xG) = 1 iff G ∈ Pn. Therefore, for

example, we have

Pr[G(n, p) ∈ P] = E
x∼µ

(n2)
p

[f(x)] .

Here, µ
(n2)
p is the p-biased product distribution over the set of edges in the graph, and the expectation is taken over

random graphs generated under this distribution.

In the study of phase transition, we focus on monotone graph properties, i.e., adding edges to a graph that satisfies

the property results in another graph that also satisfies it. We can represent a monotone graph property by a sequence

of monotone functions f : {0, 1}(
n
2) → {0, 1}.

More generally, we will discuss sequences of monotone functions f : {0, 1}n → {0, 1}. We will shorthand

µp(f) := Eµn
p
[f ].

Definition 13.3 (critical probability). The critical probably of a non-constant monotone function f : {0, 1}n → {0, 1}
is the unique number pc ∈ [0, 1] with

µpc(f) =
1

2
.

The following theorem due to Bollobás and Thomason [BT87] shows that every non-constant monotone function

exhibits a threshold behaviour, meaning that in the sub-critical regime p = o(pc), we have

Pr
µn
p

[f(x) = 1] = o(1),

and in the super-critical regime p = Ω(pc), we have

Pr
µn
p

[f(x) = 1] = 1− o(1).

Theorem 13.4 (Bollobás and Thomason [BT87]). Let f : {0, 1}n → {0, 1} be a sequence of non-constant monotone

functions, and let pc be the critical probability so that µpc(f) =
1
2 .

(i) For p = o(pc), we have

µp(f) = o(1).
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(ii) For p = Ω(pc), we have

µp(f) = 1− o(1).

Proof. We only prove (i) as (ii) follows from a similar argument. To prove (i), we show that for every ε > 0, there

exists m ∈ N such that pm := pc/m satisfies

µpm(f) ⩽ ε.

Let m be the smallest natural number with
1

2
< 1− (1− ε)m. (13.1)

Note that m does not depend on n. Sample x(1), . . . ,x(m) ∼ ({0, 1}n , µnpm) independently and let x̃ = x(1)∨ . . .∨x(m).

We have x̃ ∼ µnq where q = 1− (1− pm)m ⩽ pmm ⩽ pc. Since q ⩽ pc, we have

1

2
⩾ µq(f) = Pr[f(x̃) = 1] ⩾ Pr[f(x(1)) = 1 ∨ . . . ∨ f(x(m)) = 1] = 1− (1− µpm(f))

m
.

Therefore, by (13.1), we have must have µpm(f) ⩽ ε as desired.

□

13.2.1 Sharpness of threshold: The Margulis-Russo formula

While Theorem 13.4 shows that the phase transition occurs in an interval of length O(pc) around the critical probably,

for many natural properties (e.g., connectivity, 3-colourability, satisfiability of a random instance of 3SAT), this interval

is much smaller.

Definition 13.5 (Critical interval). Let ε > 0 be a fixed number. The ε-critical interval for a non-constant monotone

function f : {0, 1}n → {0, 1} is [p0, p1] where µp0(f) = ε and µp1(f) = 1− ε.

Definition 13.6 (Sharp threshold). A sequence of non-constant monotone functions f : {0, 1}n → {0, 1} with critical

probability pc = pc(n) exhibits sharp threshold if for every ε > 0, the ε-critical interval is of length o(pc).

In other words, a sharp threshold indicates that the phase transition occurs in the interval [pc(1−o(1)), pc(1+o(1)].
Not every graph property has a sharp threshold. For example, “local properties” such as containing a triangle, do not

exhibit sharp thresholds.

Since the speed at which µp(f) changes is captured by the derivative
dµp(f)
dp , we have the following easy observation.

Proposition 13.7 (Coarse threshold). If a sequence of non-constant monotone functions f : {0, 1}n → {0, 1} with

critical probability pc = pc(n) does not exhibit a sharp threshold, then there exists fixed constants C, η, ε > 0 and a

parameter p = p(n) ∈ [(1− η)pc, (1 + η)pc] such that

ε < µp(f) < 1− ε and
dµp(f)

dp
⩽
C

p
.

On the other hand, the following theorem of Margulis [Mar74] and Russo [Rus81] relates
dµp(f)
dp to the total influence

of f with respect to µnp .

Theorem 13.8 (Margulis-Russo formula). Every monotone function f : ({0, 1}n , µnp )→ {0, 1} satisfies

p(1− p)dµp(f)
dp

= If ,

where µp(f) = Eµn
p
[f ].

Proof. Since

µ(x) = p|x|(1− p)n−|x| and µp(f) =
∑

x∈supp(f)

p|x|(1− p)n−|x|,
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we have

dµp(f)

dp
=

∑
x∈supp(f)

|x|µ(x)
p
−

∑
x∈supp(f)

(n− |x|) µ(x)
1− p

=

n∑
i=1

∑
x∈supp(f)

µ(x)

p
1[xi=1] −

n∑
i=1

∑
x∈supp(f)

µ(x)

1− p
1[xi=0]

=

n∑
i=1

E[f |xi = 1]−
n∑
i=1

E[f |xi = 0].

On the other hand, since a non-constant Boolean function on ({0, 1} , µp) has variance p(1− p), we have

Ii(f) = p(1− p) Pr
x∼µn

p

[f(x) ̸= f(x⊕ ei)].

Since f is monotone,

Pr
x∼µn

p

[f(x) ̸= f(x⊕ ei)] = Pr
x∼µn

p

[f(x1, . . . ,xi−1, 1,xi+1, . . . ,xn) = 1 ∧ f(x1, . . . ,xi−1, 0,xi+1, . . . ,xn) = 0]

= E[f |xi = 1]− E[f |xi = 0],

which shows Ii(f) = p(1− p) (E[f |xi = 1]− E[f |xi = 0]) and completes the proof. □

Theorem 13.8 and Proposition 13.7 show that if a sequence of monotone functions f : {0, 1}n → {0, 1} does not

exhibit a sharp threshold, then for some p in the critical interval, we have Varµp(f) = Ω(1) and If = O(1). Therefore,

characterizing properties that do not exhibit sharp thresholds is equivalent to characterizing the monotone Boolean

functions with total influence O(1) in the p-biased setting.

13.2.2 KKL and the length of the critical interval

By applying generalized hypercontractivity for the p-biased distribution in the proof of the KKL theorem, one can

obtain the following generalization of the KKL inequality due to Talagrand [Tal94].

Theorem 13.9 (Talagrand’s generalization of KKL inequality [Tal94]). Let f : ({0, 1}n , µnp ) → {0, 1} be such that

E[f ] = α. Denoting Imax := maxi Ii(f) and p
′ = min(p, 1− p), we have

Imax = Ω

(
1

log(1/p′)
Var[f ]

log n

n

)
.

Proof. We assume p ⩽ 1/2 and p′ = p; The case where p > 1/2 can be reduced to the case p ⩽ 1/2 by interchanging

the roles of 0’s and 1’s.

The proof is identical to the proof of the KKL inequality, except we will apply the generalization of the hypercon-

tractivity for the p-biased distribution (Corollary 10.20).

Consider the Fourier-Walsh expansion f =
∑
S FS , and recall that

Var[f ] =
∑
|S|>0

∥FS∥22.

Bounding high frequencies: Let k to be determined later. Since

If =
∑
S

|S|∥FS∥22 ⩾ k
∑
|S|>k

∥FS∥22,

we have ∑
|S|>k

∥FS∥22 ⩽
If
k

⩽
nImax

k
.
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Bounding low frequencies: To handle the low degree part, let fi(x) := ∂if(x). By applying hypercontractivity

(Corollary 10.20 with λ = min(p, 1− p) = p) to fi for the ∥·∥4/3, we have

∑
1⩽|S|⩽k

∥FS∥22 ⩽
n∑
i=1

∑
i∈S

|S|⩽k

∥FS∥22 =

n∑
i=1

∥∥∥f⩽ki ∥∥∥2
2
⩽

n∑
i=1

(3/p)k ∥fi∥24/3 .

By Proposition 12.2,, we have

n∑
i=1

(3/p)k ∥fi∥24/3 = (3/p)k
n∑
i=1

(2Ii(f))
3/2 ⩽ 4(3/p)knI3/2max.

Combining the bounds for low-degree and high-degree parts, we get

Var[f ] =
∑

S:|S|⩾1

∥FS∥22 ⩽
nImax

k
+ 4(3/p)knI3/2max =

(n
k
+ 4(3/p)knI1/2max

)
Imax.

Taking k = c log(1/p) log(n) for sufficiently small c > 0 implies the theorem. □

Let f : ({0, 1} , µp)(
n
2) → {0, 1} represent a graph property. Since f is invariant under graph automorphisms, all

the variables have the same influence and therefore, by Theorem 13.9, we have

If =

(
n

2

)
Imax = Ω

(
1

log(1/p′)
Var(f) log(n)

)
,

where p′ = min(p, 1− p). In combination with the Margulis-Russo formula, we have

dµp(f)

dp
=

If
p(1− p)

= Ω

(
1

p′ log(1/p′)
Var(f) log(n)

)
= Ω(Var(f) log(n)) . (13.2)

Note that in the ε-critical interval, we have Var[f ] ⩾ ε(1 − ε) = Ωε(1) and therefore
dµp(f)
dp = Ωε (log(n)). It follows

that for monotone graph properties, the ε-critical interval is always of length Oε

(
1

log(n)

)
, which is a theorem due to

Friedgut and Kalai [FK96]. In fact, Equation (13.2) implies the following stronger theorem.

Theorem 13.10. Let ε > 0 be a fixed constant. If P is a monotone property graph property with µp0(P) = ε and

µp1(P) = 1− ε, then

p1 = p0 +Oε

(
p1 log(2/p1)

log(n)

)
.

Proof. If p1 ⩾ 1
2 , then the assertion is equivalent to

p1 = p0 +Oε

(
1

log(n)

)
,

which follows from
dµp(f)
dp = Ωε (log(n)). Therefore, assume p1 < 1

2 . In this case, by Equation (13.2), for every

p ∈ [p0, p1], we have
dµp(f)

dp
= Ωε

(
log(n)

p1 log(1/p1)

)
,

and the theorem follows. □

Remark 13.11. If log(2/p1) = o(log(n)), then by Theorem 13.10, the montone graph property P must exhibit a

sharp threshold.
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Chapter 14

Low-degree Fourier-Walsh expansions

In Section 10.4, we discussed an extension of hypercontractivity that applies to functions over arbitrary product

spaces (Xn, µn). However, this general form of hypercontractivity requires the noise parameter ρ > 0 to depend

on λ = mina∈X µ(a). Unfortunately, this dependence weakens the result when λ is small, which is often the case

when studying phase transitions. Moreover, this general form of hypercontractivity becomes entirely ineffective for

continuous spaces such as [0, 1]n.

This chapter will present an inequality due to Bourgain that is closely related to hypercontractivity. Crucially,

Bourgain’s inequality remains applicable when the original hypercontractivity breaks down, as it imposes no depen-

dency on the underlying probability distribution (X,µ).

Theorem 14.1 (Bourgain [Bou80]). Let (X,µ) be a probability space. Consider f : (Xn, µn) → R and its Fourier-

Walsh expansion f =
∑
S⊆[n] FS. Let 1 < p ⩽ 2 ⩽ q <∞ satisfy 1

p +
1
q = 1.

(i) For every integer k ⩾ 0, we have∥∥∥∥∥∥∥
 ∑
S:|S|⩽k

F 2
S

1/2
∥∥∥∥∥∥∥
q

⩽ 25qk ∥f∥q and

∥∥∥∥∥∥∥
 ∑
S:|S|⩽k

F 2
S

1/2
∥∥∥∥∥∥∥
p

⩽ 25qk ∥f∥p .

(ii) We also have the following inequalities in the opposite direction about the norms of f⩽k:

∥∥f⩽k∥∥
q
⩽ 25qk

∥∥∥∥∥∥∥
 ∑
S:|S|⩽k

F 2
S

1/2
∥∥∥∥∥∥∥
q

and
∥∥f⩽k∥∥

p
⩽ 25qk

∥∥∥∥∥∥∥
 ∑
S:|S|⩽k

F 2
S

1/2
∥∥∥∥∥∥∥
p

.

(iii) Consequently,

∥f⩽k∥q ⩽ 210qk∥f∥q and ∥f⩽k∥p ⩽ 210qk∥f∥p.

In Chapter 15, we will apply Theorem 14.1 to prove a fundamental theorem about sharp thresholds. We will present

the proof of Theorem 14.1 in Section 14.2. First, we prove some preliminary lemmas for the proof of Theorem 14.1.

14.1 Preliminary lemmas

We start with a simple technical inequality.

Lemma 14.2. For every even integer q > 0, and 0 ⩽ ρ ⩽ 2−3q, the inequality

(1− ρx)q + qρx ⩽ (1 + x)q − qx

holds for all real x ∈ R.
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Proof. We have

(1 + x)q − qx = 1 +

q∑
r=2

(
q

r

)
xr ⩾ 1 +

q∑
r=2

(
q

r

)
(−|x|)r = (1− |x|)q + q|x|. (14.1)

We claim that for τ = 2−2q, and every positive t ⩾ 0,

(1− t)q + qt ⩾ 1 + τ(t2 + tq).

To prove this claim not that the inequality is trivial for q = 2, so we assume q ⩾ 4. We verify the inequality in three

different intervals.

• For t ⩾ 2, we have t− 1 ⩾ t/2, which shows (1− t)q + qt ⩾ 1 + (1− t)q ⩾ 1 + τ(t2 + tq).

• For t ∈ [1/2, 2], qt ⩾ 4t ⩾ 1 + 2t ⩾ 1 + τ(t2 + tq).

• For t ∈ [0, 1/2], define f(t) := (1− t)q + qt− 1− τ(t2 + tq). We have

f ′(t) = −q(1− t)q−1 + q − τ(2t+ qtq−1)

and

f ′′(t) = q(q − 1)
[
(1− t)q−2 − τtq−2

]
− 2τ.

Note that f(0) = f ′(0) = 0, and for every t ∈ [0, 1/2], we have

f ′′(t) = q(q − 1)
[
(1− t)q−2 − τtq−2

]
− 2τ ⩾ 2(22−q − τ22−q)− 2τ > 0.

Therefore, f(t) ⩾ 0 in [0, 1/2] as desired.

Combining with Equation (14.1), for τ = 2−2q, we have

(1 + x)q − qx ⩾ (1− |x|)q + q|x| ⩾ 1 + τ(x2 + xq).

On the other hand, since for every x ∈ R and 2 ⩽ r ⩽ q, we have xr ⩽ x2 + xq (recall that q is even), we conclude

that for 0 ⩽ ρ ⩽ 2−qτ ,

(1− ρx)q + qρx = 1 +

q∑
r=2

(
q

r

)
(−ρx)r ⩽ 1 +

q∑
r=2

(
q

r

)
(ρ2x2 + ρqxq)

⩽ 1 + 2q(ρ2x2 + ρqxq) ⩽ 1 + τ(x2 + xq).

□

Let (X,µ) be a probability space, and consider f : (X,µ) → R. Note that the Fourier-Walsh expansion of f is

f = F∅ + F{1} where F∅ = E[f ] and F{1} = f − E[f ]. Recall the noise operator Tρ for general probability spaces from

Section 10.4. We have

Tρf := F∅ + ρF{1}.

Lemma 14.3 (A dimension-one inequality). Let (X,µ) be a probability space, and consider f : (X,µ)→ R.

(i) For every 1 ⩽ p ⩽∞ and 0 ⩽ ρ ⩽ 1, we have

∥Tρf∥p ⩽ ∥f∥p .

(ii) Suppose 1
p +

1
q for 1 < p ⩽ 2 ⩽ q <∞. For every 0 ⩽ ρ ⩽ 2−4q, we have

∥T−ρf∥q ⩽ ∥f∥q ,

and

∥T−ρf∥p ⩽ ∥f∥p .
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Proof. When ρ ∈ [0, 1], the noise operator Tρ is an averaging operator, which easily implies that Tρ is contracting. We

give the formal proof below.

Proof of (i): Since

Tρf = E[f ] + ρ(f − E[f ]) = ρf + (1− ρ)E[f ],

we have

∥Tρf∥p ⩽ ρ∥f∥p + (1− ρ)∥E[f ]∥p ⩽ ρ∥f∥p + (1− ρ)∥f∥p ⩽ ∥f∥p.

Proof of (ii): If E[f ] = 0, then ∥T−ρf∥q = ρ∥f∥q and the theorem follows. Otherwise, we can normalize f to f
E[f ]

and assume, without loss of generality, E[f ] = 1. Denote F := F{1} = f − 1.

First, we verify the statement for even integers q ⩾ 2. By Lemma 14.2, for every 0 ⩽ ρ ⩽ 2−3q, we have

(1− ρF (x))q + qρF (x) ⩽ (1 + F (x))q − qF (x),

for all x ∈ X. Taking the expected value over x ∼ (X,µ), and using EF (x) = 0, we get

E(1− ρF (x))q ⩽ E(1 + F (x))q,

which shows

∥T−ρf∥q = ∥1− ρF∥q ⩽ ∥1 + F∥q = ∥f∥q ,

as desired.

Next we consider arbitrary q ∈ [2,∞). Let q0 ⩾ 2 be the largest even integer satisfying q0 ⩽ q, and let q1 = q0 +2.

For ρ ⩽ 2−4q ⩽ 2−3q1 ⩽ 2−3q0 , we have

∥T−ρf∥q0 ⩽ ∥f∥q0 ,

and

∥T−ρf∥q1 ⩽ ∥f∥q1 ,

for all f . Since q0 ⩽ q ⩽ q1, it follows from the Riesz–Thorin’s interpolation theorem that

∥T−ρf∥q ⩽ ∥f∥q .

It remains to handle the case 1 < p < 2. In this case, we have

∥T−ρf∥p = sup
g:∥g∥q⩽1

⟨T−ρf, g⟩ = sup
g:∥g∥q⩽1

⟨f, T−ρg⟩ ⩽ ∥f∥p sup
g:∥g∥q⩽1

∥T−ρg∥q ⩽ ∥f∥p.

□

We have the following corollary, which, together with the classical hypercontractivity, are the main ingredients in

the proof of Theorem 14.1.

Corollary 14.4. Consider f : (X,µ)n → R and its Fourier-Walsh expansion f =
∑
S⊆[n] FS, and suppose 1 < p ⩽

2 ⩽ q <∞ satisfy 1
p +

1
q = 1. For y ∈ {−1, 1}n and S ⊆ [n], let wS(y) :=

∏
i∈S yi.

(i) For every 0 ⩽ ρ ⩽ 2−4q and every y ∈ {−1, 1}n, we have∥∥∥∥∥∥
∑
S⊆[n]

ρ|S|wS(y)FS(x)

∥∥∥∥∥∥
q

⩽ ∥f∥q and

∥∥∥∥∥∥
∑
S⊆[n]

ρ|S|wS(y)FS(x)

∥∥∥∥∥∥
p

⩽ ∥f∥p.

(ii) For every 0 ⩽ ρ ⩽ 2−4q and every y ∈ {−1, 1}n, we have∥∥∥∥∥∥
∑
S⊆[n]

ρ|S|FS(x)

∥∥∥∥∥∥
q

⩽

∥∥∥∥∥∥
∑
S⊆[n]

wS(y)FS(x)

∥∥∥∥∥∥
q

and

∥∥∥∥∥∥
∑
S⊆[n]

ρ|S|FS(x)

∥∥∥∥∥∥
p

⩽

∥∥∥∥∥∥
∑
S⊆[n]

wS(y)FS(x)

∥∥∥∥∥∥
p

.
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Proof. For i ∈ [n], let T
(i)
ρ be the noise operator applied only to the ith coordinate of f . In other words,

T (i)
ρ f =

∑
S:i̸∈S

FS + ρ
∑
S:i∈S

FS .

By Lemma 14.3 (i), we have

∥T (i)
ρ f∥q ⩽ ∥f∥q,

and by Lemma 14.3 (ii), we have

∥T (i)
−ρf∥q ⩽ ∥f∥q.

Since ∑
S⊆[n]

ρ|S|wS(y)FS(x) = T (1)
y1ρ ◦ . . . ◦ T

(n)
ynρf,

the above two inequalities show that for every y ∈ {−1, 1}n, we have∥∥∥∥∥∥
∑
S⊆[n]

ρ|S|wS(y)FS(x)

∥∥∥∥∥∥
q

⩽ ∥f∥q.

The same proof applies to ∥·∥p.

Finally, note that ∑
S⊆[n]

ρ|S|FS(x) =
∑
S⊆[n]

ρ|S|wS(y)× wS(y)FS(x),

and therefore, (ii) follows from applying (i) to
∑
S⊆[n] wS(y)FS(x). □

14.2 Proof of Theorem 14.1

Recall 1 < p ⩽ 2 ⩽ q < ∞ satisfy 1
p + 1

q = 1 and we have ρ = 2−4q. It is clear that (iii) follows from (i) and (ii). We

present the proofs of (i) and (ii) below.

Proof of Theorem 14.1 (i): By Corollary 14.4 (i), for every y ∈ {−1, 1}n, we have∥∥∥∥∥∥
∑
S⊆[n]

ρ|S|wS(y)FS(x)

∥∥∥∥∥∥
Lq(x)

⩽ ∥f∥q,

which,by taking the ∥·∥Lq(y)
norm, shows∥∥∥∥∥∥

∑
S⊆[n]

ρ|S|wS(y)FS(x)

∥∥∥∥∥∥
Lq(x,y)

⩽ ∥f∥q.
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By the classical hypercontractivity for ∥·∥Lq(y) on {−1, 1}
n
, i.e, Theorem 10.14 (i), we have

∥∥∥∥∥∥
∑
S⊆[n]

ρ|S|wS(y)FS(x)

∥∥∥∥∥∥
Lq(x,y)

=

∥∥∥∥∥∥∥
∥∥∥∥∥∥
∑
S⊆[n]

ρ|S|FS(x)wS(y)

∥∥∥∥∥∥
Lq(y)

∥∥∥∥∥∥∥
Lq(x)

⩾

∥∥∥∥∥∥∥
∥∥∥∥∥∥
∑
S⊆[n]

(
ρ√
q − 1

)|S|

FS(x)wS(y)

∥∥∥∥∥∥
L2(y)

∥∥∥∥∥∥∥
Lq(x)

=

∥∥∥∥∥∥∥
∑
S⊆[n]

(
ρ√
q − 1

)2|S|

F 2
S

1/2
∥∥∥∥∥∥∥
q

⩾ (q − 1)−k/2ρk

∥∥∥∥∥∥∥
∑

|S|⩽k

F 2
S

1/2
∥∥∥∥∥∥∥
q

.

Therefore,

(q − 1)−k/2ρk

∥∥∥∥∥∥∥
∑

|S|⩽k

F 2
S

1/2
∥∥∥∥∥∥∥
q

⩽ ∥f∥q, (14.2)

which finishes the proof of Part (i) for ∥·∥q since
√
q − 1ρ−1 ⩽ 25q. The proof for ∥·∥p is identical.

Proof of Theorem 14.1 (ii): By Corollary 14.4 (ii), for every y ∈ {−1, 1}n, we have

∥∥f⩽k∥∥
q
⩽

∥∥∥∥∥∥
∑
|S|⩽k

ρ−|S|wS(y)FS

∥∥∥∥∥∥
q

Taking the Lq norm on y and applying the classical hypercontractivity, we have

∥∥f⩽k∥∥
q
⩽

∥∥∥∥∥∥∥
∥∥∥∥∥∥
∑
|S|⩽k

ρ−|S|wS(y)FS

∥∥∥∥∥∥
Lq(y)

∥∥∥∥∥∥∥
Lq(x)

⩽ (q − 1)k/2

∥∥∥∥∥∥∥
∥∥∥∥∥∥
∑
|S|⩽k

ρ−|S|wS(y)FS

∥∥∥∥∥∥
L2(y)

∥∥∥∥∥∥∥
Lq(x)

⩽ (q − 1)k/2

∥∥∥∥∥∥∥
∑

|S|⩽k

ρ−2|S|F 2
S

1/2
∥∥∥∥∥∥∥
q

⩽ (q − 1)k/2ρ−k

∥∥∥∥∥∥∥
∑

|S|⩽k

F 2
S

1/2
∥∥∥∥∥∥∥
q

which finishes the proof of Part (ii) for ∥·∥q since
√
q − 1ρ−1 ⩽ 25q. The proof for ∥·∥p is identical.
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Chapter 15

Friedgut-Bourgain’s threshold theorems

The problem of finding general conditions under which a sharp threshold occurs is first investigated by Russo [Rus81,

Rus82]. In Chapter 13, we showed that if the critical probability pc of a monotone graph property satisfies pc =

2−o(log(n)), then the property exhibits a sharp threshold. However, the critical probability pc tends to be much smaller

for many interesting graph properties. For instance, consider the well-studied case of graph connectivity, where the

critical probability is pc =
ln(n)
n . While the transition for connectivity is known to be sharp [EoR59], this sharpness

does not follow from the earlier discussed results of Chapter 13 such as Theorem 13.10.

As we discussed earlier, the Margulis-Russo formula (Theorem 13.8) states that

p(1− p)dµp(f)
dp

= If ,

and therefore, having a coarse threshold is equivalent to If = O(1) for some p in the critical interval.

In the setting of the p-biased distribution, when p is not too small, the works of Talagrand [Tal94], Friedgut and

Kalai [FK96], Bourgain and Kalai [BK99], and Friedgut [Fri98] provide a satisfactory understanding of the functions

with small total influences. Intuitively, these results say that the total influence of f is large unless the value of f(x)

is determined only by “local information” about x, such as a small number of coordinates. However, as the following

simple example illustrates, these results lose relevance when p is small, particularly when log 1
p ∼ log n, which is often

the case in applications.

Example 15.1. Set p = n−1, and define f : {0, 1}n → {0, 1} as f(x) = 1 if and only if x ̸= (0, . . . , 0). Then

I1(f) = . . . = In(f) ⩽ p(1− p), and so If ⩽ 1. However, f does not depend only on a small set of coordinates. Indeed

for every constant size set J ⊆ [n], we have

Eµn
p
[f(x)|xJ = (0, . . . , 0)] = 1− (1− p)n−|J| = 1− 1

e
± o(1),

Since

Pr[xJ = (0, . . . , 0)] ⩾ 1− |J |p = 1− o(1),

we have ∥f − g∥1 ⩾ 1
e − o(1) for every function g that depends only on the coordinates in J .

No significant progress on the case of small p was made until Friedgut’s breakthrough work [Fri99], which char-

acterized graph and hypergraph properties with small total influences. Friedgut used his theorem to show that the

satisfiability of a random k-CNF Boolean formula exhibits a sharp threshold. Friedgut’s sharp threshold theorem is

now indispensable for studying threshold behaviour. We refer the reader to [Fri05]) for many applications of this

theorem in establishing sharp thresholds for various graph and constraint satisfaction properties.

Given a set H of graphs, let the upper set of H be the set of all graphs that contain some H ∈ H as a (not

necessarily induced) subgraph:

H↑ := {G : ∃H ∈ H s.t. H ⊆ G}

Roughly speaking, Friedgut’s theorem says that a monotone graph property with total influence O(1) can be approx-

imated by some H↑ where graphs in H are all of size O(1).
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Theorem 15.2 (Friedgut [Fri99]). For every integer I > 0 and real ε > 0, there exists a constant k(I, ε) > 0 such

that the following holds. Let p > 0 and let P be a monotone graph property of n-vertex graphs with total influence at

most I. There exists a collection H of graphs such that the following holds.

• Every H ∈ H has at most k(I, ε) edges.

• We have µp(P∆H↑) ⩽ ε, where P∆H↑ denotes the symmetric difference between P and H↑.

Since a graph property is invariant under graph isomorphisms, its corresponding Boolean function is invariant

under all permutations of the coordinates corresponding to permuting the graph’s vertices. Friedgut’s proof leverages

this symmetry extensively and in many steps of his proof. Nevertheless, he conjectured [Fri99, Conjecture 1.5] that his

theorem holds without requiring symmetry assumptions. To state his conjecture, we recall the definition of a DNF.

A DNF (Disjunctive Normal Form) is a Boolean formula consisting of a disjunction (logical OR) of conjunctions

(logical AND) of Boolean variables or their negations (NOTs). A DNF is a monotone DNF if it does not involve any

negated variable. The width of a DNF is the size of the largest conjunction (AND-clause) in the DNF, where the size

is the number of variables in the clause. A DNF of width k is called a k-DNF. For example (x1 ∧ x2 ∧ x4) ∨ (x2 ∧ x3)
is a monotone 3-DNF.

Proposition 15.3. If f : ({0, 1}n , µnp )→ {0, 1} is representable by a k-DNF, then

If ⩽ k.

Proof. For every x ∈ {0, 1}n, let s1→0(x) denote the number of coordinates i ∈ [n] such that f(x) = 1 and f(x⊕ei) = 0.

If f(x) = 1, then x satisfies at least one clause C. If f(x⊕ ei) = 0, then C must involve xi or ¬xi, and since there are

at most k literals in C, we have s1→0(x) ⩽ k for every x. Therefore,

If =

n∑
i=1

p(1− p)Pr[f(x) ̸= f(x⊕ ei)] ⩽
n∑
i=1

Pr[f(x) = 1 ∧ f(x⊕ ei) = 0] = Exs1→0(x) ⩽ k.

□

Friedgut conjectures that every monotone function with total influence O(1) is approximately a monotone DNF of

width O(1).

Conjecture 15.4 (Friedgut [Fri99, Conjecture 1.5]). For every integer I > 0 and real ε > 0, there exists a constant

k(I, ε) > 0 such that the following holds. Let p > 0 and f : ({0, 1}n , µnp ) → {0, 1} have total influence at most I.

There exists g : {0, 1}n → {0, 1} that is representable by a monotone DNF of width at most k(I, ε) and satisfies

Pr
x∼µn

p

[f(x) ̸= g(x)] ⩽ ε.

15.1 Bourgain’s theorem

While Conjecture 15.4 is still open, [Bou99b] and [Hat12] have made some progress towards describing functions with

a small total influence on the p-biased distribution. In particular, Bourgain’s theorem, published as an appendix to

Friedgut’s paper [Fri99], suffices for all known applications where the goal is to prove that some concrete property

exhibits a sharp threshold. In this section, we will state and prove Bourgain’s theorem.

Recall from Section 9.4 that given a function f : (X,µ)n → R and a set S ⊆ [n], the notation ESf denotes the

function ESf : Xn → R with

(ESf)(y) = ExS
f(xS , yS).

For S ⊆ [n], denoting the complement of S by S := Sc = [n] \ S, the Fourier-Walsh expansion of f is given by

f =
∑
S⊆[n] FS , where

FS =
∑
T⊆S

(−1)|S\T |ET f.
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Theorem 15.5 (Bourgain’s sharp threshold theorem). Let (X,µ) be a probability space. Consider f : (X,µ)n → {0, 1}
with Var(f) = ε > 0 and Fourier-Walsh expansion f =

∑
FS. For k =

4If
ε , we have

Ex max
S:|S|⩽k

|FS(x)| ⩾ 2−O(I2f/ε
2). (15.1)

In particular,

Ex max
S:|S|⩽k

|ES [f(x)]− E[f ]| ⩾ 2−O(I2f/ε
2),

which shows there is S ⊆ [n] with |S| ⩽ k and x ∈ Xn with

|ES [f(x)]− E[f ]| ⩾ 2−O(I2f/ε
2).

Proof. First, note that since

|FS | =

∣∣∣∣∣∣
∑
T⊆S

(−1)|S\T |ET f

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
T⊆S

(−1)|S\T |ET [f − E[f ]]

∣∣∣∣∣∣ ⩽ 2|S| max
T⊆S
|ET [f − E[f ]]| ,

the second assertion follows from Equation (15.1) as claimed.

It remains to prove Equation (15.1). We have

ε = Var(f) =
∑
S ̸=∅

∥FS∥22.

Bounding high frequencies: Since k =
4If
ε and

If =
∑
S

|S|∥FS∥22 ⩾ k
∑
|S|>k

∥FS∥22,

we have ∑
|S|>k

∥FS∥22 ⩽
If
k

⩽
ε

4
,

and therefore,

E

∑
S ̸=∅
|S|⩽k

F 2
S

 ⩾
3ε

4
. (15.2)

Dealing with low frequencies: Let real δ > 0 and M ∈ N be parameters to be determined later. Define

ηi(x) :=

1
∑

i∈S
|S|⩽k

FS(x)
2 ⩾ δ

0 otherwise
,

where we say that the coordinate i ∈ [n] is activated by x if ηi(x) = 1. Let

ξ(x) :=

{
1
∑
i∈[n] ηi(x) ⩽M

0 otherwise
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be the indicator of the event that at most M variables are activated by x. By Equation (15.2), we have

3ε

4
⩽ E

∑
S ̸=∅
|S|⩽k

F 2
S ⩽ E

 n∑
i=1

(1− ηi)
∑
S:i∈S
|S|⩽k

F 2
S

 (S contains an inactive coordinate)

+ E

(1− ξ) ∑
|S|⩽k

F 2
S

 (more than M variables are activated)

+ E
∑
S ̸=∅
|S|⩽k

|FS |2
(∏
i∈S

ηi

)
ξ (all variables in S are activated, and

∑
ηi ⩽M) (15.3)

We will show that the first two expectations on the right-hand side are small, and the main contribution comes from

the third expectation.

When S contains an inactive coordinate: For every i ∈ n, by the definition of ηi, we have

E(1− ηi)
∑
S:i∈S
|S|⩽k

F 2
S ⩽ δ1/3E

∑
S:i∈S
|S|⩽k

F 2
S


2/3

= δ1/3

∥∥∥∥∥∥∥∥∥
∑

i∈S
|S|⩽k

F 2
S


1/2
∥∥∥∥∥∥∥∥∥
4/3

4/3

.

On the other hand, since

∂if =
∑
S:i∈S

FS ,

by applying Bourgain’s inequality on low degree Fourier-Wash expansions (Theorem 14.1 with p = 4/3 and q = 4),

and then using Proposition 12.2, we have∥∥∥∥∥∥∥∥∥
∑

i∈S
|S|⩽k

F 2
S


1/2
∥∥∥∥∥∥∥∥∥
4/3

4/3

⩽ 2
4
3×20k ∥∂if∥4/34/3 ⩽ 2

80k
3 2Ii(f) ⩽ 230kIi(f).

Therefore, by taking δ = 2−100
If
ε ,

E

 n∑
i=1

(1− ηi)
∑
i∈S

|S|⩽k

F 2
S

 ⩽
n∑
i=1

δ1/3230kIi(f) ⩽ δ1/3230kIf ⩽
ε

4
. (15.4)

More than M variables are activated: By the Cauchy-Schwarz inequality, we have

E

(1− ξ) ∑
|S|⩽k

F 2
S

 ⩽

∥∥∥∥∥∥
∑
|S|⩽k

F 2
S

∥∥∥∥∥∥
2

∥1− ξ∥2 =

∥∥∥∥∥∥∥
∑

|S|⩽k

F 2
S

 1
2

∥∥∥∥∥∥∥
2

4

∥1− ξ∥2.

Note

E(1− ξ) ⩽ 1

M
E

n∑
i=1

ηi ⩽
1

M
E

n∑
i=1

δ−1
∑
S:i∈S
|S|⩽k

F 2
S ⩽

δ−1kε

M
,
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which since 1− ξ is {0, 1}-valued, shows

∥1− ξ∥2 ⩽

√
δ−1kε

M
.

Again, by applying Bourgain’s inequality low degree Fourier-Wash expansions (Theorem 14.1 with q = 4), we have∥∥∥∥∥∥∥
∑

|S|⩽k

F 2
S

 1
2

∥∥∥∥∥∥∥
4

⩽ 220k ∥f∥4 ⩽ 220k.

Therefore, by taking M = 210
3 If

ε , we have

E

(1− ξ) ∑
|S|⩽k

F 2
S

 ⩽
δ−1kε

M
240k ⩽

ε

4
. (15.5)

Concluding the desired inequality: By plugging Equation (15.4) and Equation (15.5) in Equation (15.3), we

obtain
ε

2
− ε

4
− ε

4
⩽ E

∑
S ̸=∅
|S|⩽k

|FS |2
(∏
i∈S

ηi

)
ξ ⩽

(
M

⩽ k

)
E max

S ̸=∅
|S|⩽k

|FS |2 ⩽ 2Ω(I2f/ε
2)E max

S ̸=∅
|S|⩽k

|FS |2.

□

We obtain the following corollary for monotone functions over the p-biased distribution.

Corollary 15.6 ([Bou99b, Proposition 1]). The following holds for every ε > 0 and I > 0. Given any sequence of

monotone functions f : ({0, 1}n , µnp ) → {0, 1} with Var(f) ⩾ ε, the total influence If ⩽ I, and p = o(1), there exists

S ⊆ [n] with |S| ⩽ 4I/ε such that

E[f(x)|xS = (1, . . . , 1)] ⩾ E[f ] + 2Ω(I2/ε).

Proof. By Theorem 15.5, there exists |S| ⩽ 4If/ε and y ∈ {0, 1}n such that

|Ex [f(x)|xS = yS ]− E[f ]| = |ES [f(y)]− E[f ]| ⩾ 2−O(I2f/ε
2).

Since f is monotone, it follows that either

E[f(x)|xS = (0, . . . , 0)] ⩽ E[f ]− 2Ω(I2f/ε),

or

E[f(x)|xS = (1, . . . , 1)] ⩾ E[f ] + 2Ω(I2f/ε).

However,

E[f ] ⩽ E[f(x)|xS = (0, . . . , 0)] + (1− (1− p)|S|) = E[f(x)|xS = (0, . . . , 0)] + p|S|,

and since p|S| = O(pIf/ε) = o(1), the first case cannot hold. □

15.2 Sharp threshold for graph properties

For a given graph H on t vertices and a graph G on n vertices (think of t as fixed and n large), let G∪H∗ denote the

union of G with a copy of H planted on t randomly chosen vertices of G.

In the case of monotone graph properties, Corollary 15.6 implies the existence of a graph H with at most 4I/ε

edges such that

Pr[G(n, p) ∪H∗ ∈ P] ⩾ Pr[G(n, p) ∈ P] + 2Ω(I2/ε).

In other words, planting H in G(n, p) significantly increases the probability that it satisfies P.
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We will show that one can choose H with the additional property that

Pr[H ⊆ G(n, p)] ⩾ 2−O(I2f/ε
2).

Corollary 15.7 ([Fri99, Bou99b]). The following holds for every ε > 0 and I > 0. If a sequence of monotone graph

properties of n-vertex graphs P satisfies Varµp
(P) ⩾ ε and

dµp(P)
dp ⩽ Ip for some p = o(1), there exists a graph H such

that the following holds

(i) H has at most 8I/ε edges.

(ii) Pr[H ⊆ G(n, p)] ⩾ 2−O(I2/ε2).

(iii)

Pr[G(n, p) ∪H ∈ P] ⩾ Pr[G(n, p) ∈ P] + 2Ω(I2/ε).

Proof. Let f be the corresponding Boolean function. By the Margulis-Russo formula, we have If = 1
p(1−p)

dµp(P)
dp ⩽ 2I.

Let Hk be the set of all graphs with at most k := 4If/ε edges. Since every such graph has at most 2k vertices,

|Hk| ⩽
(
2k
2

)k
⩽ k3k ⩽ 23k

2

. For every H ∈ Hk, let

ϕ(H) := Pr[G(n, p) ∪H ∈ P]−Pr[G(n, p) ∈ P] ⩾ 0.

While Theorem 15.5 shows

Ex max
S:|S|⩽k

|ES [f(x)]− E[f ]| ⩾ 2−O(I2/ε2), (15.6)

the proof of Corollary 15.6 only uses the fact that

∃x max
S:|S|⩽k

|ES [f(x)]− E[f ]| ⩾ 2−O(I2/ε2).

By using Equation (15.6) instead, we obtain

E max
H∈Hk

H⊆G(n,p)

ϕ(H) ⩾ 2−O(I2/ε2).

Since

E max
H∈Hk

H⊆G(n,p)

ϕ(H) ⩽
∑
H∈H

Pr[H ⊆ G(n, p)]ϕ(H) ⩽ |Hk|max
H

Pr[H ⊆ G(n, p)]ϕ(H),

there must exist H ∈ Hk that satisfies (ii) and (iii). □

Remark 15.8. To illustrate the importance of (ii), consider the monotone graph property of being non-3-colourable,

which is known [AF99] to have a sharp threshold at the critical probability pc = Θ(1/n). Suppose we aim to apply

Equation (15.6) to prove that non-3-colourability has a sharp threshold by showing that no H can satisfy (i)-(iii).

Note that if we take H = K4 to be the complete graph on 4 vertices, then G(n, p) ∪ H is non-3-colourable with

probability 1, and therefore, both (i) and (iii) are satisfied. However, K4 is too dense and Pr[K4 ⊆ G(n, p)] = o(1) at

p = Θ(1/n), and (ii) is not satisfied. Therefore, (ii) is essential in such applications.

Combined with the Margulis-Russo lemma, we obtain the following theorem.

Theorem 15.9 ([Fri05]). There exist functions k(ε, α) and τ(ε, α) such that the following holds. Let P be a graph

property with a coarse threshold. Specifically let ε > 0, α > 0, and p = p(n) be such that

α < Pr[G(n, (1− ε)p) ∈ P] < Pr[G(n, p) ∈ P] < 1− 2α.

Then there exists a graph H with no more than k(ε, α) vertices such that

Pr[G(n, p) ∪H∗ ∈ P] > Pr[G(n, p) ∈ P] + τ(ε, α).
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Furthermore, H is a “reasonable” graph:

Pr[H ⊆ G(n, p)] > τ(ε, α).

Proof. Exercise. □

Remark 15.10. In fact, Friedgut’s proof from [Fri99] shows that in Theorem 15.9, one can have a stronger guarantee

that

Pr[G(n, p) ∪H∗ ∈ P] > 1− α.

Finally, we mention another corollary that characterizes the critical probability values for graph properties with a

coarse threshold.

Corollary 15.11 (Friedgut [Fri99]). If a sequence of monotone graph properties of n-vertex graphs P satisfies

Varµp(P) ⩾ ε and
dµp(P)
dp ⩽ Ip, then p = Θ(n−a/b) for positive integers a and b that are bounded from above by

some function of I and ε.

Proof. Let H be the graph provided by Corollary 15.7.

Note if Pr[H ⊆ G(n, p)] = 1 − o(1), then Corollary 15.7 (iii) cannot hold. Moreover, by Corollary 15.7 (ii), we

have Pr[H ⊆ G(n, p)] ⩾ 2−O(I2f/ε
2) = Ω(1). Therefore, there exists δ = δ(I, ε) > 0 such that

δ < Pr[H ⊆ G(n, p)] < 1− δ.

Since H has at most O(I/ε) edges, we have p = Θ(n−a/b) for a and b are positive integers depending on H. □

By Corollary 15.11, coarse thresholds only happen near rational powers of n. Corollary 15.11 immediately implies,

for example, the well-known fact that connectivity has a sharp threshold as the critical probability for connectivity is

Θ
(

ln(n)
n

)
.
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Chapter 16

Expansion of small sets in the noisy cube

Recall that given a correlation parameter ρ ∈ [0, 1], and x ∈ {0, 1}n, the ρ-equal copy of x is the random variable y

that is sampled from {0, 1}n through the following process: for each i ∈ [n], with probability ρ, set yi = xi and with

probability 1− ρ, sample yi uniformly at random from {0, 1}.

Definition 16.1 (noisy hypercube). The ρ-noisy hypercube graph is the undirected weighted complete graph with the

vertex set {0, 1}n, where the weight of the edge (x, y) is Pr[y′ = y] where y′ is the ρ-equal copy of x.

Note that if y is a ρ-equal copy of x, then Pr[yi = xi] =
1+ρ
2 and Pr[yi ̸= xi] =

1−ρ
2 for every i ∈ [n]. Therefore,

the weight of an edge (x, y) in the ρ-noisy hypercube graph is given by the formula

w(x, y) = w(y, x) =

(
1 + ρ

2

)n−dH(x,y)(
1− ρ
2

)dH(x,y)

,

where dH(x, y) denotes the hamming distance between x and y.

In this section, we are interested in the expansion properties of small subsets of the noisy cube. Let α, β ∈ (0, 1)

be small constants. Given sets A,B ⊆ {0, 1}n with relative densities α, β, we wish to analyze

Pr[y ∈ B|x ∈ A], (16.1)

when x is uniformly selected from {0, 1}n and y is the ρ-equal copy of x. The two questions of minimizing and

maximizing this quantity in terms of α and β are important in many applications.

16.1 Small-set expansion in noisy cube

In this section, we will study the small-set expansion properties of the noisy hypercube, which is related to maximizing

Equation (16.1) for A = B.

Let x be uniform sampled from {0, 1}n and y be the ρ-equal copy of x. Define the ρ-noise stability of a function

f : {0, 1}n → {0, 1} as
Stabρ(f) := E [f(x)f(y)] = ⟨Tρf, f⟩ =

∑
S⊆[n]

ρ|S|f̂(S)2. (16.2)

If A ⊆ {0, 1}n has density α, then

Stabρ(A) = Pr[x ∈ A,y ∈ A] = αPr[y ∈ A|x ∈ A].

Dictators and, more generally, k-juntas for small k have large stability. The small-set expansion in the noisy cube

states when α is small, the set cannot be stable, and the probability that a random ρ-noisy neighbour y of a random

vertex x ∈ A belongs to A is small, i.e., the noisy hypercube graph has large expansion for small sets A.

Proposition 16.2 (Small-set expansion in noisy cube). Let A ⊆ {0, 1}n have density α > 0. We have

Stabρ(A) ⩽ α
2

1+ρ and Pr[y ∈ A|x ∈ A] ⩽ α
1−ρ
1+ρ ,
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where x is uniform and y is a ρ-equal copy of x.

Proof. By hypercontractivity, for p := ρ+ 1, we have

Stabρ(A) =
∑
S⊆[n]

ρ|S|Â(S)2 = ∥T√ρA∥22 ⩽ ∥A∥2p = α
2

1+ρ ,

and Pr[y ∈ A|x ∈ A] = Stabρ(A)
α = α

1−ρ
1+ρ . □

Using a similar proof, we can also obtain a two-set version of Proposition 16.2

Proposition 16.3. Let A,B ⊆ {0, 1}n have respective densities α, β > 0. We have

Pr[x ∈ A,y ∈ B] ⩽ α
1

1+ρ2 β1/2.

where x is uniform and y is a ρ-equal copy of x.

Proof. By applying the Cauchy-Schwarz inequality and then hypercontractivity with p = 1 + ρ2, we have

Pr[x ∈ A,y ∈ B] = ⟨TρA,B⟩ ⩽ ∥TρA∥2∥B∥2 ⩽ ∥A∥p∥B∥2 = α1/pβ1/2 = α
1

1+ρ2 β1/2.

□

16.2 Reverse hypercontractivity and sparse pairs

Let us turn to the problem of minimizingPr[x ∈ A,y ∈ B]. Since x and y are correlated, to minimizePr[x ∈ A,y ∈ B],

picking two antipodal hamming balls seems a natural candidate. In this case, we can upper-bound Pr[x ∈ A,y ∈ B]

using the following lemma whose proof we omit.

Lemma 16.4 ([MOR+06]). Fix a, b > 0 and let A,B ⊆ {0, 1}n be defined as

A :=
{
x :

∑
xi ⩽

n

2
− a
√
n
}
,

B :=
{
x :

∑
xi ⩾

n

2
+ b
√
n
}
.

We have

lim
n→∞

|A|
2n

=
1√
2πa

e−a
2/2,

lim
n→∞

|B|
2n

=
1√
2πb

e−b
2/2.

and for a uniform x and its ρ-equal copy y, we have

lim
n→∞

Pr[x ∈ A,y ∈ B] ⩽

√
1− ρ2

2πa(ρa+ b)
exp

(
−a

2 + b2 + 2ρab

2(1− ρ2)

)
.

The main term in the above upper bound is the exponential term. We will establish a lower-bound in Theorem 16.9

that almost matches the upper-bound of Lemma 16.4.

First, we show that the naive spectral gap method provides a weak lower bound for Pr[x ∈ A,y ∈ B].

Pr[x ∈ A,y ∈ B] = ⟨TρA,B⟩ = ρ|S|
∑

Â(S)B̂(S) ⩾ αβ − ρ
∑
S ̸=∅

∣∣∣Â(S)B̂(S)
∣∣∣

⩾ αβ − ρ

∑
S ̸=∅

∣∣∣Â(S)∣∣∣2
1/2∑

S ̸=∅

∣∣∣B̂(S)
∣∣∣2
1/2

= αβ − ρ
√
α− α2

√
β − β2.
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When α and β are small, the second term on the right-hand side is larger than the first term, and the bound is

negative (and trivial) unless ρ is very small. Therefore, we need a deeper approach to prove a more meaningful lower

bound for Pr[x ∈ A,y ∈ B].

The key tool to obtaining an effective lower bound is an extension of the hypercontractivity to ∥·∥p for p < 1,

called reverse hypercontractivity. Unlike the original hypercontractivity, the reverse hypercontractivity only applies to

non-negative functions. The next four theorems and lemmas all require the functions to be non-negative.

Theorem 16.5 (Reverse Hölder Inequality). If f, g ⩾ 0 are functions on a measure space, then

⟨f, g⟩ ⩾ ∥f∥p∥g∥q,

where p, q ∈ (−∞, 1) and 1
p +

1
q = 1.

Remark 16.6. When p < 1, the function

∥f∥ := (E|f |p)1/p

is not a norm. In fact, for −∞ < p < 1 and f, g ⩾ 0, we have the reversed triangle inequality:

∥f + g∥p ⩾ ∥f∥p + ∥g∥p.

To prove this, note that by the reversed Hölder Inequality

∥f + g∥pp = E(f + g)p = E(f + g)p−1f + E(f + g)p−1g

⩾ (E(f + g)p)
p−1
p ∥f∥p + (E(f + g)p)

p−1
p ∥g∥p

= ∥f + g∥p−1
p (∥f∥p + ∥g∥p).

which yields the reversed triangle inequality.

Theorem 16.7 (Reverse Hypercontractivity inequality [MOR+06]). Let f : {0, 1}n → [0,∞), then

∥Tρf∥q ⩾ ∥f∥p,

for 0 ⩽ ρ ⩽
√

p−1
q−1 and −∞ < q ⩽ p < 1.

The proof is similar to the classical hypercontractivity. First, one proves it for the 1-dimensional case, and then an

induction establishes the general case. We have the following corollary.

Corollary 16.8. Let f, g : {0, 1}n → [0,∞) and consider a uniform x ∈ {0, 1}n and a ρ-equal y copy of x. For every

0 < ρ ⩽
√
(1− p)(1− q) ⩽ 1 and p, q < 1, we have

Ef(x)g(y) ⩾ ∥f∥p∥g∥q.

Proof. Let p′ = p
p−1 , so that p and p′ are conjugate exponents. We use the reverse Hölder’s inequality and then apply

the inverse hypercontractivity inequality,

Ef(x)g(y) = Ef(x)Tρg(x) ⩾ ∥f∥p∥Tρg∥p′ ⩾ ∥f∥p∥g∥q,

where the last inequality requires 0 < ρ ⩽
√

1−q
1−p′ =

√
(1− p)(1− q). □

We are ready to prove the strong lower bound on Pr[x ∈ A,y ∈ B].

Theorem 16.9 ([MOR+06]). Suppose A,B ⊆ {0, 1}n have relative densities

|A|
2n

= e−a
2/2 and

|B|
2n

= e−b
2/2,
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and let x ∈ {0, 1}n be uniform and y be a ρ-equal copy of x. Then

Pr[x ∈ A,y ∈ B] ⩾ exp

(
−a

2 + b2 + 2ρab

2(1− ρ2)

)
.

Proof. Let p, q < 1 be such that ρ2 = (1− p)(1− q). By corollary 16.8, we have that

Pr[x ∈ A,y ∈ B] = EA(x)B(y) ⩾ ∥A∥p∥B∥q = e−
a2

2p − b2

2q .

Our task is to optimize p to maximize the right-hand side, which is equivalent to minimizing a2

2p +
b2

2q . To simplify the

calculations, write p = 1− ρr and q = 1− ρ
r with

r =
1− p
ρ

=
ρ

1− q
> 0.

Then
a2

2p
+
b2

2q
=

a2

2(1− ρr)
+

b2

2(1− ρ
r )
,

is minimized when

r =
b
a + ρ

1 + ρ ba
.

Using this value of r gives
a2

2p
+
b2

2q
=
a2 + b2 + 2ρab

2(1− ρ2)
.

□

We obtain the following corollary from Theorem 16.9 by parametrizing the densities differently.

Corollary 16.10. Let A,B ⊆ {0, 1}n with relative densities α > 0 and ασ > 0 respectively, where σ > 0. Let

x ∈ {0, 1}n be uniform and y be a ρ-equal copy of x. Then

Pr[x ∈ A,y ∈ B] ⩾ αα
(
√

σ+ρ)2

1−ρ2 .

In particular, if |A| = |B|, this probability is at least α
1+ρ
1−ρ .

Another interesting corollary of reverse hypercontractivity is that it allows us to quantify how Tρ “smooths” the

“peaks” of the function f . In other words, it provides an upper bound on Pr[Tρf(x) > 1− δ].

Theorem 16.11 ([MOO10, Theorem 4.5]). Consider f : {0, 1}n → [0, 1] with Ef = α. For every 0 < ρ < 1 and

0 ⩽ ε ⩽ 1− α we have

Pr[Tρf(x) > 1− δ] < ε

provided that 0 ⩽ δ < ερ
2/(1−ρ2)+O(κ), where κ =

√
α ln(e/(1−α))

1−ρ .

Proof. Define indicator functions

g : x→

{
1 if Tρf(x) > 1− δ
0 otherwise

h : x→

{
1 if f(x) > b

0 otherwise
,

where b = 1
2 (1 + α). We need to show that ε′ := Eg ⩽ ε. By the first moment method,

α = Ef ⩾ (1− Eh)b,
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which shows

Eh > 1− α

b
=

1− α
1 + α

,

and therefore, the support of h is not very small.

By the definition of h, we have (1− b)h(x) ⩽ 1− f(x), and therefore, when g(x) = 1, we have

Tρ[(1− b)h(x)] ⩽ Tρ(1− f(x)) ⩽ δ.

Hence, g(x) = 1 implies

Tρ[h(x)] ⩽
δ

1− b
,

and we have

E[gTρh] ⩽
δε′

1− b
=

2δε′

1− α
. (16.3)

Meanwhile, by Corollary 16.10,

E[gTρh] ⩾ ε′ · ε′
(
√

β+ρ)2

1−ρ2 (16.4)

where β = log Eh
log ε′ . Finally, Equation (16.3) and Equation (16.4) together with our assumption on δ implies the desired

bound ε′ ⩽ ε. □
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Chapter 17

Gaussian Spaces

Many of the concepts discussed in this course—such as noise stability, isoperimetric inequalities, and hypercontractiv-

ity—were originally developed within the geometric framework of Gaussian probability spaces. The continuous and

symmetric nature of Gaussian space often leads to more elegant results and proofs that avoid some of the technical

challenges of the discrete setting of the hypercube. For this reason, Gaussian space can serve as an elegant and intuitive

framework for studying the properties of functions on the discrete cube. Moreover, tools like the invariance principle

of Mossel, O’Donnell, and Oleszkiewicz [MOO10] and the more recent global hypercontractivity theorem [?] enable us

to systematically translate certain results from the Gaussian setting to the discrete hypercube.

17.1 Gaussian probability space

In this section, we will define Gaussian random variables in Rn and outline some of their basic properties. We then

introduce the Ornstein-Uhlenbeck Gaussian noise operator and discuss its hypercontractivity.

Definition 17.1 (One-dimensional standard Gaussian). The standard normal distribution on R is the probability

distribution γ1 on R with the density function

ϕ(x) :=
e−x

2/2

√
2π

,

which means that for any interval [a, b],

γ1([a, b]) :=

∫ b

a

e−x
2/2

√
2π

dx.

Figure 17.1: Standard normal distribution

A random variable g with distribution γ1 is called a standard Gaussian. It satisfies

Eg = 0 and Eg2 = 1.

Definition 17.2. For n ∈ N, the multivariate Gaussian distribution γn is the product probability distribution defined

by γ1 on Rn. Specifically,

γn({x ∈ Rn|ai ⩽ xi ⩽ bi}) =
n∏
i=1

γ1([ai, bi]). (17.1)

The corresponding density function is:

ϕn(x) :=

(
1√
2π

)n
e

−∥x∥2
2 ,

where ∥x∥ denotes the length of x. For any measurable set A ∈ Rn, we have γn(A) :=
∫
A
ϕn(x)dx. A random variable

g with distribution γn is called a standard Gaussian vector in Rn.
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The definition of the Gaussian measure on Rn as the product space in (17.1) might mistakenly suggest that the

Gaussian probability distribution depends on the specific coordinate system. However, this impression is incorrect.

The density function ϕn(x) depends only on the length of x and, therefore, is independent of the particular choice of

the coordinate system. In particular, if g1, . . . , gn ∈ R are i.i.d. standard Gaussians and a ∈ Rn has length c = ∥a∥,
then

∑n
i=1 aigi has the same distribution as cg, where g is a standard Gaussian.

17.2 Hermite polynomials

The Hermite polynomials are a classical orthogonal polynomial sequence for the space L2(R, γ1). Given k ∈ Z⩾0, the

Hermite polynomial of degree k is given by

Hek(x) = (−1)ke x2

2
dk

dxk
e−

x2

2 .

They satisfy the relations

Hek+1(x) := xHek(x)−He′k(x) = xHek(x)− kHek−1(x), (17.2)

with the base case He0(x) = 1. The Hermite polynomials form a complete orthogonal basis for L2(R, γ1). It will be

useful to normalize them to obtain an orthonormal basis. For k ∈ Z⩾0, define the corresponding normalized Hermite

polynomial as

hk(x) :=
Hek
∥Hek∥

=
Hek√
k!
.

Alternatively, we can construct the polynomials hk(x) by applying the Gram–Schmidt process to the monomials xk.

We have

h0(x) := 1, h1(x) := x, h2(x) :=
z2 − 1√

2
, h3(x) :=

x3 − 3x√
6

, . . . ,

where each polynomial hk(x) is obtained by taking the orthogonal projection of xk to span {h0, . . . , hk−1}⊥ and then

normalizing it to have norm 1:

hk(x) :=
xk −

∑k−1
i=0

〈
xk, hi

〉
hi

∥xk −
∑k−1
i=0 ⟨xk, hi⟩hi∥

Given an f ∈ L2(R, γ1), we can write the Hermite expansion of f as the infinite sum

f =

∞∑
k=0

⟨f, hk⟩hk,

which converges in the L2 norm.

More generally, we can use the Hermine polynomials to construct an orthonormal base for L2(Rn, γn). For a

multi-index α ∈ Zn⩾0, define hα : Rn → R as

hα(x1, . . . , xn) := hα1
(x1) . . . hαn

(xn).

These polynomials form a complete orthonormal basis for L2(Rn, γn), and therefore, every f ∈ L2(Rn, γn) has a unique

Hermite expansion

f =
∑
α∈Zn

⩾0

f̂(α)hα,

where f̂(α) := ⟨f, hα⟩ are called the Hermite coefficients of f . Gain, the convergence is in the L2, meaning that

lim

∥∥∥∥∥∥f −
∑

α:
∑
αi⩽k

k̂ →∞f(α)hα

∥∥∥∥∥∥
2

= 0.

Remark 17.3. Since h0(x) ≡ 1 and h1(x) = x, when α = 1S for S ⊆ [n], then hα =
∏
i∈S xi. In other words, the set

106



of functions hα includes all the multilinear monomials
∏

∈S xi. Therefore, for multilinear polynomials

f(x1, . . . , xn) =
∑
S⊆[n]

λS
∏
i∈S

xi,

the Hermite expansion coincides with the polynomial representation.

17.3 Gaussian noise and hypercontractivity

We start by defining the Ornstein-Uhlenbeck noise operator.

Definition 17.4. Given ρ ∈ [−1, 1], the corresponding Ornstein-Uhlenbeck operator Uρ acting on L2(Rn, γn) is defined
as

Uρf(x) := Ef(ρx+
√

1− ρ2g),

where g ∼ (Rn, γn) is a standard Gaussian vector.

If x and g are independent standard Gaussian, then since
√
ρ2 + (1− ρ2) = 1, the random variable

y := ρx+
√
1− ρ2g

is also a standard Gaussian. In particular, Eγn [Uρf ] = Eγn [f ].
Furthermore, the correlation of x and y is

Exy = E[ρx2 +
√
1− ρ2xg] = ρ.

We have the following theorem regarding the action of Uρ on the set of Hermite polynomials.

Theorem 17.5. For every α ∈ Zn⩾0 and ρ ∈ [−1, 1], denoting |α| =
∑
αi, we have

Uρhα = ρ|α|hα.

Proof. □

The following theorem, due to Nelson [?], shows that the Ornstein-Uhlenbeck operator Uρ is hypercontractive.

Theorem 17.6 (Hypercontractivity in Gaussian spaces). Let 1 ⩽ p ⩽ q ⩽ ∞ and f ∈ Lp(Rn, γn). We have

∥Uρf∥q ⩽ ∥f∥p for 0 ⩽ ρ ⩽
√

p−1
q−1 .

17.3.1 Comparison to the Fourier-Walsh expansion

The Gaussian space (Rn, γn) is a product space, and therefore, as we discussed in Section 9.4, every integrable

f : (Rn, γn)→ R has a Fourier-Walsh expansion f =
∑
S⊆[n] FS . Let

f =
∑
α∈Zn

⩾0

f̂(α)hα

be the Hermite expansion of f . It is not difficult to verify that

FS =
∑

α:supp(α)=S

f̂(α)hα.

Recall that we defined the noise operator Tρ as

Tρf(x) = Eyf(y),

where with probably ρ, we set y = x, and with probability 1 − ρ, we sample y from the distribution γn. We showed

Tρf =
∑
S⊆[n] ρ

|S|FS .
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Note that Tρ and Uρ are not the same operators, as for example, Tρhα = ρ|supp(α)| while Uρhα = ρ|α| for every

normalized Hermite polynomial.

Note also that since γn is a continuous probability space, unlike the Uρ operator, Tρ is not hypercontractive.

17.4 Noise stability in Gaussian Space

In Section 16.1, we defined the notion of noise stability for subsets of the discrete cube {0, 1}n. In this section, we

study this notion for the Gaussian space.

Let g and h be a pair of ρ-correlated standard Gaussian vector in Rn. Define the ρ-noise stability of a function

f : (Rn, γn)→ {0, 1} as
Stabρ(f) := E [f(g)f(h)] = ⟨Uρf, f⟩. (17.3)

We are interested in characterizing the most stable subsets of Rn.

Theorem 17.7 (Noise Stability of Homogenous Halfspaces). If H : (Rn, γn) → {0, 1} is the indicator function of a

homogeneous half-space1, then we have

Stabρ(H) =
1

4
+

arcsin(ρ)

2π
.

Proof. Since the Gaussian measure is invariant under rotations, we can assume without loss of generality that H(x) :=

1[x1⩾0]. In this case,

Stabρ(H) = Pr[g ⩾ 0 and ρg +
√

1− ρ2h ⩾ 0],

where g and h are independent standard Gaussians. Let

A =
{
(x, y) ∈ R2 : x ⩾ 0 and ρx+

√
1− ρ2y ⩾ 0

}
,

as illustrated in Figure 17.2.

Figure 17.2: Stability of a homogeneous half-space

We have

Stabρ(H) = Pr[(g,h) ∈ A].

Since (g,h) is a standard Gaussian vector and hence its distribution is invariant under rotations, we have

Stabρ(H) =
arctan

2π
=?????.

□

The Gaussian Rearrangement A∗ of a set A ⊂ Rn is the interval (t,∞) with γ1(t,∞) = γn(A). Note that A∗

corresponds to the halfspace with the same Gaussian measure as A. In particular, if γn(A) =
1
2 , then A

∗ corresponds

to a homogenous half-space.

The following theorem due to Borell [?] from 1983 shows that half-spaces are the extremal sets for stability.

Theorem 17.8 (Borell [?]). Let A,B ⊆ Rn. Then for any 0 ⩽ ρ ⩽ 1 and q ⩾ 1 we have:

E(UρA)qB ⩽ E(UρA∗)qB∗

In particular,

Stabρ(A) = EAUρA ⩽ Stabρ(A
∗).

1A half-space is homogeneous if the hyperplane that defines it contains the origin.
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17.5 The Berry–Esseen Theorem

In this section, we explore a classical example of an invariance theorem, specifically the Berry–Esseen theorem. This

theorem provides a quantitative version of the Central Limit Theorem for finite sums of independent random variables,

giving a bound on how closely the distribution of a sum of random variables approximates a Gaussian distribution.

Let x be a random variable with mean zero and unit variance, and let x1, . . . ,xn be i.i.d. copies of x. The Berry-

Esseen theorem states that if E[|x|3] is not too large, the cumulative distribution function of Sn :=
∑n

i=1 xi√
n

is close to

the cumulative distribution function of a standard Gaussian.

Theorem 17.9 (Berry-Esseen). Let x be a random variable with mean zero and unit variance, and let x1, . . . ,xn be

i.i.d. copies of x. Let Sn :=
∑n

i=1 xi√
n

and g be a standard Gaussian. We have

|Pr[Sn ⩽ t]−Pr[g ⩽ t]| ⩽ O

(
E[|x|3]√

n

)
for every t ∈ R.

We will not give a proof of Theorem 17.9. Instead we prove a slightly weaker bound Theorem 17.11.

There are several established methods for proving the Berry–Esseen theorem. Common approaches include the

Fourier method, the moment method, Stein’s method, and the Lindeberg swapping trick. For a more comprehensive

discussion of these proofs, we recommend Terry Tao’s lecture note on the Central Limit Theorem.

In these notes, we will focus on a proof using the Lindeberg swapping trick, also known as the replacement method

or the hybrid method in theoretical cryptography. In this method, we swap the variables with independent Gaussians

one by one and carefully control the changes at each step.

The replacement method is a powerful and versatile technique. As we will see in ?? and ??, this method plays a

central role in proving two fundamental results in the analysis of Boolean functions: global hypercontractivity and the

invariance principle.

We will start by proving a technical form of the Berry-Esseen theorem.

Theorem 17.10. Let ψ : R → R be a three time differentiable function with |ψ′′′
(x)| < B for all x ∈ R. Let x be a

random variable with mean zero and unit variance, and let x1, . . . ,xn be i.i.d. copies of x. Let S :=
∑n

i=1 xi√
n

and g be

a standard Gaussian. We have

|E[ψ(S)]− E[ψ(g)]| ⩽ B√
n
E[|x|3].

Proof. Let g1, . . . , gn be independent standard Gaussians, and for 0 ⩽ i ⩽ n, define the corresponding partially

swapped version of S as

Si :=
x1 + . . .+ xi + gi+1 + . . .+ gn√

n
.

Since Sn = S and S0 ∼ γ1, it suffices to show that for every i ∈ [n],

|E[ψ(Si−1)]− E[ψ(Si)]| =
1

n3/2
BE[|x|3]. (17.4)

Denoting the common part of Si−1 and Si as

A =
x1 + . . .+ xi + gi+2 + . . .+ gn√

n
,

we have

Si−1 = A+
gi√
n

and Si = A+
xi√
n
.

By writing the Taylor expansion of ψ,

ψ(Si−1) = ψ(A) + ψ′(A)
gi√
n
+

1

2
ψ′′(A)

g2
i

n
+R,

for an error term R satisfying |R| ⩽ |gi|3
6n3/2 supx∈R |ψ′′′(x)|. We also obtain a similar formula for ψ(Si−1), where gi are

109

https://terrytao.wordpress.com/2010/01/05/254a-notes-2-the-central-limit-theorem


replaced by xi. Since xi and gi both have mean zero and unit variance, we have

|E[ψ(Si−1)]− E[ψ(Si)]| ⩽
1

6n3/2
E
[
|gi|3 + |xi|3

]
n3/2

sup
x∈R
|ψ′′′(x)|.

Since gi is a standard Gaussian,

E|gi|3 = 3

√
2

π
,

which combined with

E|xi|3 = E|x|3 ⩾ (Ex2)3/2 ⩾ 1,

shows

E|gi|3 + E|xi|3 ⩽ 6E|x|3.

We conclude Equation (17.4) as desired. □

Theorem 17.11 (Berry-Esseen weak form). Let x be a random variable with mean zero and unit variance, and let

x1, . . . ,xn be i.i.d. copies of x. Let Sn :=
∑n

i=1 xi√
n

and g be a standard Gaussian. We have

|Pr[Sn ⩽ t]−Pr[g ⩽ t]| ⩽ O

(
E[|x|3]√

n

)1/4

for every t ∈ R.

Proof. We will approximate 1[x⩽t] with a three times differentiable function ψ(x), and apply Theorem 17.11 to ψ.

Pick a parameter ε > 0 and let ψ : R→ [0, 1] be any function equal to 1 in (∞, t], vanishing on [t+ ε,∞), and with

|ψ′′′(x)| = O(ε−3) in [t, t+ ε]. We have

E[ψ(g)] = Pr[g ⩽ t] +O(ε).

By Theorem 17.11, we have

|E[ψ(S)]− E[ψ(g)]| ⩽ O

(
ε−3

√
n
E[|x|3]

)
,

which shows

|Pr[S ⩽ t]−Pr[g ⩽ t]| ⩽ O(ε) +O

(
ε−3

√
n
E[|x|3]

)
.

Optimizing ε, gives

|Pr[Sn ⩽ t]−Pr[g ⩽ t]| ⩽ O

(
E[|x|3]√

n

)1/4

.

□
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Chapter 18

Draft: Hypercontractivity for global

functions

As we have observed in earlier chapters, the hypercontractivity of the noise operator on the discrete cube {0, 1}n is a

central tool in Boolean function analysis. However, when considering more general product spaces, functions such as

dictators and juntas demonstrate that the noise operator does not maintain such strong hypercontractive properties.

For example, over the discrete cube {0, 1}n, hypercontractivity implies that every degree-1 function satisfies

∥f∥4
∥f∥2

⩽
√
3 = O(1).

In contrast, consider a large alphabet size m, and the dictator function f : [m]n → {0, 1}, defined as f(x) = 1[x1=1].

Here, f is of degree 1, yet we have
∥f∥4
∥f∥2

= m
1
4 ,

which shows a significant gap between the two norms as m grows.

In Theorem 10.19, we established a weaker form of hypercontractivity for general product probability spaces (Ω, µ)n.

However, as illustrated above, when µ contains atoms with small probability masses, the noise parameter ρ must be

very small for hypercontractivity to hold. Unfortunately, the dependency on µ limits the applicability of Theorem 10.19

for generalizing key results from the discrete cube to other domains (Ω, µ)n.

Global hypercontractivity: In a breakthrough, Keevash, Lifshitz, Long, and Minzer [?] showed that, essentially,

junta-like behaviour is the only obstacle to the strong hypercontractivity of the noise operator. More precisely, they

extended the hypercontractive inequality to general discrete product measures under the additional assumption that

the function is global, meaning it is not significantly affected by restricting a small set of coordinates. This class

of functions naturally arises in results like Bourgain’s sharp threshold theorem, which states that global functions

exhibit sharp thresholds. Later, Keller, Lifshitz, and Marcus [?] later proved a sharp version of this hypercontractive

inequality.

The discovery of hypercontractivity for global functions and its various applications has been one of the most

fruitful research directions in Boolean function analysis in recent years, leading to several significant advances. To

name a few applications:

• A stronger version of Bourgain’s sharp threshold theorem [?];

• Progress on the inverse problem for the isoperimetric inequality on the Boolean cube [?]

• A shorter proof [?] of the breakthrough result of Khot, Minzer and Safra [?] on the expansion of the Grassmann

graph, which was the main mathematical ingredient in the proof of the 2-to-2 games conjecture in complexity

theory;

• Hypercontractivity and level-d inequality in the symmetric group [?], etc;
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• Applications to the intersecting families of permutations [?];

18.1 Statement of global hypercontractivity

For the reader’s convenience, we recall some definitions from Section 9.4.1 and Section 10.4. Let (Ω, µ) be a finite

probability space and consider a function f : (Ω, µ)n → R and its Fourier-Walsh expansion f =
∑
S⊂[n] FS .

Given a parameter ρ ∈ [0, 1], the ρ-equal copy of x ∈ Ωn as the random variable y that is sampled from Ωn through

the following process: for each i ∈ [n], with probability ρ, set yi = xi and with probability 1 − ρ, sample yi from

(Ω, µ). The noise operator Tρ is defined as Tρf(x) := Eyf(y), where y is the ρ-equal copy of x. It satisfies

Tρf =
∑
S⊆[n]

ρ|S|FS .

Definition 18.1 (Global functions). Let (Ω, µ) be a finite probability space. Given S ⊆ [n] and x ∈ (Ω, µ)n, let

fS→x : (Ω, µ)[n]\S → R be the restriction of f defined as fS→x(y) = f(x, y). We say that f : (Ω, µ)n → R is r-global

for r ⩾ 1 if for every S ⊆ [n] and x ∈ ΩS , we have

∥fS→x∥2 ⩽ r|S|∥f∥2.

We think of f : (Ω, µ)n → R as a global function if it is r-global for some r = O(1). In this sense, for growing m,

the dictator function f : [m]n → {0, 1} defined as f(x) = 1[x1=1] in the introduction is not global. We have ∥f∥2 = 1√
m

while ∥f{1}→1∥2 = ∥1∥2 = 1, and therefore, f is not r-global for any r <
√
m.

Theorem 18.2 (Global Hypercontractivity). Consider 1 < p ⩽ 2 ⩽ q satisfying 1
p + 1

q = 1, and let (Ω, µ) be a finite

probability space. If r ⩾ 1 and f : (Ωn, µn)→ R is an r-global function, then for every

0 ⩽ ρ ⩽
log q

32rq
,

we have

∥Tρf∥p ⩾ ∥f∥2 and ∥Tρf∥q ⩽ ∥f∥2.

18.1.1 Proof of global hypercontractivity
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Chapter 19

Draft: Invariance Principle and Majority

is Stablest

The invariance principle, proved by Mossel, O’Donnell, and Oleszkiewicz in [MOO10], is a useful generalization of the

Central Limit Theorem that bridges the worlds of Gaussian analysis and Boolean function analysis. It has been a

crucial tool in translating many results from the Gaussian to the setting of Boolean functions on the discrete cube.

One can view the invariance principle as a generalization of the Berry-Esseen theorem (Theorem 17.9) to multilinear

polynomials.

Consider a multilinear polynomial f =
∑
f̂(S)

∏
i∈S xi. Let x1, . . . ,xn be independent random variables, each

with mean zero and unit variance, and let g1, . . . , gn be independent standard Gaussians. Roughly speaking, the

invariance principle states that when f does not depend too much on individual coordinates, then the distribution of

f(x1, . . . ,xn) is similar to the distribution of f(g1, . . . , gn).

Similar to the proof of the Barry-Esseen theorem presented for Theorem 17.9, Mossel et al.’s proof of the invariance

principle uses the replacement method. Their proof later inspired [?] to use the replacement method to prove the

hypercontractivity for global functions. In fact, global hypercontractivity also implies a version of the invariance

principle [?].

One of the original applications of Mossel, O’Donnell, and Oleszkiewicz in [MOO10] for the invariance principle

was proving a conjecture of Subhash Khot about the noise stability of large subsets of the hypercube that do not

have influential variables. Khot’s conjecture, which was known as the “majority is stablest conjecture”, has important

applications in the area of hardness of approximation. We will discuss the proof of this conjecture in ??.

19.1 Invariance principle

Theorem 19.1 (Invariance Principal I [?]). Let Q(x1, . . . , xn) =
∑
S⩽[n] αS

∏
i∈S xi be a multilinear polynomial with

real coefficients satisfying the following three conditions.

deg(Q) ⩽ d∑
|S|>0

α2
S = 1

Ii :=
∑
S:i∈S

α2
S ⩽ τ for all i ∈ [n]

Then for i.i.d. ±1 uniform random variables (ε) = (ε1, . . . , εn) and independent standard Gaussians g = (g1, . . . , gn),

we have

sup
t∈R
|Pr[Q(ε) ⩽ t]−Pr[Q(g) ⩽ t]| ⩽ O(dτ

1
8d ).

Similar to the case of the Berry-Esseen theorem, Theorem 19.1 follows from the more technical version of the
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invariance principle by approximating the step function with an appropriate four times differentiable function. We

omit the details.

Theorem 19.2 (Invariance Principal II). Suppose Q satisfies the assumptions of Theorem 19.1 and let ψ : R→ R be

a four times differentiable function with supt |ψ(4)(t)| < B. We have

|E[ψ(Q(ε))]− E[ψ(Q(g))]| ⩽ O(d9dBτ).

Proof. Let Zi = Q(g1, . . . , gi, εi+1, . . . , εn). We claim that

|Eψ(Zi−1)− Eψ(Zi)| ⩽ O(B9dI2i ). (19.1)

First, we show that the theorem can be extracted from this claim. Indeed,

|Eψ(Z0)− Eψ(Zn)| ⩽
n∑
i=1

|Eψ((Zi−1)− Eψ(Zi)| ⩽ O(B9d)

n∑
i=1

I2i

= O(B9d)(max Ii)
∑

Ii ⩽ O(B9dτ)
∑

Ii

= O(B9dτ)
∑
|S|>0

|S|α2
S ⩽ O(dB9dτ)

∑
|S|>0

α2
S = O(τB9dd).

To prove the claim, we separate the monomials according to whether they contain xi and write

Q(x1, . . . , xn) =
∑
S:i/∈S

αS
∏
j∈S

xj + xi
∑
S:i∈S

αS
∏

j∈S\{i}

xj

= R(x1, . . . , xi−1, xi+1, . . . , xn) + xiS(x1, . . . , xi−1, xi+1, . . . , xn)

Let

r := r(g1, . . . , gi−1, εi+1, . . . , εn) and s := S(g1, . . . , gi−1, εi+1, . . . , εn).

We have Zi−1 = r + εis and Zi = r + gis. By Taylor’s theorem, we have

|Eψ(Zi−1)− Eψ(Zi)| ⩽

∣∣∣∣Eψ(r) + εisψ
′(r) +

(εis)
2

2
ψ′′(r) +

(εis)
3ψ(3)(r)

6
+ E1

−Eψ(r)− gisψ
′(r)− (gis)

2

2
ψ′′(r)− (gis)

3ψ(3)(r)

6
− E2

∣∣∣∣ ,
where |E1| ⩽ supt |ψ

(4)(t)|(εis)
4

24 ⩽ B(εis)
4

24 , and similarly, |E2| ⩽ B(gis)
4

24 . All terms cancel except E1 and E2. So the

expression is bounded by:

E
∣∣∣∣B(εis)

4

24

∣∣∣∣+ E
∣∣∣∣B(gis)

4

24

∣∣∣∣ ⩽ B

24
Es4 +

3B

24
Es4 ⩽

B

6
Es4.

Since s is a multilinear polynomial of degree at most d in variables g1, . . . , gi−1, εi+1, . . . , εn, by hypercontractivity, we

have
B

6
Es4 ⩽

B9d

6
(Es2)2 =

B9d

6

∑
i∈S

α2
S =

B9d

6
I2i ,

which completes the proof of Equation (19.1). □

19.2 The Majority is Stablest Theorem

In this section, we focus on the noise stability for subsets of the discrete cube {0, 1}n. Recall that the ρ-noise stability

of a function f : {0, 1}n → {0, 1} is defined as

Stabρ(f) := ⟨Tρf, f⟩ =
∑
S⊆[n]

ρ|S|f̂(S)2.
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We are interested in understanding the Boolean functions that have large noise stability. In Proposition 16.2, we

used hypercontractivity to establish the small-set expansion property of the noisy cube, which states that the sets with

small density are not stable: Stabρ(A) ⩽ E[A]
2

1+ρ .

In this chapter, we focus on large sets. For example, one might ask among functions f : {0, 1}n → {0, 1} with

E[f ] = 1
2 what is the largest possible value of Stabρ(f)? If we use the spectral gap approach by separating the principal

coefficient and upper bounding ρ|S| by ρ, we get

Stabρ(f) =
∑
S⊆[n]

ρ|S||f̂(S)|2 ⩽ |Ef |2 + ρ
∑
S ̸=∅

|f̂(S)|2 =
1

4
+
ρ

4
.

This bound is indeed sharp as achieved by half-cubes; for example, if f(x) = x1, then f = 1
2 + 1

2χ{i}, and therefore,

Stabρ(f) =
1

4
+
ρ

4
.

In general, if the value of the function f depends only on a few coordinates, then the function will become stable

under noise as with some non-negligible probability x, and its correlated copy ρ will be the same on those coordinates.

It turns out that the question becomes more interesting if we avoid these examples by assuming that all the variables

have small influences.

Half-cubes are stable because their Fourier coefficients are concentrated in the first level. In [?], Bourgain proved

that if a Boolean function f : {0, 1}n → {0, 1} is not close to being a junta, then it must have a significant Fourier mass

of at least d−1/2−o(1) on ∥f⩾d∥22. Bourgain’s bound was later sharpened by Kindler and O’Donnell by first proving a

sharp bound in the Gaussian setting and then translating it to the discrete cube using an invariance principle.

Theorem 19.3 (Kindler and O’Donnell [?]). If f : {0, 1}n → {0, 1} is balanced and Ii ⩽ 10−d for all i ∈ [n], then

∥f⩾d∥22 =
∑
|S|⩾d

|f̂(S)|2 ⩾ d
− 1

2−o
(√

ln ln d
ln d

)
= d−1/2−o(1).

Theorem 19.3, whose proof is highly nontrivial, provides an upper bound on noise stability

Corollary 19.4. If f : {0, 1}n → {0, 1} is balanced and Ii(f) = 2−O(1/ε) for all i ∈ [n], then

Stab1−ε(f) ⩽
1

2
− ε1/2+o(1)

While Corollary 19.4 is an improvement over the spectral gap upper bound of 1
2 −

ε
4 , using the tail bound on the

Fourier coefficients does not seem to be the optimal approach for upper-bounding the noise stability. To illustrate this,

consider the majority function Majn : {0, 1}n → {0, 1}, defined as Majn(x) = 1 iff
∑
xi ⩾ n

2 . While the tail bound

of Theorem 19.3 is sharp for Majn, the following theorem shows that Stabρ(Majn) is much smaller than the upper

bound of Corollary 19.4.

Theorem 19.5. The noise stability of the majority function satisfies

lim
n→∞

Stabρ(Majn) =
1

4
+

arcsin ρ

2π
.

Note that 1
4 +

arcsin ρ
2π is the Gaussian noise sensitivity of homogenous halfspaces as shown in Theorem 17.7. As we

discussed in Theorem 17.8, Borell proved the analogous statement in the Gaussian setting in 1983, where no condition

on the influences is necessary. Mossel, O’Donnell, and Oleszkiewicz used their invariance principle to resolve Khot’s

conjecture and deduce the following theorem from Borell’s result.

Theorem 19.6 (Majority is Stablest [?]). For 0 < ρ < 1, if f : {−1, 1}n → {0, 1} is balanced and Ii(f) ⩽ ε for all

i ∈ [n], then

Stabρ(f) ⩽
1

4
+

arcsin ρ

2π
+O

(
log log 1/ε

log 1/ε

)
=

1

4
+

arcsin ρ

2π
+ o(ε).
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Proof. Consider the polynomial representation f =
∑
f̂(S)

∏
i∈S xi. Let (g1, . . . , gn) be an independent standard

Gaussian. We have

Stabρ(f) =
∑

ρ|S||f̂(S)|2 = Stabρ(f(g1, . . . , gn)).

We want to apply the invariance principle to replace the ±1-valued random variables with Gaussians. However, since

the degree of f can be large, we cannot apply the invariance principle directly to f . Instead, we apply a smoothed

version of the theorem, which can be applied to Tβf for β < 1. Let ρ = ρ′β2 where β < 1 is a parameter very close to

1 to be determined later.

Stabρ(f) =
∑

ρ|S||f̂(S)|2 =
∑

(ρ′β2)|S||f̂(S)|2 = Stabρ′(Tβf(g1, . . . , gn)).

Now using the smoothed invariance, Tβf(g1, . . . , gn) is close in distribution to Tβf(ε1, . . . , εn) and hence it cannot be

far from being in [−1, 1]. To make this precise, we define function ξ as follows:

ξ : t→
{

0 |t| ⩽ 1

(|t| − 1)2 |t| > 1

Note that ξ measures the L2-distance of t from its truncated value in [−1, 1]. By the invariance principle applied to

random variables r = Tβf(ε1, . . . , εn) and s = Tβf(g1, . . . , gn), we have |Eξ(r) − Eξ(s)| ⩽ τΩ(1−β). Let s′ be the

truncation of s to the interval [−1, 1]:

s′ =


s |s| ⩽ 1

1 s > 1

−1 s < −1
.

By assumption, f(ε1, . . . , εn) ∈ [−1, 1] and since Tβ is an averaging operator, Tβf(ε1, . . . , εn) ∈ [−1, 1] and hence

ξ(R) = 0. Thus,

E|ξ(s)| = E(s− s′)2 ⩽ τΩ(1−β)

which shows

|Stabρ′(s)− Stabρ′(s
′)| = |EsUρ′s− Es′Uρ′s′| ⩽ |EsUρ′s− Es′Uρ′s|+ |Es′Uρ′s− Es′Uρ′s′|

⩽ ∥s− s′∥2∥Uρ′s∥2 + ∥s′∥2∥Uρ′(s− s′)∥2 ⩽ ∥s− s′∥2∥s∥2 + ∥s′∥2∥s− s′∥2
⩽ τΩ(1−β).

By Borell’s theorem (Theorem 17.8), Stabρ′(s
′) ⩽ Stabρ′(1x⩽t0) where t0 is chosen so that E1g⩽t0 = Es′ for a standard

Guassian g.

It remains to show that 1
2 ≈ Es′, which would imply t0 ≈ 0. We have∣∣∣∣12 − Es′

∣∣∣∣ = |Es− s′| ⩽ ∥s− s′∥2 ⩽ τΩ(1−β).

It follows that

|Stabρ′(1x⩽0)− Stabρ′(1x⩽t0)| ⩽ O

(
1− β
1− ρ

)
.

Therefore,

Stabρ(f) = Stabρ(1x⩾0) +O

(
τΩ(1−β) +

1− β
1− ρ

)
.

The theorem follows by optimizing over β. □

19.3 Arrows Theorem and Majority is stablest

Condorcet Method for Ranking 3 Candidates : In an election with n voters and 3 candidates, A, B and C,

each voter submits 3 bits representing their preferences. The first bit indicates whether they prefer A to B; The second

and the third bits indicate, respectively, their preference between B and C, and between C and A. These preferences

116



are aggregated into 3 strings x, y, z ∈ (−1, 1)n. A Boolean function f : {−1, 1}n 7→ {−1, 1} is applied to x, y and z

and the aggregated preference is represented by (f(x), f(y), f(z)).

Condorcet Paradox: If f is the Majority function, it is possible to have an irrational outcome, in which all 3

aggregated bits are 1 or all are -1 representing preferences A < B < C < A or A > B > C > A.

Definition 19.7. A triple (a, b, c) ∈ {−1, 1}3 is called rational if it corresponds to a non-cyclic ordering.

Theorem 19.8 (Arrow’s Impossibility Theorem). The only functions f that never give irrational outcomes are dictator

functions f(x) = xi or f(x) = 1− xi for some i.

Note that every voter has 6 possible rational rankings. Suppose that every voter votes independently at random

from the 6 possible choices. Let x,y, z ∈ {−1, 1}n be the corresponding random string. Note

1[a1=a2=a3] =
1

4
+

1

4
a1a2 +

1

4
a1a3 +

1

4
a2a3,

and therefore,

Pr[(f(x), f(y), f(z))] = 1− E1[f(x)=f(y)=f(z)] =
3

4
− 1

4
Ef(x)f(y)− 1

4
Ef(x)f(z)− 1

4
Ef(y)f(z)

=
3

4
− 3

4
Ef(x)f(y) =

3

4
− 3

4

∑
S,T

f̂(S)f̂(T )EχS(x)χT (y).

Furthermore,

EχS(x)χT (y) = (
∏

i∈S∩T
Exiyi)(

∏
i∈S\T

Exi)(
∏

i∈T\S

Eyi)

Since Eyi = Exi = 0 and Exiyi = 2
6 −

4
6 = − 1

3 , we have

EχS(x)χT (y) =

{
0 S ̸= T

(−1
3 )|S| S = T

.

Hence,

Pr[(f(x), f(y), f(z)) is rational] =
3

4
+

3

4

∑(
−1
3

)|S|

|f̂(S)|2 ⩽
3

4
+

3

4
Stab−1

3
(f)

We conclude the following theorem due to Kalai.

Theorem 19.9. If f : {−1, 1}n → {−1, 1} satisfies Ii(f) = on(1) and Ef = 0, then assuming that all the voters vote

independently and randomly from the six possible rational votes,

Pr[output of f is rational] ⩽ 0.9123 + on(1).
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Chapter 20

Learning via Fourier Coefficients

In this chapter, we study two applications of Fourier analysis to computational learning theory.

20.1 PAC learning under uniform distribution

We begin with an overview of the PAC (Probably Approximately Correct) learning framework from computational

learning theory, introduced by Leslie Valiant [Val84].

A binary concept class over a domain X is simply a set C of functions f : X → {0, 1}. Here, the term binary

signifies that the range is the two-element set {0, 1}. The elements of C are called concepts.

In the learning problem, a concept f ∈ C and a distribution µ on X are unknown to the learner. The learner

who knows C but not f or µ is trying to learn f by observing its values on a few i.i.d. samples drawn from µ. More

precisely, the learner will receive a batch of samples of the form (x, f(x)) where x ∼ µ are drawn independently, and

they must produce a hypothesis h : X → {0, 1} as a predictor for f .

The quality of h is measured by its population loss,

Lµ(h) := Pr
x∼µ

[h(x) ̸= f(x)].

We emphasize that h does not need to be in the concept class C; it simply needs to predict f well on examples from µ.

In this section, we will be only interested in the case where µ is the uniform distribution. While the uniform

distribution may not reflect real-world scenarios, this setting has theoretical applications and has been extensively

studied. In particular, a substantial body of research addresses the problem of learning concept classes, such as juntas,

under uniform distribution [MOS03].

Consider f : Zn2 → {0, 1}. Let us explore what information we can learn about the Fourier spectrum of f from

uniform samples. Consider a fixed a ∈ Zn2 , and recall that

f̂(a) = ⟨f, χa⟩ = Ex[f(x)χa(x)].

Since |f(x)χa(x)| ⩽ 1, by Chernoff bound, if x1, . . . ,xm ∈ Zn2 are sampled uniformly and independently, then with

high probability the empirical estimate

f̃(a) =
1

m

m∑
i=1

f(xi)χa(xi),

will be very close to the actual expected value f̂(a) = E[f(x)χa(x)]. Thus, a few samples typically suffice to accurately

estimate f̂(a). The following lemma immediately follows from Chernoff bound.

Lemma 20.1. Let f : Zn2 → {0, 1}, a ∈ Zn2 and δ, ε ∈ (0, 12 ). For m = O(log(1/δ)ε−2), if x1, . . . ,xm are independently

and uniformly sampled from Zn2 , then the empirical estimate

f̃(a) :=
1

m

m∑
i=1

f(xi)χa(xi)
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satisfies

Pr
[∣∣∣f̃(a)− f̂(a)∣∣∣ > ε

]
⩽ δ.

Let us return to the problem of learning an unknown f : Zn2 → {0, 1} in a concept class C. By Lemma 20.1, we can

estimate individual coefficients well from a few samples. However, since there are 2n coefficients S, estimating all of

them will not be computationally efficient. Moreover, the probabilistic errors in these estimates can accumulate to a

large error unless we take ε and δ to be exponentially small. Indeed, one should not expect to learn a generic function

from only a few random samples, as for such a function, the values at sampled points provide no information about

values at unsampled points.

Suppose now that we have the additional information about the Fourier spectrum of the functions in C that the

mass of their Fourier coefficients is concentrated within a small set S ⊆ Zn2 , meaning∑
a ̸∈S

|f̂(a)|2 ⩽ ε.

In this case, we can limit our focus to estimating only the coefficients f̂(a) for a ∈ S and obtain an accurate estimate

of f as ∑
a∈S

f̃(a)χa ≈ f.

Theorem 20.2 (Fourier concentration and PAC learning [LMN93]). Let C be a class of functions f : Zn2 → {0, 1}.
Suppose there is a subset S ⊆ Zn2 of size m such that every f ∈ C satisfies∑

a ̸∈S

|f̂(a)|2 ⩽ ε.

There is a randomized algorithm that using at most O(ε−1m log(m/δ)) uniform samples from an unknown f ∈ C,
outputs a Boolean function h : Zn2 → {0, 1} such that with probability at least 1− δ, we have

Pr
x
[f(x) ̸= h(x)] ⩽ 8ε.

Proof. By Lemma 20.1, we can use O

(
log(m/δ)

(√
m√
ε

)2)
= O

(
ε−1m log(m/δ)

)
samples to estimate f̃(a) ≈ f̂(a) for

each a ∈ S such that

Pr

[
|f̂(a)− f̃(a)| >

√
ε√
m

]
⩽

δ

m
.

Hence, by the union bound,

Pr

[
∃a ∈ S such that |f̂(a)− f̃(a)| >

√
ε√
m

]
⩽ δ.

Let

g :=
∑
a∈S

f̃(a)χa(x).

We will show that if our estimates are successful, which happens with probability at least 1 − δ, then g is a good

estimate of f . Indeed, by Parseval’s identity, we have

E|f(x)− g(x)|2 =
∑
a∈S
|f̂(a)− f̃(a)|2 +

∑
a̸∈S

|f̂(a)|2 ⩽ m

( √
ε√
m

)2

+ ε ⩽ 2ε.

Let h be the Boolean rounding of g defined as h(x) = 0 if g(x) < 1/2 and otherwise h(x) = 1. Since f is Boolean, we

always have |f(x)− h(x)| ⩽ 2|f(x)− g(x)|. Therefore,

Pr[f(x) ̸= h(x)] = E|f(x)− h(x)|2 ⩽ 4E|f(x)− g(x)|2 ⩽ 8ε.

□
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Example 20.3 (Small total influence). Let C be the class of functions f : {0, 1}n → {0, 1} with If ⩽ k. Then, we

have

k =
∑
S⊆[n]

|S|f̂(a)2,

which shows ∑
|S|⩾k/ε

|f̂(a)|2 ⩽ ε.

Therefore, we can apply Theorem 20.2 with S = {S ⊆ [n] : |S| ⩽ k/ε}, which is of size at most nk/ε.

20.2 Goldreich and Levin: Learning via queries

In Section 20.1, we discussed a learning algorithm that can learn an unknown f : Zn2 → {0, 1} in a class C if the Fourier
mass of every function in C is concentrated on a small fixed set S of characters. The discussed algorithm, which has

prior knowledge of C and therefore knows S, estimates the Fourier coefficients of f only for characters in S.

This section considers classes where the Fourier mass of every f ∈ C is concentrated on some small set of characters

Sf that varies with f and is thus unknown to the learner. Goldreich and Levin [GL89] proved it is possible to learn

such classes if the learner can query the values of f(x) at any x they choose. The query model allows the learner to

identify and estimate the significant Fourier coefficients without knowing Sf in advance.

The Goldreich-Levin algorithm first detects the large Fourier coefficients of f by partitioning the Fourier coefficients

according to their prefix. For k ∈ [n] and α ∈ Zk2 , define fα : Zn−k2 → R as

fα(x) = Ey∈Zk
2
f(y, x)χα(y).

Note

fα(x) =
∑

(z1,z2)∈Zn
2

f̂(z1, z2)χz2(x)Ey [χz1+α(y)] =
∑

(α,z2)∈Zn
2

f̂(α, z2)χz2(x),

where in the first sum z1 ∈ Zk2 and z2 ∈ Zn−k2 . By Parseval’s identity,

∥fα∥22 = Ex[fα(x)
2] =

∑
(α,z2)∈Zn

2

|f̂(α, z2)|2.

We will show that with oracle access to the values of ∥fβ∥2, the algorithm described in Algorithm 1 can find all

characters a that satisfy |f̂(a)| ⩾ τ .

Claim 20.4. The procedure described in Algorithm 1 returns the set of all a ∈ Zn2 that have prefix α and satisfy

|f̂(a)| ⩾ τ . Furthermore, the algorithm inspects the values of ∥fβ∥2 for at most 2n
τ2 strings β.

Proof. Observe that for k = n, we have ∥fα∥2 = |f̂(α)|, and moreover, if β is a prefix of a, then |f̂(a)| ⩽ ∥fβ∥2.
Therefore, the procedure correctly returns all the desired a.

To bound the number of queries ∥fβ∥2, note that for every k ∈ [n], we have
∑
β∈Zk

2
∥fβ∥22 = ∥f∥22, and therefore,

there are at most 1
τ2 prefixes β ∈ Zk2 with ∥fβ∥2 ⩾ τ . The bound on the number of queries of the form ∥fβ∥2

follows. □
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Algorithm 1 The Goldreich-Levin algorithm returns the set of characters a with prefix α ∈ {0, 1}k that satisfy

|f̂(a)| ⩾ τ . The algorithm assumes oracle access to the values of ∥fβ∥2 for any β.

procedure Find large Fourier(α, k, τ)

if ∥fα∥2 < τ then

return ∅
else

if k = n then

return {α}
else

α0 ← (α, 0) ∈ Zk+1
2

α1 ← (α, 1) ∈ Zk+1
2

return Find large Fourier(α0, k + 1, τ)∪ Find large Fourier(α1, k + 1, τ)

end if

end if

end procedure

While we cannot compute the exact values of ∥fβ∥2 from a few queries, the following claim shows we can estimate

them.

Claim 20.5. For every λ > 0, given β ∈ Zk2 , we can make 3N queries to f and returns a value ρβ such that with

probability at least 2e−λ
2N/2, we have |ρ2β − ∥fβ∥22| ⩽ λ.

Proof. We have

∥fβ∥22 = Ex[fβ(x)
2] = Ex∈Zn−k

2

(
Ey∈Zk

2
f(y,x)χβ(y)

)2
= Ex∈Zn−k

2
Ey1,y2∈Zk

2
[f(y1,x)χβ(y1)f(y2,x)χβ(y2)] .

Since |f(y1, x)χβ(y1)f(y2, x)χβ(y2)| ⩽ 1, the Chernoff bound implies that by taking many random points x, y1, y2, we

can obtain an accurate estimate for ∥fβ∥22. More precisely, similar to Lemma 20.1, by Chernoff bound, we can average

over N random triples x(i),y
(i)
1 ,y

(i)
2 , and obtain the estimate

ρ2β :=
1

N

N∑
i=1

f
(
y
(i)
1 ,x(i)

)
χβ

(
y
(i)
1

)
f
(
y
(i)
2 ,x(i)

)
χβ

(
y
(i)
2

)
≈ ∥fβ∥22

such that

Pr
[∣∣ρ2β − ∥fβ∥22∣∣ ⩾ λ

]
⩽ 2e−λ

2N/2.

□

By using the estimates ρβ ≈ ∥fβ∥2 from Claim 20.5 in Algorithm 1, we obtain the following claim.

Claim 20.6. Let τ > 0 and δ > 0 be parameters. There is a procedure that after querying the value of f(x) for

O
(
τ−6 log(n) log(1/δ)

)
points, with probability 1− δ it returns a set S ⊆ Zn2 of size at most |S| ⩽ 16

τ2 satisfying{
a ∈ Zn2 : |f̂(a)| ⩾ τ

}
⊆ S.

Proof. By taking λ = τ2

16 , for each β, we can produce an estimate ρβ ≈ ∥fβ∥2 such that with probability at least

1− 2e−λ
2N/2,

|ρβ − ∥fβ∥2| ⩽
√
|ρ2β − ∥fβ∥22| ⩽

√
λ =

τ

4
. (20.1)

We run the procedure of Algorithm 1 with the threshold parameter τ/2 but using our estimates ρβ instead of the

actual values ∥fβ∥2. If all our estimates satisfy the accuracy of Equation (20.1), then the output S satisfies{
a : |f̂(a)| − τ

4
⩾ τ/2

}
⊆ S ⊆

{
a : |f̂(a)|+ τ

4
⩾ τ/2

}
.
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In particular, S would include all a with |f̂(a)| ⩾ τ , and moreover every a ∈ S, it would satisfy |f̂(a)| ⩾ τ
4 and

therefore, |S| ⩽ 16
τ2 .

Since the algorithm estimates ∥fβ∥2 for at most O(n/τ2) strings β, the probability all these estimates satisfy

Eq. (20.1) is at least 1−O(nτ−2e−λ
2N/2) = 1−O(nτ−2e−

τ4N
210 ) ⩾ 1− δ for N = O

(
τ−6 log(n) log(1/δ)

)
. □

Finally, we are ready to state the main theorem.

Theorem 20.7. Suppose that for every function f : Zn2 → {0, 1} in a concept class C, there exists Sf ⊆ Zn2 of size m

such that ∑
a̸∈Sf

|f̂(a)|2 ⩽ ε.

There is an algorithm that queries the value of f on Poly(m, log(1/δ), ε−1) points and produces a function h : Zn2 →
{0, 1} such that Pr[f(x)− h(x)] ⩽ 12ε with probability at least 1− δ.

Proof. Set τ :=
√
ε/m and run the procedure Claim 20.6 to produce a set S ⊆ Zn2 of size at most K := 16

τ2 = O(m/ε)

such that with probability 1− δ
2 , {

a ∈ Zn2 : |f̂(a)| ⩾ τ
}
⊆ S.

The number of queries made so far is O
(
τ−6 log(n) log(1/δ)

)
. Let E1 be the event that this step is successful.

As in the proof of Theorem 20.2, we can use an extra O
(
ε−1K log(K/δ)

)
many samples, to obtain an estimate

f̃(a) ≈ f̂(a) for each a ∈ S. By Lemma 20.1, for every a ∈ S, we have

Pr

[
|f̂(a)− f̃(a)| >

√
ε√
K

]
⩽

δ

2K
,

and hence, by the union bound,

Pr

[
∀a ∈ S, |f̂(a)− f̃(a)| ⩽

√
ε√
K

]
⩾ 1− δ

2
.

Let E2 denote the event that this step is successful.

Let g =
∑
a∈S f̂(a)χa. The probability that both E1 and E2 occur is at least 1− δ, and in that case,

∥f − g∥22 =
∑
a∈S
|f̂(a)− f̃(a)|2 +

∑
a̸∈Sf

|f̂(a)|2 +
∑

a∈Sf\S

|f̂(a)|2

⩽ K

( √
ε√
K

)2

+ ε+ τ2|Sf | ⩽ 3ε.

Finally, define h : Zn2 → {0, 1} as

h(x) :=

{
1 g(x) ⩾ 1

2

0 g(x) < 1
2

.

We have Pr[f(x) ̸= h(x)] ⩽ 4 ∥f − g∥22 ⩽ 12ε. □

Example 20.8 (Functions with small Fourier spectral norm). Let C be the set of all functions f : Zn2 → {0, 1} whose
Fourier spectral norm ∥f̂∥1 satisfies

∥f̂∥1 :=
∑
a

|f̂(a)| ⩽M.

If we let Sf :=
{
a : |f̂(a)| ⩽ ε

M

}
, then ∑

a̸∈Sf

|f̂(a)|2 ⩽
ε

M
∥f∥A ⩽ ε.

Moreover, since

1 ⩾
∑
a∈Sf

|f̂(a)|2 ⩾ |Sf |
( ε

M

)2
,

we have |Sf | ⩽ M2

ε2 . Therefore, C satisfies the assumption of Theorem 20.7 with m = M2

ε2 .
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Chapter 21

Bounded depth circuits

In 1949, Shannon [Sha49] proposed using the size of Boolean circuits to measure a function’s computational difficulty.

Circuits are closely related in computational power to Turing machines, and thus, they provide a nice framework for

understanding time complexity. On the other hand, their especially simple definition makes them amenable to various

combinatorial, algebraic, and analytic methods.

A Boolean circuit is a directed acyclic graph. The vertices of in-degree 0 are called inputs. Each input is labelled

with a variable xi or a constant 0 or 1. The vertices of in-degree k > 0 are called gates, and each such gate is labelled

with a k-ary Boolean function. In the context of circuits, the in-degrees and out-degrees of vertices, respectively,

are called their fan-ins and fan-outs. One of the circuit nodes is designated the output node, and with this, the

circuit represents a Boolean function naturally. Sometimes, we allow multiple output nodes to represent functions

f : {0, 1}n → {0, 1}m. The size of a circuit is the number of its gates1.

Example 21.1. Figure 21.1 illustrates a simple circuit with 3 inputs and six gates. It computes a function f :

{0, 1}3 → {0, 1}. For example, as illustrated in the picture, f(0, 1, 0) = 1.

Figure 21.1: A circuit with 3 inputs and six gates.

As a more general example, recall that a formula is in disjunctive normal form (abbreviated to DNF) if it is a

disjunction (i.e. ∨) of clauses, where a clause is a conjunction (i.e. ∧) of literals (i.e. xi or ¬xi). A k-DNF is a DNF

where each clause consists of at most k literals.

Therefore, DNFs are circuits with gates {¬,∨,∧} of arbitrary fan-in. Every Boolean function f : {0, 1}n → {0, 1}
can be expressed as an n-DNF:

f(x) =
∨

y:f(y)=1

Cy(x), (21.1)

1In some texts, the input nodes are counted towards the circuit’s size.
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where the clause Cy corresponding to y is

Cy(x) :=

 ∧
i:yi=1

xi

 ∧
 ∧
i:yi=0

¬xi

 .

Note that Cy(x) = 1 if and only if x = y.

We can break the ∨ and ∧ gates in a DNF further to use only binary ∨ and ∧’s, and therefore, every Boolean

function has a circuit with gates {¬,∨,∧} of fan-in at most 2.

Definition 21.2. The circuit complexity of a function f is the size of the smallest circuit of fan-in 2 that computes f .

A simple counting argument shows that most functions require exponential circuits of fan-in 2. Roughly speaking,

there are 22
n

Boolean functions f : {0, 1}n → {0, 1}, while the number of small circuits is much smaller.

Theorem 21.3 (Shannon [Sha49]). Almost every Boolean function f : {0, 1}n → {0, 1} requires fan-in 2 circuits of

size Ω(2n/n).

Proof. There are exactly 22
n

Boolean functions f : {0, 1}n → {0, 1}. The number of circuits with t gates can be

upper-bounded as follows: Since the number of fan-in 2 gates is 22
2

= 16, there are 16t choices for assigning gates to

nodes. There are (n + 2 + t)2 choices for the two incoming wires of a gate: The n input variables, the two constant

inputs 0 and 1, or the t other nodes. Finally, we must designate one of the t gates as the output gate. Hence, the

number of circuits of size t with fan-in 2 is at most

16t(t+ n+ 2)2tt.

If t = 2n/20n, then

lim
n→∞

16t(t+ n+ 2)2tt

22n
= 0.

Thus, almost every function has a circuit complexity larger than 2n/20n. □

On the other hand, we know from the DNF representation that every function f : {0, 1}n → {0, 1} can be computed

by a fan-in 2 circuit of size O(n2n). In fact, with some extra work (proved by Lupanov [Lup58]), one can improve this

bound to O(2n/n), which matches the lower bound of Theorem 21.3.

Theorem 21.3 has a major shortcoming. It does not provide any explicit examples of functions that require large

circuits. Also, unfortunately, it does not prove the existence of functions in NP that require circuits of super-polynomial

size. Note that any function on n bits that depends on all its inputs requires fan-in 2 circuits of size at least n− 1 just

to read the inputs. Despite the incredible research on circuit complexity lower bounds, the strongest known bounds

for explicit functions are extremely weak. In 1984, Blum gave an example of a function that requires fan-in 2 circuits

of size 3n− o(n). Recently, Blum’s lower bound has been improved to (3 + 1
86 )n− o(n) by [FGHK16].

The main open problem of circuit complexity is beating this linear lower bound for natural problems (say, in NP).

Problem 21.4. Find an explicit function f : {0, 1}n → {0, 1} with circuit complexity ω(n).

21.1 Bounded depth alternating circuits

Considering our inability to prove lower bounds on the circuit complexity of explicit Boolean functions, we need to

impose substantial restrictions on the circuits to be able to prove meaningful lower bounds. We will start by restricting

to bounded depth circuits. The depth of a circuit is the longest distance from the input nodes to the output node.

While the size of a circuit essentially measures the time required to compute a function using a single simple

processor, the depth of a polynomial-size circuit corresponds to the amount of time it takes a parallel algorithm to

compute it.

Let us start by defining our constant depth circuits. We will be interested in the model where we are restricted to

gates ∧, ∨, ¬. Note that by De Morgan’s laws

¬(p1 ∨ . . . ∨ pk) = (¬p1) ∧ . . . ∧ (¬pk),
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and

¬(p1 ∧ . . . ∧ pk) = (¬p1) ∨ . . . ∨ (¬pk),

we can assume that

• There are no ¬ gates in the circuit, and instead, the inputs are either of the form xi or ¬xi for variables xi, or
constants 0 and 1.

• We shall consider circuits whose depths are much smaller than n, the number of inputs. Hence, we need to allow

arbitrary fan-in so the circuit can access the entire input.

• We will assume that the circuits are of the special form where all ∧ and ∨ gates are organized into alternating

levels with edges only between adjacent levels. Any circuit can be converted into this form without increasing

the depth and by, at most, squaring the size.

These circuits are called alternating circuits. The depth of an alternating circuit is defined as the distance from the

output node to the input nodes.

The alternating circuits of depth 2 are particularly important. Note that because of the “alternation” condi-

tion, there are two different types of depth 2 alternating circuits. They correspond to conjunctive normal form and

disjunctive normal form formulas.

We have already discussed the DNFs. Similarly, a formula is in conjunctive normal form (abbreviated to CNF) if

it is a conjunction (i.e. ∧) of clauses, where a clause is a disjunction (i.e. ∨) of literals (i.e. xi or ¬xi). A k-CNF is a

CNF where each clause consists of at most k literals.

For example, (x1 ∨ x2) ∧ (¬x1 ∨ x2 ∨ x3) is a formula in conjunctive normal form. By changing the roles of 0 and

1’s in Equation (21.1), we can write an n-CNF representation for every f : {0, 1}n → {0, 1}.

f(x) =
∧

y:f(y)=0

Cy(x), (21.2)

where the ∨-clause Cy corresponding to y is

Cy(x) :=

 ∨
i:yi=0

xi

 ∨
 ∨
i:yi=1

¬xi

 .

Note that Cy(x) = 0 if and only if x = y.

We record these observations for future reference.

Observation 21.5. Every function f : {0, 1}n → {0, 1} has an n-DNF and an n-CNF representation, each with at

most 2n clauses.

21.2 H̊astad’s Switching lemma

The first strong lower bounds for bounded depth circuits were given by Ajtai [Ajt83] in 1983 and Furst, Saxe,

Sipser [FSS84] in 1984. They established a superpolynomial lower bound for constant depth circuits computing

the parity function. Later, Yao [Yao85] gave a sharper exponential lower bound. In 1986, H̊astad [Has86a] further

strengthened and simplified this argument and obtained near-optimal bounds.

The basic idea of Ajtai [Ajt83] and Furst, Saxe, Sipser [FSS84] for proving lower-bounds on bounded depth AC

circuits was to assign random values to a random subset of variables. This will simplify a small size AC[d] circuit

greatly. Consider a gate at level 1 (that is, a gate directly connected to inputs xi and ¬xi’s). Noting that the gate is

either ∧ or ∨, if it has a large fan-in, there is a high chance that a random assignment of values to a random subset of

variables will determine the value of the gate. Indeed, an ∧ gate only needs one 0 input to be set to 0, and an ∨ gate

only needs one 1 on its inputs to be set to 1.

Definition 21.6 (restrictions). Let X = {x1, . . . , xn} be the input variables to a circuit C computing a function f .

A restriction ρ is a function ρ : X → {0, 1, ⋆}.
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A restriction ρ sets the values of the variables assigned 0 or 1 and leaves those assigned stars alive. Under ρ, we

may simplify C by eliminating gates whose values become determined. Call this the induced circuit Cρ computing the

induced function fρ.

As mentioned earlier, H̊astad further explored these ideas. The core of his proof is an important lemma known

as the switching lemma, a key tool for proving lower bounds on the size of the constant-depth Boolean circuits. It

states that random restrictions with a few stars significantly decrease the decision tree complexity of small alternating

circuits.

Lemma 21.7 (H̊astad’s switching lemma). Let f be given by a t-CNF formula. Choose a random restriction ρ by

setting every variable independently to ⋆ with probability p, and to 0 and 1 each with probability 1−p
2 . Then for every

s ∈ N,
Pr[dt(fρ) > s] ⩽ (5pt)s.

In particular for p = 1
10t ,

Pr[dt(fρ) > s] ⩽ 2−s.

Remark 21.8. Note that the bound in the switching lemma does not depend on the number of clauses in the CNF.

The only parameter about the CNF that appears in the assertion is its width t.

We will prove the switching lemma by induction on the number m of clauses; however, since the bound does not

depend on m, we cannot afford to lose anything in the induction step: Starting with the bound (5pt)s for t-CNF’s with

m − 1 clauses, we must conclude the same bound for t-CNFs with m clauses. The general proof strategy is simple.

Consider the first clause, and without loss of generality, assume that this clause is (x1 ∨ . . . ∨ xt).

Case 1: If the random restriction assigns any 1’s to this clause, then this clause evaluates to 1, and we can remove it and

apply the induction hypothesis to the remaining m− 1 clauses.

Case 2: If the random restriction assigns 0’s to all of x1, . . . , xt, then the clause evaluates to 0, and as a result fρ ≡ 0,

which satisfies dt(fρ) = 0.

Case 3: The remaining case is when ρ assigns some ⋆’s (and no 1’s) to x1, . . . , xt. Let T be the subset of the variables

in this clause that receive ⋆’s. In this case, it suffices to find a decision tree of depth s − |T | for the remaining

m− 1 clauses, as we can extend such a decision tree to a decision tree of depth s by always querying the values

of the variables in T . The induction hypothesis tells us that the probability that the remaining clauses do not

have such a decision tree is at most (5pt)s−|T |. This bound is worse than our goal (5pt)s, but fortunately, ⋆’s

are generally unlikely, and the probability that all the variables in T receive ⋆’s is at most p|T |. Putting these

together and taking a union bound over all possibilities of T gives us the desired bout (5pt)|T |.

We are going to prove the switching lemma by induction. In the sketched proof above, we assumed that what

happens in the rest of the m − 1 clauses is independent of the variables x1, . . . , xt. However, this is not the case, for

example, in Case 1. To deal with this technical issue, we need to strengthen the statement of the lemma.

Lemma 21.9 (H̊astad’s switching lemma, stronger version). Let f be given by a t-CNF formula. Choose a random

restriction ρ by setting every variable independently to ⋆ with probability p, and to 0 and 1 each with probability 1−p
2 .

For every s ∈ N, and every function F : {0, 1}n → {0, 1}, we have

Pr[dt(fρ) > s|Fρ ≡ 1] ⩽ (5pt)s, (21.3)

where Fρ ≡ 1 is the event when Fρ is the constant 1 function.

Proof. Set α := 5pt, and suppose that f = ∧mi=1Ci where Ci’s are clauses of size at most t. We prove this statement

by induction on m, the number of clauses in f . If m = 0, then f ≡ 1, and the lemma is obvious. For the induction

step, let us study what happens to C1, the first clause in the circuit. First note that by possibly changing the role of

0’s and 1’s for some variables, we can assume without loss of generality that there are no negated literals in C1 and

hence

C1 =
∨
i∈T

xi,
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for a subset T ⊆ {1, . . . , n}, |T | ⩽ t. First, we split the left-hand side of Eq. (21.3) into two terms based on whether

C1 receives a 1 from the restriction:

Pr[dt(fρ) > s|Fρ ≡ 1] = Pr[dt(fρ) > s, ρT ̸∈ {0, ⋆}T |Fρ ≡ 1] +Pr[dt(fρ) > s, ρT ∈ {0, ⋆}T |Fρ ≡ 1].

Hence in order to prove (21.3), it suffices to show both

Pr[dt(fρ) > s|Fρ ≡ 1, ρT ̸∈ {0, ⋆}T ] ⩽ αs, (21.4)

and

Pr[dt(fρ) > s|Fρ ≡ 1, ρT ∈ {0, ⋆}T ] ⩽ αs, (21.5)

as then we would have

Pr[dt(fρ) > s|Fρ ≡ 1] ⩽ Pr[ρT ̸∈ {0, ⋆}T |Fρ ≡ 1]αs +Pr[ρT ∈ {0, ⋆}T |Fρ ≡ 1]αs = αs.

To prove (21.4), note that for g = ∧mi=2Ci (which has only m− 1 clauses),

L.H.S of (21.4) = Pr[dt(gρ) > s|Fρ ≡ 1, ρT ̸∈ {0, ⋆}T ] = Pr[dt(gρ) > s | (F ∧ C1)ρ ≡ 1] ⩽ αs,

where in the last inequality, we used the induction hypothesis applied to g and F ∧ C1. It remains to prove (21.5).

We break (21.5) into 2|T | terms based on which coordinates in T are ⋆’s and which ones are 0’s:

L.H.S of (21.5) =
∑
Y⊆T

Pr[dt(fρ) > s, ρY = ⋆⃗, ρT−Y = 0⃗ | Fρ ≡ 1, ρT ∈ {0, ⋆}T ]

⩽
∑
Y⊆T

Pr[ρY = ⋆⃗, ρT−Y = 0⃗ | Fρ ≡ 1, ρT ∈ {0, ⋆}T ]×

Pr[dt(fρ) > s | Fρ ≡ 1, ρY = ⋆⃗, ρT−Y = 0⃗, ρT ∈ {0, ⋆}T ]

⩽
∑
Y⊆T

Pr
[
ρY = ⋆⃗

∣∣Fρ ≡ 1, ρT ∈ {0, ⋆}T
]
×Pr

[
dt(fρ) > s

∣∣∣Fρ ≡ 1, ρY = ⋆⃗, ρT−Y = 0⃗
]
.

First note that if Y = ∅, then ρT = 0⃗, and thus C1 is not satisfied and fρ ≡ 0, and consequently dt(fρ) = 0. Hence,

we can remove the corresponding term from the above calculation and obtain the following:

L.H.S of (21.5) ⩽
∑
Y⊆T
Y ̸=∅

Pr
[
ρY = ⋆⃗

∣∣Fρ ≡ 1, ρT ∈ {0, ⋆}T
]
×Pr

[
dt(fρ) > s

∣∣∣Fρ ≡ 1, ρY = ⋆⃗, ρT−Y = 0⃗
]
. (21.6)

We bound the two terms in the product separately.

First observation (bounding Pr
[
ρY = ⋆⃗

∣∣Fρ ≡ 1, ρT ∈ {0, ⋆}T
]
): Since setting variables in Y to ⋆ cannot in-

crease the probability that Fρ ≡ 1, we have

Pr[Fρ ≡ 1 | ρY = ⋆⃗, ρT ∈ {0, ⋆}T ] ⩽ Pr[Fρ ≡ 1 | ρT ∈ {0, ⋆}T ],

Hence using Pr[A|B]Pr[B] = Pr[A ∧B] we have

Pr[ρY = ⋆⃗ | Fρ ≡ 1, ρT ∈ {0, ⋆}T ] =
Pr[Fρ ≡ 1 | ρY = ⋆⃗, ρT ∈ {0, ⋆}T ]

Pr[Fρ ≡ 1 | ρT ∈ {0, ⋆}T ]
Pr[ρY = ⋆⃗ | ρT ∈ {0, ⋆}T ]

⩽ Pr[ρY = ⋆⃗ | ρT ∈ {0, ⋆}T ] =
(

2p

1 + p

)|Y |

⩽ (2p)|Y |

Second observation: (bounding Pr
[
dt(fρ) > s

∣∣∣Fρ ≡ 1, ρY = ⋆⃗, ρT−Y = 0⃗
]
): Note that the variables in Y

can contribute by at most |Y | to the decision tree depth, or more precisely if for every σ ∈ {0, 1}|Y |
, we have

dt(fσρ) ⩽ s−|Y |, then dt(fρ) ⩽ s. Indeed to verify this, note that we can always build a decision tree of depth at most

|Y | +maxσ dt(fσρ) as follows: In the first |Y | levels, we query all the variables xi for i ∈ Y to obtain a σ ∈ {0, 1}Y .
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Then we follow a decision tree of depth dt(fσρ) afterwards. Hence for Y ̸= ∅, recalling that g = ∧mi=2Ci, we have

Pr[dt(fρ) > s | Fρ ≡ 1, ρY = ⋆⃗, ρT−Y = 0⃗] ⩽ Pr
[
∃σ ∈ {0, 1}|Y |

, dt(fσρ) > s− |Y |
∣∣∣ Fρ ≡ 1, ρT−Y = 0⃗

]
⩽

∑
σ∈{0,1}|Y |

Pr[dt(fσρ) > s− |Y | | Fρ ≡ 1, ρT−Y = 0⃗]

=
∑

σ∈{0,1}|Y |

Pr[dt(fσρ) > s− |Y | | (F ∧ ∧i∈T\Y xi)ρ ≡ 1]

=
∑

σ∈{0,1}|Y |

Pr[dt(gσρ) > s− |Y | | (F ∧ ∧i∈T\Y xi)ρ ≡ 1]

⩽
∑

σ∈{0,1}|Y |

αs−|Y | ⩽ 2|Y |αs−|Y |.

where we applied the union bound and then the induction hypothesis.

Combining the two observations with (21.6), we finish the proof:

L.H.S of (21.5) ⩽
∑
Y⊆T
Y ̸=∅

2|Y |αs−|Y |(2p)|Y | = αs
∑
Y⊆T
Y ̸=∅

(
4p

α

)|Y |

= αs

((
1 +

4p

α

)|T |

− 1

)

= αs

((
1 +

4

5t

)t
− 1

)
⩽ αs(e

4
5 − 1) ⩽ αs.

□

Remark 21.10. Since the negation of a CNF is a DNF of similar size and vice versa, the switching lemma can be

used to convert a t-DNF formula to an s-CNF in the same way as Lemma 21.9.

Corollary 21.11. Let f be a Boolean function computed by an AC circuit of size M and depth d. Choose a random

restriction ρ by setting every variable independently to ⋆ with probability p = 1
10dsd−1 , and to 0 and 1 each with

probability 1−p
2 . Then

Pr[dt(fρ) > s] ⩽M2−s.

Proof. We sample the restriction ρ by first sampling a random restriction ρ0 with Pr[⋆] = 1/10, and then sampling

d− 1 consecutive restrictions ρ1, . . . , ρd−1 each with Pr[⋆] = 1
10s .

Assume without loss of generality that the bottom gates are ∨. We claim that, with high probability, after the

restriction ρ0, all the remaining bottom fan-ins are at most s. To see this, consider two cases for each gate at the

bottom level of the original circuit:

1. The original fan-in is at least 2s. In this case, the probability that the gate was not eliminated by ρ0, that is, no

input to this gate got assigned a 1 is at most (0.55)2s < 2−s.

2. The original fan-in is at most 2s. In this case, the probability that at least s inputs got assigned a ⋆ by ρ0 is at

most
(
2s
s

)
(1/10)s ⩽ 2−s.

Thus, the probability of failure after the first restriction is at most m12
−s, where m1 is the number of gates at the

bottom level.

We now apply the next d − 2 restrictions, each with Pr[⋆] = 1
10s . After each of these, we use H̊astad’s switching

lemma (see Remark 21.10) to convert the lower two levels from CNF to DNF (or vice versa), collapse the second

and third levels (from the bottom) to one level, reducing the depth by one. For each gate of distance two from the

inputs, the probability that it corresponds to a function g with dt(gρi) > s, is hence bounded by (5 1
10ss)

s ⩽ 2−s. The

probability that a particular gate fails to satisfy the desired property is no more than 2−s. Since the top gate is ∧,
after these d− 2 stages, we are left with a CNF formula of bottom fan-in at most s. We now apply the last restriction,

and by the switching lemma, we get a function fρ with dt(fρ) ⩽ s. The probability of failure at this stage is at most

2−s. To compute the total probability of failure, we observe that each gate of the original circuit contributes 2−s to

the probability of failure, and hence applying the union bound yields the desired bound. □
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Since a restriction ρ of the party function Parity with m starts is either a copy of Paritym or 1−Paritym, we

have dt(Parityρ) ⩾ m. By combining this fact with Corollary 21.11, we obtain a strong lower bound on the size of

any depth-d AC circuit computing Parity.

Theorem 21.12 ([Has86b]). Any depth-d AC circuit that computes Parity is of size 2Ω(n1/d).

If in the proof of Corollary 21.11, we stop before applying the last restriction ρd−1, we can obtain the following

statement, which uses a larger value for p.

Corollary 21.13. Let f be a Boolean function computed by an AC circuit of size M and depth d ⩾ 2 whose output

gate is ∧. Choose a random restriction ρ by setting every variable independently to ⋆ with probability p = 1
10d−1sd−2 ,

and to 0 and 1 each with probability 1−p
2 . Then

Pr[fρ does not have a CNF with fan-in ⩽ s] ⩽M2−s.

Similarly, if the output gate of the original circuit is ∨, then the probability that fρ does not have a DNF with fan-in

⩽ s is bounded by M2−s.

In the next section, we will show that this improvement implies a better lower bound of 2Ω(n1/(d−1)) for Parity,

as well as a lower bound for the Majority function.

21.3 Influences in bounded depth circuits

Our next goal is to show that the total influence of low depth small AC circuit cannot be large. First, we consider the

CNF and the DNF circuits with small clauses.

Lemma 21.14. Let f be a CNF or a DNF formula where all the clauses are of size at most t. Then If ⩽ t.

Proof. We prove the lemma for the DNF case, and the CNF case follows by replacing f with 1 − f . We prove the

lemma for the DNF case, and the CNF case follows by replacing f with 1 − f . For every x ∈ {0, 1}n, let s1→0(x)

denote the number of coordinates i ∈ [n] such that f(x) = 1 and f(x ⊕ ei) = 0. If f(x) = 1, then x satisfies at least

one clause C. If f(x ⊕ ei) = 0, then C must involve xi or ¬xi, and since there are at most t literals in C, we have

s1→0(x) ⩽ t for every x. Therefore,

If =

n∑
i=1

1

4
Pr[f(x) ̸= f(x⊕ ei)] ⩽

n∑
i=1

Pr[f(x) = 1 ∧ f(x⊕ ei) = 0] = E1→0(x) ⩽ t.

□

Boppana [Bop97] used Häastad’s switching lemma to prove that small-size low-depthAC circuits have small total

influences.

Theorem 21.15 (Boppana [Bop97]). Let f be a Boolean function computed by an AC circuit of depth d and size M

(including the input gates), then

If ⩽ (20 logM)d.

Proof. Note n ⩽M since we are counting the input gates when calculating the circuit size. Applying Corollary 21.11

with s = 2 logM and p = 1
10dsd−1 , and combining it with the fact that Ig ⩽ dt(g) for all g, shows

Pr[Ifρ ⩾ s] ⩽M2−s ⩽
1

M
⩽

1

n
.

Therefore,

Eρ[Ifρ ] ⩽ Pr[Ifρ > s]n+ s ⩽
1

n
n+ s ⩽ s+ 1 ⩽ 2s.

On the other hand, for every i,

Pr
ρ,x

[fρ(x) ̸= fρ(x⊕ ei)] = pPr
x
[f(x) ̸= f(x⊕ ei)],
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where p is the probability that the ith variable is not fixed by ρ. Therefore,

Eρ[Ifρ ] = pIf .

We conclude

If ⩽
2s

p
⩽ 2s · (10s)d−1 ⩽ (20 logM)d.

□

One can improve the bound slightly by using Corollary 21.13 and Lemma 21.14 instead of Corollary 21.11.

Theorem 21.16 (Boppana [Bop97]). Let f be a Boolean function computed by an AC circuit of depth d and size M ,

then

If ⩽ (20 logM)d−1.

The majority function Maj is defined as Maj(x) := 1 if and only if
∑
xi ⩾ n/2. It is straightforward verify

IMaj = Θ(
√
n). Recall also that the total influence of Parity is n

4 . We conclude the following lower bounds on the

AC circuit size of Maj and Parity.

Corollary 21.17. Any depth-d AC circuit that computes Parity is of size 2Ω(n1/(d−1)). Any depth-d AC circuit that

computes Maj is of size 2Ω(n1/(2d−2)).

To this day, H̊astad’s bound for parity remains the strongest explicit known lower bound against small-depth

circuits for any function, even for d = 3. The special case of depth-3 has received significant attention as one of the

simplest restricted models where our understanding is lacking. The following open problem is one of the frontiers of

circuit complexity.

Problem 21.18. Find an explicit function f : {0, 1}n → {0, 1} that requires circuit size 2ω(
√
n) for AC circuits of

depth 3.

Remark 21.19. It would be interesting to prove an inverse for Boppana’s Theorem 21.15. In [BKS99], Benjamini,

Schramm, and Kalai conjectured a very strong inverse statement that every monotone function f can be approx-

imated by a circuit of size eO(I
1/d−1
f ) for some positive integer d. However, this was disproved by O’Donnell and

Wimmer [OW07] using an example consisting of ∨ of a DNF and a CNF (hence a depth 3-circuit) with total influence

O(log n).
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Chapter 22

LMN and Razborov-Smolensky

In this chapter, we will discuss two fundamental results from circuit complexity about approximating small-size, low-

depth alternating circuits with polynomials. The first theorem, due to Linial, Mansour, and Nisan [LMN93], provides

a strong approximation with a low-degree real-valued function g, where the approximation quality is measured in the

L2 norm. In the second result, proved independently by [Raz87] and [Smo87], the quality of the approximation is

measured using the distance Pr[f(x) ̸= g(x)].

Both theorems have numerous applications in complexity theory and the theory of pseudo-random generators.

22.1 LMN: Fourier tail of low-depth circuits

By Theorem 21.16, if f is computable by an AC circuit of depth d and sizeM , then we have the following upper bound

on the Fourier tail of f : ∥∥f − f<t∥∥2
2
=
∥∥f⩾t∥∥2

2
⩽
If
t

⩽
(20 logM)d−1

t
for all t ∈ [n].

In this section, we prove a stronger upper bound on this quantity. The switching lemma shows that under random

restriction, a function f computable by a low-depth small-size AC circuit is likely to simplify to a function with small

decision tree complexity. Since small height decision trees are of low degree, this observation suggests that such an f

must not have a large mass on higher levels. Linial, Mansour, and Nisan [LMN93] turned this intuition into a theorem,

which we will discuss below.

First, note that since the degree of a decision tree is bounded by its depth, we have the following corollary to the

switching lemma.

Corollary 22.1. Let f be a Boolean function computed by an AC circuit of size M and depth d. Choose a random

restriction ρ by setting every variable independently to ⋆ with probability p = 1
10dsd−1 , and to 0 and 1 each with

probability 1−p
2 . Then

Pr[deg(fρ) > s] ⩽M2−s.

The following result, sometimes called the LMN theorem, is the main result of this section.

Theorem 22.2 (Linial, Mansour, Nisan [LMN93]). Let f : {0, 1}n → {0, 1} be a Boolean function computed by an

AC circuit of depth d and size M , and let t be any integer. Then

∥f>t∥22 ⩽ 2M2−t
1/d/20.

Proof. Consider a random restriction ρ ∈ {−1, 1, ⋆}n with Pr[⋆] = p ⩽ 1
10dkd−1 for a value of k to be determined later.

We sample ρ in two steps. First, we pick T ⊆ [n] corresponding to the positions not assigned a ⋆. Then we pick

xT ∈ {0, 1}T uniformly at random, and ρ is defined as ρ := (xT , ⋆⃗). Set fxT
:= fρ = f(xT , ·). Since for a ∈ Zn2 ,

χa(x) = χaT (xT )χaT (xT ),
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we have

f(x) =
∑
a∈Zn

2

f̂(a)χa(x) =
∑
a∈Zn

2

f̂(a)χaT (xT )χaT (xT ) =
∑
β∈ZT

2

∑
α∈ZT

2

f̂(α, β)χα(xT )

χβ(xT ),

Therefore, the Fourier expansion of fxT
: {0, 1}T → {0, 1} is fxT

(y) =
∑
β∈ZT

2
f̂xT

(β)χβ(y) where

f̂xT
(β) =

∑
α∈ZT

2

f̂(α, β)χα(xT ).

Hence, by the Parseval identity, we have

ExT

∣∣∣f̂xT
(β)
∣∣∣2 =

∑
α∈ZT

2

|f̂(α, β)|2,

which shows that

ExT

∥∥f>kxT

∥∥2
2
= ExT

∑
β∈ZT

2

|β|>k

∥∥∥f̂xT
(β)
∥∥∥2
2
=
∑
β∈ZT

2

|β|>k

∑
α∈ZT

2

|f̂(α, β)|2 =
∑

S:|S∩T |>k

|f̂(S)|2,

where on the right-hand side, we used the set notation to denote the Fourier coefficients.

Now, we use the randomness in T . Since f>kxT
= 0 if deg(fρ) ⩽ k, and that always

∥∥f>kxT

∥∥2
2
⩽ ∥fxT

∥22 ⩽ 1, we have

ET

 ∑
S:|S∩T |>k

|f̂(S)|2
 = Eρ

∥∥f>kρ

∥∥2
2
⩽ Pr[deg(fρ) > k] ⩽M2−k, (22.1)

where the last inequality follows from Corollary 22.1 since we have chosen Pr[⋆] = p ⩽ 1
10dkd−1 . Moreover, we can

bound the left-hand side of (22.1) from below:

L.H.S. of (22.1) =
∑
S⊆[n]

Pr
T
[|S ∩ T | > k]|f̂(S)|2 ⩾

∑
|S|>t

Pr
T
[|S ∩ T | > k]|f̂(S)|2.

Taking p = 1
10t(d−1)/d and k = t1/d/20, we have p ⩽ 1

10dkd−1 , and therefore, by the Chernoff bound, for |S| > t, the

probability of |S ∩ T | > k = pt/2 is at least 1− 2e
−pt
12 ⩾ 1

2 . Hence, by (22.1), we have

∑
S:|S|>t

1

2
|f̂(S)|2 ⩽M2−t

1/d/20.

□

Remark 22.3. Theorem 21.15 and Theorem 22.2 show that the Fourier spectrum of small low-depth AC circuits is

concentrated on the lower levels. In particular, these functions satisfy the assumption of the PAC learning algorithm

of Theorem 20.2.

Theorem 22.2 is also a key ingredient in many results regarding the pseudo-random generators against low-depth

circuits. For example, Braverman’s celebrated result [MR209] that k-wise independent fools constant depth AC circuits

hinges on Theorem 22.2.

22.2 Razborov-Smolensky

Theorem 22.2 shows that every low-depth, small-size circuit can be approximated by a low-degree function in the L2

distance.

The next theorem by Razborov [Raz87] and Smolensky [Smo87] shows a different approximation of such circuits

with low-degree functions. In this theorem, the low-degree polynomial equals f on most elements in {0, 1}n. However,
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when the two functions disagree, they can be very far apart.

Theorem 22.4 ([Raz87, Smo87]). Let f : {0, 1}n → {0, 1} be computed by an AC circuit of depth d and size M . For

every s, there is a polynomial g : {0, 1}n → R with degree r ⩽ (s logM)d such that

Pr
x
[f(x) ̸= g(x)] ⩽

(
1− 1

2e

)s
M,

where x is chosen randomly and uniformly from {0, 1}n. In particular, taking s = 100 log(M), there is a polynomial

of degree r ⩽ (100 logM)2d, such that

Pr
x
[f(x) ̸= g(x)] ⩽

1

100
.

Proof. The key is approximating the ∧ and ∨ gates with low-degree polynomials. The function g is constructed

inductively. We will show how to make a step with an ∧ gate. Since the whole construction is symmetric concerning

0 and 1, the step also holds for an ∨ gate. Let

f = ∧ki=1fi

where k < M . For convenience, assume that k = 2ℓ is a power of 2. For every j = 1, . . . , ℓ, pick s random subsets of

{1, . . . , k} by including every element in the subset independently with probability p = 2−j . We obtain a collection

of sets S1, . . . , St with t := sℓ ⩽ s logM . Let g1, . . . , gk be the approximating functions for f1, . . . , fk provided by the

previous inductive step. We set

g :=

t∏
i=1

(1− |Si|+
∑
j∈Si

gj).

By the induction assumption, the degree of each gj is at most (s logM)d−1. Hence, the degree of f is bounded by

t(s logM)d−1 ⩽ (s logM)d. Next, we bound the probability of f(x) ̸= g(x) conditioned on the event that all of the

inputs f1, . . . , fk are approximated correctly. Consider any x such that gj(x) = fj(x) for all j. We have

Pr
S1,...,St

[f(x) ̸= g(x)] = Pr
S1,...,St

 t∏
i=1

1− |Si|+
∑
j∈Si

fj(x)

 ̸= k∏
j=1

fj(x)

 .
To bound this, we fix a vector of specific values f1(x), . . . , fk(x) and calculate the probability that an error occurs over

the possible choices of the random sets Si.

• If all the fj(x)’s are 1, then the value of f(x) = 1 is calculated correctly with probability 1.

• Suppose that f(x) = 0, and thus at least one of the fj ’s is 0. Note that for the product

t∏
i=1

1− |Si|+
∑
j∈Si

fj(x)


to evaluate to 0, it suffices to have one of the terms 1 − |Si| +

∑
j∈Si

fj to be 0. Let 1 ⩽ z ⩽ k be the number

of zeros among f1(x), . . . , fk(x), and α ∈ Z be such that 2α ⩽ z < 2α+1. Let S be a random set with parameter

p = 2−α−1. Our approximation will be correct if S hits exactly one 0 among the z zeros of f1(x), . . . , fk(x), as

in this case, we would get 1− |S| −
∑
j∈S fj = 0, making the whole product 0. The probability of this event is

zp(1− p)z−1 ⩾
1

2
(1− p)

1
p−1 >

1

2e
.

Therefore, the probability that all the s sets that are chosen with parameter p = 2−α−1 fail is at most (1− 1
2e )

s

and

Pr
S1,...,St

 t∏
i=1

1− |Si|+
∑
j∈Si

fj(x)

 ̸= k∏
j=1

fj(x)

 < (1− 1

2e

)s
.
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By making the same probabilistic argument at every node and applying the union bound over all the ⩽ M gates

in the circuit, we conclude that the probability that an error occurs is at most M
(
1− 1

2e

)s
. Therefore, the low-degree

polynomial g that we have probabilistically constructed satisfies: For every x ∈ {0, 1}n,

Pr
g
[f(x) ̸= g(x)] ⩽M

(
1− 1

2e

)s
.

Since this holds for every x, we have

Pr
g,x

[f(x) ̸= g(x)] ⩽M

(
1− 1

2e

)s
,

which shows that there is a fixed low-degree polynomial g0 satisfying

Pr
x
[f(x) ̸= g0(x)] ⩽M

(
1− 1

2e

)s
.

□

22.3 The entropy-influence conjecture

Theorem 22.2 shows that the Fourier mass of every function computable by an AC circuit of polynomial size and

constant depth is concentrated on the first t = logO(1)(n) levels. Theorem 22.2 shows that the Fourier coefficients

of every function computable by an AC circuit of polynomial size and constant depth are highly concentrated on the

first t = logO(1)(n) levels. There are roughly
(
n
⩽t

)
⩽ nt such coefficients. While this is not an exponential number, it

is still super-polynomial. The following conjecture, due to Mansour, speculates that for DNF, one can pinpoint the

significant coefficients to a polynomial-size set.

Conjecture 22.5 (Mansour [Man95]). Let f be computable by a DNF with at most t terms. For every ε, there exists

a subset S ⊆ P([n]) of size tO(log 1/ε) such that ∑
S ̸∈S

|f̂(S)|2 ⩽ ε.

Let us mention another elegant conjecture regarding the concentration of the Fourier mass. The entropy-influence

conjecture, due to Friedgut and Kalai [FK96], speculates that the entropy of the squares of the Fourier coefficients{
f̂(S)2

}
S⊆[n]

is bounded by O(If ).

Conjecture 22.6 (Entropy-influence conjecture [FK96]). There is a universal C > 0 such that every f : {0, 1}n →
{0, 1} satisfies

H(f̂) :=
∑
S⊆[n]

|f̂(S)|2 log

(
1

|f̂(S)|2

)
⩽ CIf .

Since If =
∑
S⊆[n] |S||f̂(S)|2, the Fourier mass is concentrated on the first k = O(If ) levels. Furthermore,

by Friedgut’s junta theorem (Theorem 12.3), the Fourier mass is only concentrated on a set J of 2O(If ) influential

variables. Therefore, the Fourier mass is on a set of size at most
(|J|
⩽k

)
= 2O(I2f ), which yields the bound H(f̂) = O(I2f ).

Note also that, if true, Conjecture 22.6 implies that the Fourier mass of f is concentrated on the set

S =

{
S : |f̂(S)|2 ⩾ 2

−CIf
ε

}
,

which is of size at most 2
CIf
ε . In particular, if Var[f ] = Ω(1), then Conjecture 22.6 would imply

Conjecture: max
S ̸=∅
|f̂(S)| ⩾ 2−O(If ).
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In contrast, Friedgut’s junta theorem shows that every f with Var[f ] = Ω(1) satisfies

max
S ̸=∅
|f̂(S)| ⩾ 2−O(I2f ). (22.2)

Recently, Kelman, Kindler, Lifshitz, Minzer, and Safra [KKL+20] made significant progress toward resolving the

entropy-influence conjecture. They proved the following theorem.

Theorem 22.7 ([KKL+20]). There is a universal C > 0 such that every f : {0, 1}n → {0, 1} and every k > 0, we

have ∑
|S|⩽k

|f̂(S)|2 log

(
1

|f̂(S)|2

)
⩽ CIf + C

∑
|S|⩽k

|S| (1 + log(|S|)) |f̂(S)|2.

Since If =
∑
S⊆[n] |S||f̂(S)|2, Theorem 22.7 falls short of proving the Fourier entropy conjecture by just a factor of

log(|S|). Regarding the largest non-principal Fourier coefficient, Theorem 22.7 implies that if Var(f) = Ω(1), we have

max
S ̸=∅
|f̂(S)| ⩾ 2−O(If (1+log If )),

which is a significant improvement over Equation (22.2).

Question 22.8. Recall Equation (15.1) from Bourgain’s sharp threshold theorem. Can one improve this lower bound

using the ideas from the work of Kelman, Kindler, Lifshitz, Minzer, and Safra [KKL+20]?
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Chapter 23

Fourier Algebra Norm

Let G be a finite Abelian group. The sum of the absolute values of the Fourier coefficients is called the Fourier algebra

norm or spectral norm of f : G→ R and is denoted by

∥f∥A := ∥f̂∥1 =
∑
χ∈Ĝ

|f̂(χ)|.

The term algebra norm is explained by the easy-to-prove inequality ∥fg∥A ⩽ ∥f∥A∥g∥A, which shows that the algebra

of the functions f : G → R (with point-wise addition and multiplication) endowed with the norm ∥·∥A is a Banach

algebra.

The spectral norm arises naturally in theoretical computer science in connection to learning theory. It has been

studied for several complexity classes of Boolean functions [STV17, KM93, TWXZ13, GTW21, Tal17, MRT19]. These

studies are often motivated by the existence of efficient learning algorithms for the classes of Boolean functions that

have small algebra norms [KM93]. Furthermore, in recent years, tail bounds in the Fourier L1 norm have also become

essential in constructing pseudo-random generators [CHHL19a, RSV13, FK18] and separating quantum and classical

computation [RT19, Tal20, BS21a]. The algebra norm is also closely related to the parity decision tree complexity, a

strengthening of the decision tree complexity.

The problem of characterizing functions with small Fourier algebra norms is also fundamental in harmonic analysis.

Let G be a locally compact group, and let Ĝ be its Pontryagin dual (also a locally compact Abelian group). Let M(G)

be the algebra of all bounded regular Borel measures on G, where multiplication corresponds to convolution. Let B(Ĝ)

denote the Fourier–Stieltjes algebra of Ĝ, which is the set of all µ̂ : Ĝ → C for all µ ∈ M(G) endowed with the norm

∥µ̂∥B(Ĝ)
:= ∥µ∥. This norm is well-defined since the choice of µ is unique. If Ĝ is a finite Abelian group, then B(Ĝ)

is the set of all functions on Ĝ, and ∥·∥B(Ĝ) coincides with the algebra norm: ∥f∥B(Ĝ) = ∥f∥A.

If µ ∈ M(G) is idempotent (i.e. µ ∗ µ = µ), then µ̂2 = µ̂, so µ̂(χ) ∈ {0, 1} for all χ ∈ Ĝ. Hence, the problem of

characterizing all idempotent measures in M(G) is equivalent to finding all subsets A ⊆ Ĝ with 1A ∈ B(Ĝ).

In 1940, Kawada-Itô [KI40, Theorem 3] characterized idempotent probability measures on compact groups as the

normalized Haar measures of compact subgroups. When G is a finite group, their theorem translates to the statement

that f : G→ {0, 1} satisfies ∥f∥A = 1 iff f is the indicator function of a coset in G (see Theorem 23.12 below).

The Kawada-Itô theorem was rediscovered independently by Wendel [Wen54] in the context of harmonic analysis.

Later, Rudin [Rud59a, Rud59b], trying to extend this result to all idempotent measures on locally compact Abelian

groups, showed that any such measure is concentrated on a compact subgroup. Finally, Cohen [Coh60], building on the

works of Helson [Hel53] and Rudin [Rud59a], obtained a full description of idempotent measures on locally compact

Abelian groups. Cohen received the Bôcher Memorial Prize in mathematical analysis in 1964 for this result.

Numerous extensions and refinements of Cohen’s theorem have been discovered since [Lef72, Hos86, GS08c, Run07,

San11b, San20, San21]. We will discuss the qualitative version of Cohen’s idempotent theorem for the group Zn2 in

Section 23.4.
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23.1 Decision trees and Fourier algebra norm

Suppose C : {0, 1}n → {0, 1} is defined by a single and-clause C(x) =
∧
j∈J(xj = bj) for some J ⊆ [n] and b ∈ {0, 1}J .

We can easily write the Fourier expansion of C as

C(x) =
∑
S⊆J

2−|J|χS(b)χS(x),

which shows all the non-zero Fourier coefficients have magnitude 2−|J| and

∥C∥A = 1.

Let T be a decision tree computing a function f : {0, 1}n → {0, 1}. Consider a leaf ℓ and let P be the path from the

root to ℓ. Suppose (xi1 , . . . , xik) is the sequence of the variables queried on this path, and let (bi1 , . . . , bik) ∈ {0, 1}
k

be the assignment of the values to these variables consistent with P . In other words, an input x ∈ {0, 1}n follows the

computational path P from the root to ℓ iff (xi1 , . . . , xik) = (b1, . . . , bk). Let Cℓ(x) = ∧kj=1(xij = bj) be the and-clause

corresponding to the leaf ℓ. Denoting by L the set of all leaves of T , we have

f(x) =
∑

ℓ:label(ℓ)=1

Cℓ(x).

Since ∥Cℓ∥A = 1, we immediately obtain the following statement.

Proposition 23.1. If f : {0, 1}n → {0, 1} is computable by a decision tree with M leaves, then ∥f∥A ⩽ M . In

particular,

∥f∥A ⩽ 2dt(f).

23.2 Parity decision trees

Let us recall some basic facts about linear and affine subspaces of Zn2 . If V ⊆ Zn2 is a linear subspace of co-dimension

d, there exists linearly independent a1, . . . , ad ∈ Zn2 such that

V = {x : ∀i ⟨ai, x⟩ = 0 (mod 2)} ,

or equivalently

V = {x : ∀i χai(x) = 1} .

Then V ⊥ = span {a1, . . . , ad}, and the Fourier expansion of 1V is

1V =
∑
v∈V ⊥

1

2d
χv.

Consequently,

∥1V ∥A = 2d
1

2d
= 1.

More generally, consider an affine subspace W = V + b for some b ∈ Zn2 . Then

1W =
∑
v∈V ⊥

χv(b)

2d
χv,

and therefore, 1W contains 2d non-zero Fourier coefficients, each with magnitude 2−d, and we have ∥1W ∥A = 1. We

established that every affine subspace of Zn2 has Fourier algebra norm 1. As we shall see in Theorem 23.12, these are

the only sets with Fourier algebra norm 1. We will use these facts to show that small parity decision trees have a small

Fourier algebra norm.

Definition 23.2 (Parity Decision tree). A parity decision tree, denoted as ⊕-decision tree, is a labelled binary tree.

Each internal node of the tree is labelled with a non-empty subset S ⊆ [n], and each leaf by a bit b ∈ {0, 1}. Given
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an input x ∈ {0, 1}n, a computation over the tree is executed as follows: Starting at the root, stop if it is a leaf, and

output its label. Otherwise, query ⊕S(x) := ⊕i∈Sxi. If ⊕S(x) = 1, then recursively evaluate the left subtree, and if

⊕S(x) = 0, evaluate the right subtree.

Parity decision trees are generalizations of decision trees since querying ⊕{i}(x) corresponds to querying a single

variable xi.

Consider a leaf ℓ of a ⊕-decision tree, and suppose (⊕i∈S1
xi, . . . ,⊕i∈Sk

xi) is the sequence of the variables queried

on this path, and let (b1, . . . , bk) ∈ {0, 1}k be the assignment of the values to these variables consistent with P . For

i = 1, . . . , k, let ai = 1Si ∈ Zn2 be the indicator vector of Si. The set Lℓ of all x whose computational path leads to ℓ

is a coset of the subspace

{a1, . . . , ak}⊥ := {x : χai(x) = 1 ∀1 ⩽ i ⩽ k} .

So similar to the case of the decision tree, since ∥1Lℓ
∥A ⩽ 1, we conclude that {f}A is at most the number of the

leaves of the tree.

Proposition 23.3. Let f be a Boolean function computed by a ⊕-decision tree. Then ∥f∥A is bounded from above by

the number of leaves of the tree. In particular, ∥f∥A ⩽ 2pdt(f), where pdt(f) denotes the smallest depth of a parity

decision tree computing f .

The converse of Proposition 23.3 is not true. For example, the indicator function of the single point 0⃗ ∈ {0, 1}n

satisfies
∥∥∥1{0⃗}∥∥∥A = 1 while pdt

(
1{0⃗}

)
= n.

While the above example shows that ∥·∥A does not imply small parity decision tree complexity, as we will show in

Theorem 23.4, it implies small randomized parity decision tree complexity.

Randomized L1 sampling: A randomized parity decision tree of depth at most d is a probability distribution T
over parity decision trees of depth at most d. We say T computes f with error ε if

Pr
T∼T

[T (x) = f(x)] ⩾ 1− ε for all x ∈ {0, 1}n .

The randomized parity decision tree complexity, denoted by is the smallest depth of a randomized parity decision tree

computing f with error ε = 1/3.

Theorem 23.4. For every f : {0, 1}n → {0, 1} and ε > 0, there is a randomized parity decision tree of depth

O
(
log(1/ε)∥f∥2A

)
that computes f with error at most ε.

Proof. Let ψT (x) = sgn(f̂(T ))χT (x) ∈ {−1, 1} for T ⊆ [n]. Pick T ⊆ [n] randomly according to the probability

distribution

Pr[T = S] :=
|f̂(S)|
∥f∥A

for all S ⊆ [n].

For every x ∈ {0, 1}n, we have

ET [ψT (x)] =
∑
S⊆[n]

f̂(S)

∥f∥A
χS(x) =

f(x)

∥f∥A
.

Let N := 8∥f∥2A log(4/ε). Let T1, . . . ,TN be i.i.d. copies of T and define f̃ = ∥f∥A

N

∑N
i=1 ψTi .

For every x ∈ {0, 1}n, by applying Hoeffding’s inequality (Lemma 5.1), we have

Pr

[∣∣∣f̃(x)− f(x)∣∣∣ ⩾ 1

2

]
< 2 exp

(
− 8

4N(∥f∥A /N)2

)
⩽ ε,

where the last inequality is by the choice of N .

Let g(x) be the Boolean rounding of f̃(x), that is, g(x) = 1 iff f̃(x) ⩾ 1
2 . We have

Pr[g(x) ̸= f(x)] ⩽ Pr

[∣∣∣f̃(x)− f(x)∣∣∣ ⩾ 1

2

]
⩽ ε.

Finally, note that we can compute f̃(x) and g(x) by making the N parity queries χT1
(x), . . . , χTN

(x). □
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Remark 23.5. The proof of Theorem 23.4 is quite robust and is applicable in any situation where f(x) =
∑m
i=1 λigi(x)

with |gi(x)| ⩽ 1 for all i and we have a strong upper bound on the L1 sum
∑m
i=1 |λi|. By sampling and querying a few

gi randomly according to the probability distribution µ(i) = |λi|∑m
i=1 |λi| , we can produce a good prediction for the value

of f(x).

23.3 Matrix lower bounds for the Fourier algebra norm

In this section, we will discuss the relation between the Fourier algebra norm and the two well-known matrix norms,

the trace and the factorization norms. The goal is to use the factorization norm to prove lower bounds on the Fourier

algebra norm.

Recall that the singular values σ1 ⩾ . . . ⩾ σr of a matrix M ∈ Cm×n are the square roots of eigenvalues of MM∗,

where M∗ is the conjugate transpose of M and r = rk(M).

For p ∈ [1,∞], we denoting by ∥M∥p := maxx∈Cn
∥Mx∥p

∥x∥p
the operator norm of M as a linear operator M : ℓp → ℓp.

For p = 2, the corresponding matrix norm ∥M∥2 is called the spectral norm, and it equals the largest singular value of

the matrix.

∥M∥2 = σmax(M).

The trace norm of M is the sum of its singular values:

∥M∥tr :=
r∑
i=1

σi.

It will be more convenient to normalize this norm and define

∥M∥ntr =
1√
mn
∥M∥tr .

Let us now define the γ2 factorization norm of a matrix. There are a few equivalent ways to define this norm.

Proposition 23.6 (γ2-factorization norm). For M ∈ Cm×n, the following definitions of the γ2-factorization norm are

equivalent.

1. We have

∥M∥γ2 = min
A,B:AB=M

∥A∥row∥B∥col,

where the minimum is taken over any pair of matrices A and B satisfying AB = M , and ∥A∥row and ∥B∥col
denote the largest ℓ2-norm of a row in A and the largest ℓ2 norm of a column in B, respectively.

2. ∥M∥γ2 is the minimum c ⩾ 0 such that there exists d ∈ N and vectors ai, bj ∈ Rd with Mij = ⟨ai, bj⟩ and
|ai||bj | ⩽ c for all i, j.

3. Denoting by ∥M∥ℓp→ℓq
:= maxx∈Cn

∥Mx∥q

∥x∥p
the operator norm of M as a linear operator M : ℓp → ℓq, we have

∥M∥γ2 = min
AB=M

∥A∥ℓ∞→ℓ2
∥B∥ℓ1→ℓ2 .

4. We have

∥M∥γ2 = max
A

∥M ◦A∥2
∥A∥2

,

where where M ◦A is the entry-wise product (a.k.a. Schur or Hadamard product) of M and A.

5. We have

∥M∥γ2 = max
u,v:∥u∥2,∥v∥2⩽1

∥∥M ◦ vuT∥∥
tr

Proof. Exercise. □
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The term factorization in γ2 factorization norm refers to the factoring of M as the product of two operators A and

B, and the index 2 in γ2 refers to the fact that the factorization goes through the ℓ2 space. The next proposition lists

some key properties of the γ2 norm.

Proposition 23.7. The γ2 norm satisfies the following properties.

1. (Norm axioms) For every M,M1,M2 ∈ Cm×n and λ ∈ C, we have

• ∥M∥γ2 = 0 iff M = 0.

• ∥λM∥γ2 = |λ| ∥M∥γ2 .

• ∥M1 +M2∥γ2 ⩽ ∥M1∥γ2 + ∥M2∥γ2 .

2. (Banach Algebra) For every M1,M2 ∈ Cm×n, we have

∥M1 ◦M2∥γ2 ⩽ ∥M1∥γ2∥M2∥γ2 , (23.1)

Therefore, the γ2 norm turns the algebra of matrices Cm×n with the matrix addition and Schur product into a

Banach algebra.

3. ∥M∥γ2 is invariant under rearranging, duplicating, or negating rows or columns of M .

4. For every submatrix M ′ of M , we have

∥M ′∥γ2 ⩽ ∥M∥γ2 .

In particular, ∥γ2∥ ⩾ maxi,j |Mij |.

5. We have

∥M∥ntr ⩽ ∥M∥γ2 .

Proof. Exercise. □

Let G be a finite Abelian group. Given f : G→ C, consider the matrix Lf ∈ CG×G with entries

Lf (x, y) := f(x− y) for all x, y ∈ G.

The matrix Lf corresponds to the convolution with f . More precisely, for every g : G → C, we have Lfg = |G|f ∗ g
since

Lfg(x) =
∑
y∈G

f(x− y)g(y) = |G|f ∗ g(x).

In particular, for characters χ ∈ Ĝ, we have

Lfχ = |G|f ∗ χ = |G|f̂(χ)χ.

Therefore, every character χ is an eigenvector of Lf with the corresponding eigenvalue |G|f̂(χ).

Theorem 23.8. Let G be a finite Abelian group. For every f : G→ C, we have

∥f∥A = ∥Lf∥γ2 = ∥Lf∥ntr .

In particular, if M is a submatrix of Lf , then

∥M∥γ2 ⩽ ∥f∥A.

Proof. Since the eigenvalues of Lf are |G|f̂(χ) for χ ∈ Ĝ, we have

∥Lf∥tr =
∑
χ∈Ĝ

|G||f̂(χ)| = |G| ∥f∥A ,
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which shows ∥f∥A = ∥Lf∥ntr. Let us now examine the γ2 norm of Lf . Since, f(x− y) =
∑
χ f̂(χ)χ(x)χ(y), we have

Lf =
∑
χ∈Ĝ

f̂(χ)χ⊗ χ.

By the definition of the γ2 norm, we have ∥χ⊗ χ∥γ2 = 1. Therefore, ∥χ⊗ χ∥γ2 = 1, and we have

∥Lf∥γ2 ⩽
∑
χ∈Ĝ

|f̂(χ)| ∥χ⊗ χ∥γ2 ⩽
∑
χ∈Ĝ

|f̂(χ)| = ∥f∥A = ∥Lf∥ntr .

On the other hand, by Proposition 23.7, we have ∥Lf∥γ2 ⩾ ∥Lf∥ntr. □

Remark 23.9. The discussion of this section easily generalizes to finite non-Abelian groups. Let G be any finite

group, and let f : G → C. Define Lf ∈ CG×G as Lf (x, y) = f(xy−1). The Fourier algebra norm of f is defined as

∥f∥A = ∥Lf∥ntr. Furthermore, the equality ∥Lf∥γ2 = ∥f∥A := ∥Lf∥ntr remains valid in this setting.

23.4 Quanitative Cohen’s idempotent theorem

Let G be a finite Abelian group and consider the algebra of functions f : G → C defined by the point-wise addition

and multiplication. f is called an idempotent of this algebra if it satisfies f2 = f . Therefore, the idempotents of this

algebra are precisely the Boolean functions f : G→ {0, 1}.
In this section, we will discuss a complete characterization of all Boolean functions f : G → {0, 1} that have a

small Fourier algebra norm. Given a subgroup H ⊆ G and an element a ∈ G, the set H + a is called a coset. When

G = Zn2 , we can identify G with the n-dimensional vector space Fn2 over the two-element field F2. In this case, the

subgroups of G are the linear subspaces, and the cosets are affine subspaces.

If H + a is a coset, then ∥1H+a∥A = 1. Therefore, if f : G→ {0, 1} can be expressed as

f =

L∑
i=1

±1Hi+ai (23.2)

for some cosets Hi + ai, then ∥f∥A ⩽ L. The notation of (23.2) means that each coefficient is +1 or −1. Cohen’s

celebrated idempotent theorem [Coh60] states the Fourier algebra norm of a Boolean function f on a locally compact

Abelian group is finite iff f can be expressed as (23.2) for some finite L and a collection of open cosets Hi + ai. We

refer the interested readers to [Rud90, Chapter 3] for more details.

Cohen’s theorem left open whether the number of terms L is uniformly bounded from above by a function of the

Fourier algebra norm of f . Moreover, Cohen’s original theorem gave no information for finite groups since we can

always write f =
∑
a∈f−1(1) 1{a}. However, one can ask whether it is possible to uniformly bound L in terms of ∥f∥A.

Five decades later, Green and Sanders [GS08c, GS08a], using modern tools from additive combinatorics, proved a

stronger quantitative version of Cohen’s theorem that resolved the uniformity question. Their result can be applied to

finite groups as well. It states that in (23.2), we can choose L ⩽ ℓ(∥f∥A), where ℓ(·) is a universal function that does

not depend on the choice of the underlying group G. They first proved the special case of this theorem for the groups

Zn2 and afterwards generalized it to all locally compact Abelian groups in [GS08c]. The bounds obtained in these two

papers were later improved by Sanders [San19, San20]. We will state their theorem for the group Zn2 .

Theorem 23.10 (Green and Sanders [GS08a]). Let f : Zn2 → {0, 1} be a boolean function, and suppose that the

Fourier algebra norm ∥f∥A is at most M . Then There exists affine subspaces V1, . . . , VL of Zn2 for some L ⩽ ℓ(M)

such that

f =

L∑
j=1

±1Vj
(23.3)

Remark 23.11. The original paper of Green and Sanders [GS08b] proves a bound of L ⩽ 22
O(M4)

. Sanders later

improve this bound to L ⩽ 2O(M3 polylog(M)). Recently, Gowers, Green, Manners, and Tao [GGMT23] proved Mor-

ton’s conjecture (aka polynomial Freiman–Ruzsa conjecture). Substituting this result in Sanders proof for [San19,

Proposition 2] shows that in the case of Zn2 , one may take ℓ(M) = 2O(M polylog(M)).
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We will not prove Theorem 23.10 in this course as its proof is based on various results from additive combinatorics.

However, we will discuss the extreme case of ∥f∥A ⩽ 1. The following proposition shows that the only non-zero

Boolean matrices f : G→ {0, 1} with ∥f∥A ⩽ 1 are the indicator functions of the cosets.

Theorem 23.12. A Boolean function f : G → {0, 1} satisfies ∥f∥A <
√

4
3 if and only if f is the indicator function

of a coset, in which case ∥f∥A = 1.

Proof. Let S ⊆ G denote the support of f . If f ̸= 0, then ∥f∥∞ ⩾ 1, which immediately implies ∥f∥A ⩾ 1.

If S is not the coset of a subgroup of G, then by Lemma 23.13 below, there are a, b, c ∈ S such that a+ b− c ̸∈ S.
Consider the 2× 2 submatrix M of Lf induced by the rows {c, b} and columns {0, c− a}. Note

M =

[
f(c) f(a)

f(b) f(a+ b− c)

]
=

[
1 1

1 0

]
,

and therefore, by Theorem 23.8, we have ∥f∥A ⩾ ∥M∥γ2 . On the other hand, by Lemma 23.14 below, ∥M∥γ2 ⩾
√

4/3.

□

Lemma 23.13. Let G be an Abelian group. A set S ⊆ G is a coset of a subgroup of G iff for every a, b, c ∈ S, we
have a+ b− c ∈ S.

Proof. One direction is obvious. If S is a coset, then for every a, b, c ∈ S, we have a+ b− c ∈ S.
For the converse direction, suppose for every a, b, c ∈ S, we have a+b−c ∈ S. Let H = S−S. It is straightforward

to verify that H is a subgroup: 0 ∈ H; if x ∈ H, then −x ∈ H; finally, if x = s1 − s2 ∈ S − S = H and

x′ = s′1 − s′2 ∈ S − S = H, then by our assumption, x+ x′ = (s1 + s′1 − s2)− s′2 ∈ S − S = H.

Take any s ∈ S. We claim S = s+H. Obviously, S ⊆ S − S + s = H + s. On the other hand, every element x of

H + s is of the form x = s1 − s2 + s with all the terms in S. Hence, x ∈ S by our assumption. □

Lemma 23.14 (Livshits [Liv95]). We have ∥∥∥∥[1 1

0 1

]∥∥∥∥
γ2

=
2√
3
> 1.

23.5 Fourier folding and Shpilika-Tal-Volk

Theorem 23.15 (Shpilka, Tal, and Volk [SlV13]). Let f : Zn2 → {0, 1} satisfy ∥f̂∥1 ⩽ M . There exists a co-set V of

co-dimension at most M2 such that f is constant on V .

The proof relies on the simple equation f2 = 1. By expanding the Fourier representation of both sides, we obtain

that for every b ̸= 0, ∑
a∈Zn

2

f̂(a)f̂(a+ b) = 0.

This identity could be interpreted as saying that the Fourier mass of pairs whose product is positive is the same as

the mass of pairs whose product is negative. In particular, if we consider the two heaviest elements in the Fourier

spectrum, say, |f̂(α)| and |f̂(β)|, and let δ = α + β, then by restricting f to one of the subspaces χδ = 1 or χδ = −1
we obtain a substantial decrease in the Fourier algebra norm. This decrease occurs since there is a significant L1 mass

on some pairs f̂(λ) and f̂(λ+ δ) that have different signs.

Before starting the proof of Theorem 23.15, let us discuss the effect of restricting a function to a coset on the

Fourier spectrum. Consider f : Zn2 → R, and let a ∈ Zn2 be a non-zero element. Consider the (n − 1)-dimensional

subspace V = {a}⊥ = {x : χa(x) = 1} and its coset W = {x : χa(x) = −1}. Since V is a subspace over Z2, it can

be identified with Zn−1
2 , and hence it is meaningful to discuss the Fourier transform of f |V . For every b ∈ V , the

coefficients f̂(b) and f̂(b+ a) collapse to a single coefficient:

f̂ |V (b) := f̂(b) + f̂(a+ b). (23.4)

Similarly for every b ∈W ,

f̂ |W (b) := f̂(b)− f̂(a+ b). (23.5)
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This phenomenon is sometimes called Fourier folding.

The following Lemma 23.16 is the key element of the proof of Theorem 23.15

Lemma 23.16. Let f : Zn2 → {0, 1} be a Boolean function such that ∥f∥A = M > 1. Then there exists γ ∈ Zn2 and

b ∈ {0, 1} such that ∥f̂ |χγ=b∥1 ⩽M − 1
M .

Proof. Let f̂(α) be the maximal Fourier coefficient of f in absolute value, and f̂(β) be the second largest. It follows

from
∑
|f̂(a)| =M and the Parseval identity

∑
|f̂(a)|2 = 1 that |f̂(α)| ⩾ 1

M . We can assume that β̂ ̸= 0, as otherwise

the function f must be of the form ±χα, and that corresponds to an (n− 1)-dimensional coset.

Without loss of generality, assume that f̂(α)f̂(β) > 0, i.e., these two Fourier coefficients have the same sign; the

other case is completely analogous. By taking the Fourier transform of both sides of f2 = 1, we have∑
γ∈Zn

2

f̂(γ)f̂(α+ β + γ) = 1̂(α+ β) = 0. (23.6)

Let Nα+β ⊆ Zn2 be the set of γ ∈ Zn2 with f̂(γ)f̂(α + β + γ) < 0. By our assumption f̂(α)f̂(β) > 0, we have

α, β ̸∈ Nα+β . Switching sides in Equation (23.6), we obtain

2
∣∣∣f̂(α)f̂(β)∣∣∣ = ∑

γ∈Nα+β

∣∣∣f̂(γ)f̂(α+ β + γ)
∣∣∣− ∑

γ ̸∈Nα+β

γ ̸=α,β

∣∣∣f̂(γ)f̂(α+ β + γ)
∣∣∣ .

In particular,

|f̂(α)||f̂(β)| ⩽ 1

2

∑
γ∈Nα+β

∣∣∣f̂(γ)f̂(α+ β + γ)
∣∣∣ . (23.7)

We now use the fact that f̂(β) is the second largest in absolute value, and f̂(α) does not appear in the sum, to bound

the right-hand side: ∑
γ∈Nα+β

∣∣∣f̂(γ)f̂(α+ β + γ)
∣∣∣ ⩽ |f̂(β)| ∑

γ∈Nα+β

min
{
|f̂(γ)|, |f̂(α+ β + γ)|

}
. (23.8)

Then (23.7) and (23.8) together with the assumption |f̂(β)| ≠ 0 imply

|f̂(α)| ⩽ 1

2

∑
γ∈Nα+β

min
{
|f̂(γ)|, |f̂(α+ β + γ)|

}
. (23.9)

Let f ′ = f |χα+β=1. Then by (23.4), for every γ, the coefficients f̂(γ) and f̂(α+ β + γ) collapse to a single coefficient

whose absolute value is |f̂(γ) + f̂(α+ β + γ)|. For γ ∈ Nα+β ,

|f̂(γ) + f̂(α+ β + γ)| =
∣∣∣|f̂(γ)| − |f̂(α+ β + γ)|

∣∣∣
which reduces the L1 norm of f ′ compared to that of f by at least min(|f̂(γ)|, |f̂(α+ β + γ)|). In total, since both γ

and α+ β + γ belong to Nα+β , we obtain

∥f ′∥A ⩽ ∥f∥A −
1

2

∑
γ∈Nα+β

min
{
|f̂(γ)|, |f̂(α+ β + γ)|

}
.

Therefore by (23.9) we have

∥f ′∥A ⩽ ∥f∥A − |f̂(α)| ⩽M − 1

M
.

□

Proof of Theorem 23.15. Apply Lemma 23.16 iteratively on f . After less than M2 steps, we are left with a function

g, which is a restriction of f on a coset defined by the restrictions so far, such that ∥g∥A ⩽ 1. Then Theorem 23.12

finishes the proof. □

146



23.6 Concluding remarks and open problems

Tsang, Wong, Xie, and Zhang [TWXZ13] noticed that a slight twist in the proof of Theorem 23.15 improves the

co-dimension to O(M).

It is not difficult to see that in Lemma 23.16, the restriction f |χγ ̸=b also provides some decrease in the Fourier

algebra norm. That is
∥∥∥f̂ |χγ ̸=b

∥∥∥
A

⩽ ∥f∥A − |f̂(β)|, where f̂(β) is the second largest Fourier coefficient in absolute

value. Using this observation, one can prove the following theorem.

Theorem 23.17 (Shpilka, Tal, and Volk [SlV13]). Every f : {0, 1}n → {0, 1} with ∥f∥A ⩽ M is computable by a

parity decision tree of size at most 2M
2

nM .

An important class of Boolean functions with small Fourier algebra norms are the Fourier sparse functions.

Definition 23.18 (Fourier Sparsity). Let G be a finite Abelian group. The Fourier sparsity of f : G → C, denoted
by sp(f), is the number of non-zero Fourier coefficients of f .

Remark 23.19. We showed that the eigenvalues of Lf are the Fourier coefficients of f . Therefore, sp(f) = rk(Lf ).

Since the absolute values of the Fourier coefficients of a Boolean function f : G → {0, 1} are at most 1, Boolean

functions satisfy ∥f∥A ⩽ sp(f).

Conjecture 23.20 ([MO09, ZS10]). Every f : {0, 1}n → {0, 1} is computable by a parity decision tree of depth at

most polylog(sp(f)).

The same techniques used in the proof of Theorem 23.17 can prove the following theorem.

Theorem 23.21 (Shpilka, Tal, and Volk [SlV13]). Every f : {0, 1}n → {0, 1} with ∥f∥A ⩽ M is computable by a

parity decision tree of depth at most M2 log(sp(f)).

23.6.1 Boolean matrices with small γ2-norm

Next, we discuss a conjecture about extending Green and Sanders’ idempotent theorem to matrices. First, we will

characterize the Boolean matrices whose γ2-norm is at most 1.

Proposition 23.22. For every m, the γ2-norm of the m×m identity matrix Im is 1,

Proof. Since the standard basis e1, . . . , em ∈ Rm satisfies

⟨ei, ej⟩ =

{
1 i = j

0 i ̸= j
,

Im satisfies ∥Im∥γ2 ⩽ 1. Moreover, it is clear from the definition of the γ2-norm that for every matrix A, we have

∥A∥γ2 ⩾ ∥A∥∞ := maxx,y |A(x, y)|, and therefore, ∥Im∥γ2 ⩾ 1. □

Proposition 23.22 shows that all identity matrices have γ2-norm 1. Note that the proof of Proposition 23.22

generalizes to a larger class of matrices, which we call blocky matrices.

Definition 23.23 (Blocky matrices). A Boolean matrix M ∈ {0, 1}X×Y
is blocky if there exist disjoint sets Xi ⊆ X

and disjoint sets Yi ⊆ Y such that the support of M is exactly
⋃
i Xi × Yi.

It turns out that blocky matrices are precisely the set of Boolean matrices with γ2-norm at most 1.

Proposition 23.24 (Livshits [Liv95]). A non-zero Boolean matrix M satisfies ∥F∥γ2 = 1 iff M is a blocky matrix.

Proof. By Lemma 23.14, a Boolean matrix M with ∥M∥γ2 ⩽ 1 cannot have any 2×2 submatrices with exactly 3 ones.

It is straightforward to verify that a Boolean matrix satisfying this property must be blocky. □

Since every Boolean matrix with γ2-norm 1 is blocky, it is natural to ask whether Boolean matrices of bounded

γ2-norm can be characterized through blocky matrices. The following conjecture is an analogue of Theorem 23.10.
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Conjecture 23.25 ([HHH23]). Suppose that M is a Boolean matrix with ∥M∥γ2 ⩽ c. Then we may write

M =

L∑
i=1

±Bi, (23.10)

where Bi are blocky matrices and L ⩽ ℓ(c) for some integer ℓ(c) depending only on c.

Conjecture 23.25, inspired by Cohen’s idempotent theorem, is known to be true for a large class of Boolean matrices.

Proposition 23.26. Conjecture 23.25 is true for the matrices of Lf ∈ {0, 1}G×G
where G is a finite Abelian group,

f : G→ {0, 1}, and Lf (x, y) = f(x− y) for every (x, y).

Proof. Observe if g = 1H+a where H + a is a coset, then Lg is a Blocky matrix. The proposition follows from

Theorem 23.10. □

Remark 23.27. Proposition 23.26 is true even when G is a non-Abelian group and Lf (x, y) = f(xy−1). This follows

from a theorem of Sanders [San11b] that establishes a quantitative Cohen’s theorem (i.e., analogue of Theorem 23.10)

for non-Abelian groups.
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Chapter 24

Pseudorandom Generators

The content of this chapter is mostly taken from the survey [HH24]. A pseudorandom generator (PRG) uses a small

amount of true randomness, called the seed, to generate a long sequence that appears to be random in certain aspects.

PRGs have many applications in computational theory and practice. One motivation is that we think of randomness

as a scarce computational resource akin to time or space, so whenever we get our hands on random bits, we want to

stretch them as far as possible. Furthermore, when the seed length s is small, we can derandomize certain probabilistic

algorithms by exhaustively trying all possible seeds of a PRG.

To model PRGs mathematically, we consider some observer, modelled as a function f . Let Un denote the uniform

random variable over {0, 1}n. We want to fool f into mistaking a random variable X with Un

Definition 24.1 (Fooling). Suppose f : {0, 1}n → R is a function, X is a random variable taking values in {0, 1}n,
and ε > 0. We say that X fools f with error ε, or ε-fools f , if

|E[f(X)]− E[f(Un)]| ⩽ ε.

If ε = 0, we say that X perfectly fools f .

Definition 24.1 says that although X might not be uniform, X and a truly uniform random variable are nevertheless

indistinguishable by f . A PRG’s job is to use a few truly random bits to sample a distribution that fools f .

Definition 24.2 (PRGs). Suppose f : {0, 1}n → R and G : {0, 1}s → {0, 1}n are functions and ε > 0. We say that

G is an ε-PRG for f if G(Us) fools f with error ε.

One of the great ideas in the theory of computing is to try to design a PRG that fools all computationally efficient

observers. Given such a PRG and a truly random seed, we could execute any randomized algorithm worth executing.

After all, there’s no point running a program if one won’t even survive long enough to see the output! Such a PRG

could also be used in cryptographic settings because we can safely assume that eavesdroppers and hackers only have

so much computational power.

For example, given a random seed X0 ∈ {1, 2, . . . ,M − 1}, the Blum-Blum-Shub (BBS) generator [BBS86] outputs

the sequence (X1 mod 2, X2 mod 2, X3 mod 2, . . . ) where

Xi+1 = X2
i modM.

For a suitably chosen modulus M , the BBS generator is believed to fool all polynomial-time algorithms!

Fooling all efficient observers is a well-defined and well-motivated goal. Unfortunately, nobody can prove that some

efficiently computable PRG satisfies this marvellous property.

To be clear, a substantial body of evidence indicates that such PRGs exist. For example, Blum, Blum, and Shub

showed that their generator fools all polynomial-time observers under the plausible but unproven assumption that no

good algorithm exists for the quadratic residuosity problem [BBS86]. There are many other examples of PRGs that

fool all polynomial-time observers under reasonable cryptographic or complexity-theoretic assumptions.

The problem of designing PRGs that unconditionally fool all efficient observers is very challenging, with connections

to deep topics such as the famous P vs. NP problem. Therefore, much of the research on PRGs focuses on interesting
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and well-defined restricted model of computation. Then, we design PRGs that fool the chosen model of computation

(unconditionally – with no unproven assumptions) and try to optimize the seed length of the PRG.

A toy example might clarify the idea. Let us design a PRG G : {0, 1}2 → {0, 1}3 that fools every observer f that

only looks at two of the three output bits. This problem is not completely trivial because we do not know which two

bits f will observe. Nevertheless, the problem can be solved by defining

G(u1, u2) = (u1, u2, u1 ⊕ u2).

When u1 and u2 are chosen uniformly at random, the three output bits are correlated, but any two of the bits are

independent and uniformly random.

We will be especially interested in fooling computation models with a complexity theory flavour, i.e., we want the

output of the PRG to appear random to any observer that is sufficiently efficient in some sense. Arguably, the two

most important models in this field are constant-depth circuits and read-once branching programs.

24.1 The generic probabilistic existence proof

For many classes F , including classes defined by standard computational models such as decision trees, circuits, and

branching programs, there is a generic argument showing that there exist PRGs that fool F with a small seed length.

Proposition 24.3 (Nonexplicit PRGs). Let F be a class of functions f : {0, 1}n → {0, 1}. For every ε > 0, there

exists an ε-PRG for F with seed length log log |F|+ 2 log(1/ε) +O(1).

Proof. Pick a function G : {0, 1}s → {0, 1}n uniformly at random. Consider any arbitrary f ∈ F . For each seed y,

the value f(G(y)) is a random bit satisfying

EG[f(G(y))] = E[f ].

Furthermore, as y ranges over all 2s possible seeds, these random variables f(G(y)) are independent. Therefore, by

Hoeffding’s inequality,

Pr
G

∣∣∣∣∣∣E[f ]− 2−s
∑

y∈{0,1}s

f(G(y))

∣∣∣∣∣∣ > ε

 ⩽ 2e−2ε22s .

By the union bound, the probability thatG fails to ε-fool F is bounded by 2|F|e−2ε22s . For s = log log |F|+2 log(1/ε)+

O(1), this probability is less than 1, i.e., there exists a G that does ε-fool F . □

In a typical case – e.g., if F is the set of all circuits of size at most nO(1) – each function f ∈ F can be described using

poly(n) bits, i.e., |F| ⩽ 2poly(n). In this case, the PRG guaranteed by Proposition 24.3 has seed length O(log(n/ε)).

Proposition 24.3 has a major weakness: it does not guarantee that the PRG is efficiently computable since its proof

is in some sense “nonconstructive.”

Definition 24.4 (Explicitness). A PRG G : {0, 1}s → {0, 1}n is explicit if it can be computed in time poly(n).

The default conjecture: Explicit PRGs exist! For each “reasonable” class F , the standard conjecture is that

there exists an explicit PRG with essentially the same seed length as the generic nonexplicit bound (Proposition 24.3).

Often, this conjecture can be supported with evidence in the form of conditional constructions. For example, consider

the class F of all CNF formulas of size at most n. The nonexplicit PRG has seed length O(log(n/ε)). Under

plausible complexity-theoretic assumptions, there is indeed an explicit PRG for all size-n Boolean circuits (whether

CNF formulas or not) with seed length O(log(n/ε)) [IW97].

24.2 Fourier uniformity and PRGs

Definition 24.5. A random variable X taking values in {0, 1}n is called ε-Fourier uniform if for every non-principal

character χS , we have

|E[χS(X)]| ⩽ ε.
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Since the expected value of every non-principal character is 0, X is ε-Fourier uniform iff it fools all the non-principal

characters.

If X is uniform over a set A ⊆ {0, 1}n of density α, then ε-Fourier uniformity of X means |Â(S)| ⩽ εα for all non-

principal characters χS . Note that this definition is closely related to Definition 5.2 but with a different normalization

of the uniformity parameter ε.

Construction of Fourier Uniform PRGs: Naor and Naor [NN93] and independently Peralta [Per90] gave explicit

constructions of ε-Fourier uniform PRGs with seed length O(log(n/ε)); we’ll present a simpler construction due to

Alon, Goldreich, H̊astad, and Peralta [AGHP92].

Theorem 24.6 (Fourier uniform PRGs [NN93, Per90]). For every n ∈ N, ε > 0, there is an explicit ε-Fourier uniform

generator with output length n and seed length O(log(n/ε)).

Proof of Theorem 24.6. Let q = n/ε, and assume without loss of generality that q = 2k for an integer k. As vector

spaces over F2, identify the field F2k with Fk2 . Our pseudo-random generator G : Fk2 × F2k → {0, 1}
n
is defined by

G(y, z) :=
(〈
y, z1

〉
F2
,
〈
y, z2

〉
F2
, . . . , ⟨y, zn⟩F2

)
∈ Fn2

where zi refers to the i-th power of z in F2k , and the inner product is defined by identifying zi ∈ F2k with its

corresponding elements in Fk2 .
To prove that G fools all non-principal characters, let f : {0, 1}n → {0, 1} be a nonzero parity function, say

f(x) =
⊕

i∈S xi. Then doing arithmetic in F2,

f(G(y, z)) =
∑
i∈S

〈
y, zi

〉
F2

=

〈
y,
∑
i∈S

zi

〉
F2

.

Define g(z) =
∑
i∈S z

i. Then g is a nonzero polynomial in Fq[z] of degree at most n, and therefore, it has at most n

roots. Since f(G(y, z)) = ⟨y, g(z)⟩F2
, when z is a root of gS , we have f(G(y, z)) = 0. On the other hand, when z is

not a root of g, if we sample Y ∈ Fq uniformly at random, f(G(Y, z)) is a uniform random bit. Therefore, when we

sample Y,Z ∈ Fq independently and uniformly at random,

E
Y,Z

[f(G(Y,Z))] =
1

2
·Pr
Z
[g(Z) ̸= 0] ∈

[
1

2
− n

2q
,
1

2

]
.

Since E[f ] = 1
2 , our PRG G fools parity functions with error n

2q = ε
2 , and hence it fools character functions with error

at most ε. □

Fourier uniformity fools small Fourier L1: Since Fourier uniform random variables fool all the non-principal

characters, it easily follows that they fool every function with a small Fourier algebra norm.

Proposition 24.7. Let X be an ε-Fourier uniform random variable taking values in {0, 1}n. Every f : {0, 1}n → R
satisfies

|Ef(X)− Ef(Un)| ⩽ ε∥f∥A.

Proof.

|Ef(X)− Ef(Un)| =

∣∣∣∣∣∣f̂(∅) +
∑
S ̸=∅

f̂(S)E[χS(X)]− f̂(∅)

∣∣∣∣∣∣ ⩽ ε
∑
S ̸=∅

|f̂(S)| = ε∥f∥A.

□

Recall by Proposition 23.3, we have ∥f∥A ⩽ 2pdt(f) where pdt(f) denotes the parity decision tree complexity of f .

Therefore, by Theorem 24.6 and Proposition 24.7 explicit PRGs with seed length polylog(n/ε) that ε-fool functions

f : {0, 1}n → {0, 1} with pdt(f) = polylog(n).
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24.3 k-wise uniformity

Let X = (X1, . . . , Xn) ∈ {0, 1}n be a random variable. For k ∈ [n], we say that X is k-wise independent, if for every

S ⊆ [n] with |S| = k, the bits (Xi : i ∈ S) are independent.

We say that X if for every S ⊆ [n] with |S| = k, XS is uniform over {0, 1}S . Note that a k-wise uniform X is

k-wise independent but not vice versa.1

Since a k-junta inspects at most k variables, it cannot distinguish between a k-wise uniform random variable and

the uniform random variable Un.

Proposition 24.8. Every k-wise uniform X taking values in {0, 1}n perfectly fools all k-juntas f : {0, 1}n → R.

Constructing k-wise uniform PRGs: We start with the case of pairwise uniform, which has a simple construction.

Proposition 24.9. For every n ∈ N, there is an explicit pseudo-random generator G : {0, 1}s → {0, 1}n with seed

length s = ⌊log n⌋+ 1 that is pairwise uniform. In particular, it perfectly fools 2 juntas on n bits.

Proof. If Y is a uniform random variable taking values in {0, 1}s, then

(⊕i∈Syi : S ⊆ [s], S ̸= ∅)

is a collection of n = 2s − 1 pairwise uniform random bits. □

For the more general case, the key idea is that if we pick a random polynomial p of degree d > k, then for any

fixed distinct z1, . . . , zk, the random variables p(z1), . . . , p(zk) are mutually independent.

Theorem 24.10 (k-wise uniform bits). For every n, k ∈ N, there is an explicit pseudo-random generator G : {0, 1}s →
{0, 1}n with seed length s = O(k log n) that is k-wise uniform. In particular, it perfectly fools k-juntas on n bits.

Proof. Let Fq be a finite field with at least n elements, and let P be the set of univariate polynomials over Fq of

degrees less than k. Let z1, . . . , zk ∈ Fq be distinct. In preparation for defining the PRG, define H : P → Fkq by

H(p) = (p(z1), . . . , p(zk)).

Since two polynomials with degrees less than k can be equal on at most k points, The function H is injective.

Furthermore, |P| = |Fkq | = qk, since a polynomial p ∈ P can be specified by k coefficients from Fq. Therefore, H is

bijective, and hence if P ∈ P is sampled uniformly at random, H(P ) is a uniform random vector.

Now let z1, . . . , zn ∈ Fq be distinct, and define G : P → Fnq by

G(p) = (p(z1), . . . , p(zn)).

By the above analysis, when P ∈ P is sampled uniformly at random, any k coordinates of G(P ) are independent and

uniform random.

All that remains is to bridge the gap between field elements and bits. Let q be a power of two, so that field elements

can be naturally encoded as bitstrings. The seed of our PRG describes a polynomial p ∈ P by giving the encodings of

its k coefficients; this requires k log q = k · ⌈log n⌉ bits if we pick q to be the smallest power of two that is at least n.

The output of our PRG is the sequence of first bits of the encodings of the coordinates of G(p). □

Fooling low-depth decision trees: Every leaf of a decision tree of depth at most k corresponds to a k-junta.

Therefore, k-wise uniform random variables perfectly fool decision trees of depth at most k.

Proposition 24.11 (Perfect PRGs for low-depth decision trees). Let n, k ∈ N and let X be a k-wise uniform distri-

bution over {0, 1}n. Then X perfectly fools depth-k decision trees.

1Unfortunately, in the literature, people often use the term k-wise independence to refer to k-wise uniform. This practice is a little
sloppy because it does not clarify the marginal distributions of the individual coordinates of X.
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Proof. Let f be a depth-k decision tree. Let L be the set of accepting leaves of f , i.e., leaves labelled 1. For each leaf

u ∈ L, define fu : {0, 1}n → {0, 1} by letting fu(x) = 1 iff f arrives at u when it reads x. Note that fu is a k-junta.

Furthermore, we can express f as

f(x) =
∑
u∈L

fu(x).

Therefore, by linearity of expectation,

E[f(X)] = E

[∑
u∈A

fu(X)

]
=
∑
u∈L

E[fu(X)] =
∑
u∈L

E[fu] = E

[∑
u∈L

fu

]
= E[f ]. □

24.4 Almost k-wise uniformity

Let X ∈ {0, 1}n be a random variable and recall the following notions.

• X is ε-Fourier uniform if |E[χS(X)]| ⩽ ε for all nonempty S ⊆ [n].

• X is k-wise uniform if E[χS(X)] = 0 for all nonempty S ⊆ [n].

In other words, ε-Fourier uniform PRGs ε-fool all Fourier characters, and k-wise uniform PRGs perfectly fool all

characters up to level k.

What if we try to ε-fool all characters up to level k? Can we obtain a smaller seed lengths in this case?

Definition 24.12. We say that a random variable X ∈ {0, 1}n is ε-almost k-wise uniform if for every nonempty set

S ⊆ [n] with |S| ⩽ k, we have |E[χS(X)]| ⩽ ε.

Theorem 24.6 provides an explicit ε-Fourier uniform PRG with seed length O(log(n/ε)), and Theorem 24.10

provides an explicit k-wise uniform PRG with seed length O(k log(n)), and both of these bounds are optimal.

Theorem 24.13 (almost k-wise uniform generators [NN93]). For every n, k ∈ N and every ε > 0, there is an explicit

ε-almost k-wise generator with output length n and seed length O(log(k/ε) + log log n).

Proof. Let G : {0, 1}s → {0, 1}n be a k-wise uniform generator that is also a linear transformation when we think of it

as a map between vector spaces, G : Fs2 → Fn2 . One can verify that the k-wise uniform generator that we constructed

to prove Theorem 24.10 is indeed a linear transformation. Let Y be an ε-Fourier uniform distribution over {0, 1}s.
We will show that G(Y ) fools parities of at most k bits. Indeed, let f(x) =

∑
i∈S xi, where x ∈ Fn2 and |S| ⩽ k. Let

M ∈ Fn×s2 be the matrix representation of G, with rows M1, . . . ,Mn ∈ Fs2. Then for any y ∈ Fs2,

f(G(y)) =
∑
i∈S
⟨Mi, y⟩ =

∑
i∈S

s∑
j=1

Mijyj =

s∑
j=1

(∑
i∈S

Mij

)
yj .

This is a parity function of the variables y1, . . . , ys. Therefore, since Y is ε-Fourier uniform,

|E[f(G(Y ))]−E[f(G(U))]| ⩽ ε/2.

Furthermore, since G is k-wise uniform and f is a k-junta, E[f(G(U))] = E[f ]. Therefore, G(Y ) is k-wise ε-biased.

To achieve the promised seed length, we can plug in the constructions of Theorems 24.6 and 24.10 for G and Y ,

respectively. □

Once again, the seed length of Theorem 24.13 is optimal up to constant factors.

24.5 The sandwiching lemma

Suppose we wish to show that a random variable X fools some class F . A common approach has two steps:

1. Prove that X fools some simpler class F ′.
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2. Prove a transfer theorem, saying that every distribution that fools F ′ also fools F (possibly with some loss in

the error parameter).

Suppose X is a distribution that fools F ′, and F ′ approximately simulates F in some way. For instance, for every

f ∈ F , there might exist an f ′ ∈ F ′ such that E[|f − f ′|] is small. However, this alone does not guarantee that X fools

F . While f and f ′ behave similarly under the uniform distribution, it is not obvious whether they behave similarly

under the pseudorandom distribution X. A common technique to address this challenge requires a stronger notion of

approximation called sandwiching.

Definition 24.14 (Sandwiching). Let f, fℓ, fu : {0, 1}n → R. We say that f is δ-sandwiched between fℓ and fu if

fℓ ⩽ f ⩽ fu and E[fu − fℓ] ⩽ δ.

Lemma 24.15 (Sandwiching Lemma). Suppose f is δ-sandwiched between fℓ and fu, and suppose X fools fℓ and fu
with error ε. Then X fools f with error ε+ δ.

Proof.

E[f(X)] ⩽ E[fu(X)] ⩽ E[fu] + ε ⩽ E[f ] + ε+ δ

E[f(X)] ⩾ E[fℓ(X)] ⩾ E[fℓ]− ε ⩾ E[f ]− ε− δ. □

To illustrate the sandwiching technique, let us return to the decision tree model. Recall that we showed that k-wise

uniform generators fool depth-k decision trees (Proposition 24.11). We now show that k-wise uniform generators also

fool bounded-size decision trees.

Proposition 24.16 (Limited independence fools bounded-size decision trees). If X is a k-wise uniform distribution,

then X fools size-m decision trees with error m · 2−k.

Proof. Let f be a size-m decision tree. Define a depth-k decision tree fℓ by starting with f and replacing each internal

node at depth exactly k with a leaf labelled 0 and deleting all of its descendants. Similarly, define fu by replacing each

internal node at depth k with a leaf labelled 1. Let us show that f is δ-sandwiched between fℓ and fu, for δ = m · 2−k.
Clearly fℓ ⩽ f ⩽ fu. For each “new” leaf u of fℓ or fu (i.e., u was not a leaf in f), the probability of reaching u

on a uniform random input is precisely 2−k. The number of new leaves is the number of internal nodes of f at depth

k, which is at most m. Therefore, by the union bound, E[fu − fℓ] ⩽ m · 2−k.
The Sandwiching Lemma completes the proof because X fools fℓ and fu with error 0. □

Remark 24.17. Proposition 24.16 implies that using k-wise uniform generators, we can ε-fool size-m decision trees

using a seed of length O(log(m/ε) · log n). This seed length is inferior to the seed length that we can obtain from

Proposition 24.7 using the fact that ∥f∥A ⩽ m. However, sometimes, it is useful to understand the effect of specific

classes of distributions, such as k-wise uniform distributions, on a given model of computation.

24.6 Braverman’s theorem: Poly-logarithmic independence fools AC0

In this section, we will show that every k-wise uniform generator fools constant-depth polynomial-size AC circuits for a

suitable k = polylog(n). This result was first conjectured by Linial and Nisan [LN90]. Two decades later, Bazzi [Baz09]

proved it true for depth-2 circuits, with a simpler proof subsequently provided by Razborov [Raz09]. Finally, Braver-

man [Bra10] proved that k-wise independence for polylogarithmic k fools AC0 circuits. Further improvements to the

parameters were made by Tal [Tal17] and Harsha and Srinivasan [HS19].

The proof of Braverman’s theorem hinges on the two classical approximation of AC0 circuits by low degree

polynomials, Theorem 22.2 of Linial, Mansour, and Nisan [LMN93] and Theorem 22.4 of Razborov and Smolen-

sky [Raz87, Smo87]. The bounds in both theorems have been improved recently, and we will need these stronger

bounds to obtain the promised bound of (logm)O(d) · log(1/ε) in Theorem 24.20.

Theorem 24.18 (Improved Razborov-Smolensky [HS19]). Let µ be a probability distribution over {0, 1}n, and let

f : {0, 1}n → {0, 1} be computed by an AC circuit of depth d and size M . For every δ > 0, there is a polynomial

g : {0, 1}n → R with
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1. (error bound)

Pr
x∼µ

[f(x) ̸= g(x)] ⩽ δ.

2. (degree bound)

deg(g) = (logM)O(d) log(1/δ).

3. (boundedness)

∥g∥∞ ⩽ 2(logM)O(d) log(1/δ).

4. (Error detection) Moreover, there exists an AC circuit E with depth d+O(1) and size MO(1) such that

f(x) ̸= g(x)⇐⇒ E(x) = 1.

Perhaps the most mysterious part of Theorem 24.18 is the fourth assertion regarding the existence of a small circuit

that can inform us whether the approximation g matches the value of f(x). To verify this, recall the proof of Theo-

rem 22.4, where we recursively replaced each ∧ and ∨ gate with a simple random polynomial. The errors introduced

in these replacements are localized, and a small depth 2 circuit can check whether the polynomial approximation

accurately computes the desired value at such a gate.

Theorem 24.19 (Improved LMN bound [Tal17]). Let f : {0, 1}n → {0, 1} be computable by an AC circuit of depth d

and size M , and let γ > 0. There exists g : {0, 1}n → R such that:

1. (L2 approximation)

∥f − g∥2 ⩽ γ.

2. (degree bound)

deg(g) ⩽ O(logM)d−1 · log(1/γ).

With Theorem 24.18 and Theorem 24.19 in hand, we can prove Braverman’s theorem.

Theorem 24.20 (Braverman’s theorem [Bra10, Tal17, HS19]). For every n,M, d ∈ N and ε > 0, there is a value

k = (logM)O(d) · log(1/ε)

such that if X is a random variable with a k-wise uniform distribution over {0, 1}n, then it ε-fools any AC of size

M ⩾ n and depth d. Consequently, there is an explicit ε-PRG for AC circuits of size M ⩾ n and depth d that has seed

length

(logM)O(d) log(1/ε).

Proof. Let f : {0, 1}n → {0, 1} be the function computed by an AC circuit of size M and depth d, and let X be

a random variable with a k-wise uniform distribution µX over {0, 1}n with the specified k. Let ν be the uniform

distribution on {0, 1}n. We need to show that |EµX
[f ]− Eν [f ]| ⩽ ε. Since one can replace f with ¬f in the statement

of the theorem, without loss of generality, it suffices to prove

Eν [f ]− EµX
[f ] ⩽ ε. (24.1)

Define µ := 1
2 (µ+ ν), and let f̃ be the corresponding polynomial approximation for f from Theorem 24.18, and let

E(x) := 1[f(x) ̸=f̃(x)] be the corresponding error function satisfying Eµ[E] ⩽ δ := ε
8 . We have

deg(f̃) ⩽ O(logM)d−1 · log(1/δ) and
∥∥∥f̃∥∥∥

∞
⩽ 2(logM)O(d) log(1/ε),

and by the definition of µ,

EµX
[E] ⩽ 2δ =

ε

4
and Eν [E] ⩽

ε

4
.

Define F := f ∨ E. Since E(x) = 0 implies f(x) = F (x), we have

|EµX
(F )− EµX

[f ]| ⩽ EµX
(E) ⩽

ε

4
and |Eν(F )− Eν [f ]| ⩽ Eν(E) ⩽

ε

4
.
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Thus, to prove Equation (24.1), it suffices to prove

Eν [F ]− EµX
[F ] ⩽

ε

3
. (24.2)

We will prove (24.2) by providing an appropriate lower sandwiching polynomial pℓ.

Since the error function E is computable by an AC circuit of size MO(1) and depth d + O(1), we may apply

Theorem 24.19 to obtain a polynomial approximation Ẽ that satisfies
∥∥∥E − Ẽ∥∥∥

2
⩽ γ for an error parameter γ that

will be specified later. Define

q := f̃(1− Ẽ) and pℓ := 1− (1− q)2.

See Figure 24.1 for an illustration of these functions.

Claim 24.21. We have pℓ ⩽ F . Furthermore, for sufficiently small γ = 2−(logM)O(d) log(1/ε), we have ∥F − pℓ∥1 ⩽ ε
3 .

Proof. First, we show that for every x, we have pℓ(x) ⩽ F (x). If F (x) = 1, then pℓ(x) ⩽ 1 ⩽ F (x). If F (x) = 0, then

f(x) = E(X) = 0, which implies 0 = f̃(x) = pℓ(x) = q(x). The latter also shows

∥F − pℓ∥1 = Eν |F − pℓ| = Eν |F − pℓ|1[F=1] = Eν |1− q|21[F=1] ⩽ Eν |F − q|2 = ∥F − q∥22 .

On the other hand, by the triangle inequality, we have

∥F − q∥2 ⩽
∥∥∥F − f̃(1− E)

∥∥∥
2
+
∥∥∥f̃(1− E)− f̃(1− Ẽ)

∥∥∥
2
⩽
√

Pr
ν
[E = 1] +

∥∥∥f̃∥∥∥
∞

∥∥∥E − Ẽ∥∥∥
2

⩽

√
ε

4
+
∥∥∥f̃∥∥∥

∞
γ ⩽

√
ε

4
+ 2(logM)O(d) log(1/ε)γ ⩽

√
ε

3
,

provided that γ = 2−(logM)O(d) log(1/ε) is sufficiently small. □

Our choice of γ yields

deg(pℓ) ⩽ 2 deg(f̃) deg(Ẽ) ⩽ (logM)O(d) log(1/ε).

Taking k = deg(pℓ) + 1, we have EµX
pℓ = Eνpℓ. Therefore, by the Claim 24.21,

Eν [F ]− EµX
[F ] ⩽ Eν [F ]− EµX

[pℓ] ⩽
ε

3
+ Eν [pℓ]− EµX

[pℓ] =
ε

3
,

which verifies Equation (24.2), and completes the proof. □

Figure 24.1: TO DO: Braverman’s functions.

Braverman’s theorem represents neither the first nor the strongest known unconditional PRG for AC0. Instead, the

advantage of Braverman’s theorem is that k-wise uniformity is a particularly simple and general PRG construction.

It is an open problem to improve the parameters of Braverman’s theorem even further and find the optimal k such

that every k-wise uniform random variable ε-fools AC circuits of sizeM and depth d. There are counterexamples [LV96]

showing that k = Ω((logm)d−1 log(1/ε)), but that still leaves a significant gap between the lower and upper bounds.

Conjecture 24.22 (Improved Braverman’s theorem). For every m, d ∈ N and ε > 0, there exists a value

k = (logM)d+O(1) log(1/ε)

such that every k-wise uniform distribution ε-fools AC circuits of size M and depth d.

Explicit PRGs for AC0 circuits with seed length (logM)d+O(1) log(1/ε) are already known [TX13, Tal17, ST19,

Kel21, Lyu22]; the question is whether a generic k-wise uniform generator suffices.
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Chapter 25

PRGs from polarizing random walks

In chapter chapter, we will discuss a new method due to [CHHL19b] for constructing pseudorandom generators that uses

the novel idea of polarizing random walks. The applications of these ideas go beyond the construction of pseudorandom

generators; for instance, Raz and Tal [RT22] utilized these techniques to establish their groundbreaking result on the

oracle separation of the quantum complexity class BQP and the polynomial hierarchy PH.

Similar to Chapter 24, most of the content of this chapter is taken from the survey [HH24].

25.1 Fractional PRGs

For the purposes of this chapter, it will be convenient to work with functions f : {−1, 1}n → R instead of the domain

{0, 1}n. The strategy of [CHHL19b] is to first design a relaxation of a PRG, called a fractional PRG, that takes values

in the continuous cube [−1, 1]n. Then, we will use the polarized random walk to round the fractional PRG into a

genuine PRG in {−1, 1}n.
The Fourier expansion of f naturally extends f to a function f : [−1, 1]n → R as follows.

f(x) =
∑
S⊆[n]

f̂(S)
∏
i∈S

xi for x ∈ [−1, 1]n.

We can naturally define the fractional PRGs using this extension.

Definition 25.1 (Fractional PRGs). Let f : {−1, 1}n → R, and extend f to the domain [−1, 1]n via the Fourier

expansion. A random variable X ∈ [−1, 1]n is said to ε-fool f if

|E[f(X)]− E[f ]| ⩽ ε.

A fractional ε-PRG with seed length s for a family F of Boolean functions is a function G : {−1, 1}s → [−1, 1]n such

that G(Us) fools every f ∈ F with error ε, where Us is the uniform random variable over {−1, 1}s.

Since E[f ] = f (⃗0), the trivial random variable that always takes value 0⃗ ∈ [−1, 1]n perfectly fools every function f .

Obviously, this construction is too trivial and useless for constructing genuine PRGs. To address this issue, we focus

on random variables X ∈ [−1, 1]n where each Xi has a large variance. We will show how to transform such random

variables into {−1, 1}n-valued random variables with comparable fooling properties.

Definition 25.2 (Noticeability). We say that a random variable X ∈ [−1, 1]n is q-noticeable for a parameter q ⩾ 0,

if for every i ∈ [n], we have E[X2
i ] ⩾ q.

25.2 From fractional PRGs to PRGs

In this section, we will show that it is possible to transform fractional PRGs into PRGs. We will require the fractional

PRG to be symmetric.
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Definition 25.3 (Symmetric random variables). Let X be a random variable distributed over [−1, 1]n. We say that

X is symmetric if for every x ∈ [−1, 1]n, we have Pr[X = x] = Pr[X = −x].

In addition to the symmetry condition, it will also be essential that the PRG not only fools f ∈ F , but it also

fools all the restrictions of f . Consequently, in the following theorem, we require that the class F is closed under

restrictions.

Theorem 25.4 (Fractional PRG to PRG [CHHL19b]). Suppose that F is a family of functions f : {−1, 1}n → {0, 1}
that is closed under restrictions. Assume there exists an explicit q-noticeable symmetric fractional PRG for F with

error ε and seed length s. Then there exists an explicit PRG for F with seed length O(s · q−1 · log(n/ε)) and error

O(ε · q−1 · log(n/ε)).

To prove Theorem 25.4, we will take a random walk through the solid hypercube [−1, 1]n. The construction of

the random walk is quite natural. We will take Y (0) = 0n as the starting point, since E[f ] = f(0n). We wish

to have a random walk that converges quickly to the Boolean cube {−1, 1}n, while each step does not incur much

error. The fractional PRG provides us with the first step of the random walk. If we set Y (1) = Y (0) + X = X,

then E[f(X)] ≈ E[f ] since X fools f . For the next step, naturally, we wish to take another step using the fractional

PRG and set Y (2) = Y (1) + X ′ where X ′ is an i.i.d. copy of X. However, since Y (1) + X ′ might fall outside of the

cube [−1, 1]n, we have to scale the coordinates of X ′ to guarantee that Y (1) +X ′ remains in the cube [−1, 1]n. See

Figure 25.1.

Figure 25.1: TO DO: polarized random walk.

For two vectors x, x′ ∈ [−1, 1]n, define x ⊙ x′ ∈ [−1, 1]n to be their coordinate-wise product. Moreover, for every

vector y ∈ [−1, 1]n define dy ∈ [0, 1]n to be the vector with i-th coordinate (dy)i = 1 − |yi|, i.e., (dy)i is the distance

from yi ∈ [−1, 1] to the Boolean endpoints {−1, 1}. The vector dy defines the dimensions of the largest subcube inside

[−1, 1]n centred at y. Using this notation, we can now define the random walk. let X(1), . . . , X(t) be t independent

samples of X where t is to be determined later.

• Y (0) = 0n, and

• For j > 0, let Y (j) = Y (j−1) + dY (j−1) ⊙X(j).

We will show that this random walk quickly approaches {−1, 1}n. Still, there is a chance that the coordinates of Y (t)

are never exactly integers. The final construction takes care of this by outputting the coordinate-wise signs of Y (t).

To this end, for x ∈ Rn define sgn(x) ∈ {−1, 1}n to be the vector with i-th coordinate sgn(x)i = 1 ⇐⇒ xi > 0.

The Generator G:

1. Let X1, . . . , Xt be independent copies of X for a suitable value t = O(q−1 · log(n/ε))

2. Let Y (0) = 0n, and for j > 0 define Y (j) = Y (j−1) + dY (j−1) ⊙X(j)

3. Output sgn(Y (t))

25.2.1 Analysis of the random walk

To prove the correctness of the generator G, we will prove that the random walk has three properties:

(a) Each step introduces little error: For every f ∈ F and j ∈ [t],∣∣∣E [f(Y (j))
]
− E

[
f(Y (j+1))

]∣∣∣ ⩽ ε.

(b) The walk polarizes with high probability:

Pr[∥dY (t)∥∞ ⩽ ε/n] ⩾ 1− ε.
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(c) The final rounding operation introduces little error: For every f ∈ F , conditioned on polarization,

|f(Y (t))− f(sgn(Y (t)))| ⩽ ε.

We prove these properties in the next three lemmas.

Lemma 25.5 (Steps incur small error). Let F be a family of functions f : {−1, 1}n → R that is closed under

restrictions, and suppose X ∈ [−1, 1]n fools F with error ε. Then for every f ∈ F and y ∈ [−1, 1]n,

|f(y)− E[f(y + dy ⊙X)]| ⩽ ε.

In particular, for every j ∈ [t], ∣∣∣E [f(Y (j))
]
− E

[
f(Y (j+1))

]∣∣∣ ⩽ ε.

Proof. Let y ∈ [−1, 1]n be fixed. Sample a random restriction ρ ∈ {−1, 1, ⋆}n, independent of X, where the coordinates

of ρ are independent and distributed as follows:

ρi =

{
sgn(yi) with probability |yi|
⋆ with probability 1− |yi|.

for x ∈ [−1, 1]n, let ρ ◦ x be defined by filling in the ⋆ coordinates of ρ using x. That way, for each coordinate i ∈ [n],

we have

Eρ[(ρ ◦ x)i] = |yi| · sgn(yi) + (1− |yi|) · xi = yi + (1− |yi|) · xi,

and hence overall,

Eρ[ρ ◦ x] = y + dy ⊙ x.

It follows that

Eρ[fρ(x)] = Eρ[f(ρ ◦ x)] = f (Eρ[ρ ◦ x]) = f(y + dy ⊙ x).

Consequently,

|f(y)− EX [f(y + dy ⊙X)]| = |Eρ[fρ(0
n)]− Eρ,X [fρ(X)]| ⩽ Eρ [|fρ(0n)− EX [fρ(X)]|] ⩽ ε,

where the last step uses that F is closed under restriction, and hence X fools fρ with error ε. □

Next, we will show that the random walk quickly converges to {−1, 1}n. For this argument, we need the assumption

that X is q-noticeable for a large enough q > 0 and symmetric. The symmetry assumption is helpful because of the

following lemma concerning the case n = 1.

Lemma 25.6. Let X ∈ [−1, 1] be a symmetric q-noticeable random variable. Then

E
[√

1−X
]
⩽ 1− q/8.

Proof. Let Y = |X|, and sample Z ∈ {±1} independently of X. Then the product Y Z is distributed identically to X.

Furthermore, for each fixed value y ∈ [0, 1], we have

(
E
[√

1− yZ
])2

=

(√
1− y +

√
1 + y

2

)2

=
1 +

√
1− y2
2

⩽ 1− y2

4
.

Therefore,

E
[√

1−X
]
= EY

[
EZ
[√

1− Y Z
]]

⩽ EY
[√

1− Y 2/4
]
⩽ EY [1− Y 2/8] ⩽ 1− q/8. □

Next, let us use Lemma 25.6 to show that coordinate-wise polarization happens with high probability. Indeed,

looking ahead, the probability will be high enough to allow a union bound over all coordinates.
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Lemma 25.7 (Key observation: Polarization). Let A(1), . . . , A(t) ∈ [−1, 1] be independent symmetric q-noticeable

random variables. Define B(0) := 0, and for j > 0, define

B(j) := B(j−1) + (1− |B(j−1)|) ·A(j). (25.1)

Then Pr[1− |B(t)| ⩾ e−tq/8] ⩽ e−tq/16.

Proof. Let us investigate the change in the distance 1 − |B(·)| when we apply the update rule (25.1). If sgn(A(j)) =

sgn(B(j−1)) (the “good case”), the distance decreases by a factor of 1 − |A(j)|. If sgn(A(j)) ̸= sgn(B(j−1)) (the “bad

case”), the distance might increase, but at most, it increases by a factor of 1 + |A(j)|. Either way, for j > 0, we have

1− |B(j)| ⩽ (1− |B(j−1)|) · (1−A(j) · sgn(B(j−1))).

We have assumed that A(1), . . . , A(j−1) are symmetric. It follows that B(j−1) is also symmetric. Therefore, |B(j−1)|
and A(j) · sgn(B(j−1)) are independent. As a consequence,

E
[√

1− |B(j)|
]
⩽ E

[√
1− |B(j−1)|

]
· E
[√

1−A(j) · sgn(B(j−1))

]
.

The random variable A(j) · sgn(B(j−1)) is symmetric and q-noticeable, so we may apply Lemma 25.6, giving us

E
[√

1− |B(j)|
]
⩽ E

[√
1− |B(j−1)|

]
· (1− q/8).

By induction, this implies

E
[√

1− |B(t)|
]
⩽ (1− q/8)t ⩽ e−qt/8.

The lemma follows from Markov’s inequality. □

We show that the final rounding step does not introduce too much error.

Lemma 25.8 (Rounding Error). Let f : {−1, 1}n → {0, 1} be a function, and extend it to the domain [−1, 1]n via the

Fourier expansion. For every y ∈ [−1, 1]n,

|f(y)− f(sgn(y))| ⩽
n∑
i=1

(1− |yi|) ⩽ n · ∥dy∥∞.

Proof. For y ∈ [−1, 1]n, let Πy ∈ {−1, 1}n be the random variable with independent coordinates satisfying E[Πy] = y.

We have

|f(y)− f(sgn(y))| = |E[f(Πy)]− f(sgn(y))| ⩽ Pr[Πy ̸= sgn(y)] ⩽
n∑
i=1

1− |yi|
2

,

where the final inequality follows from the union bound. □

We can now analyze G and complete the proof of Theorem 25.4. The output of the generator G is sgn(Y (t)) for

t = 16 log(n/ε)/q. The seed for G is determined by t independent samples from the fractional generator, and hence

has seed-length ts = O(s log(n/ε)/q). Let E denote the event that ∥dY (t)∥∞ ⩽ e−tq/8 ⩽ ε/n. Then, we can bound the

error of the generator sgn(Y (t)) as follows:

|E[f ]− E[f(sgn(Y (t)))]| ⩽ |E[f(sgn(Y (t)))]− E[f(Y (t))]|+
t∑

j=1

|E[f(Y (j))]− E[f(Y (j−1))]|

⩽ |E[f(sgn(Y (t)))− f(Y (t)) | E]|+ 2Pr[E] + εt (by Lemma 25.5)

⩽ n
ε

n
+ 2n · e−tq/16 + εt ⩽ O(ε log(n/ε)/q). (by Lemmas 25.7 and 25.8)
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25.3 Constructing fractional PRGs

Now that we know how to convert a fractional PRG with noticeable coordinates to a standard PRG let’s discuss the

construction of fractional PRGs.

25.3.1 Fractional PRGs from random restrictions

Let F be a class of functions f : {−1, 1}n → {0, 1} that we wish to fool. Suppose we have shown that functions

in our class F simplify under random restrictions. Let ρp denote the random restriction that sets every variable

independently to ⋆ with probability p, and to 0 and 1 each with probability 1−p
2 . Suppose we have identified a class

Fsimp of simpler functions and values p, δ > 0 such that for each f ∈ F , we have

Pr[fρp
∈ Fsimp] ⩾ 1− δ.

The following lemma shows that if random restrictions simplify a class F to another class Fsimp for which we have

good PRGs, then we obtain a good fractional PRG for the original class F .

Lemma 25.9 (Simplification implies fractional PRGs). Let F and Fsimp be classes of functions f : {−1, 1}n → {0, 1}.
Let p, δ > 0, and suppose that for each f ∈ F , we have

Pr[fρp ∈ Fsimp] ⩾ 1− δ.

Let X be a distribution over {−1, 1}n that ε-fools Fsimp. Then pX is p2-noticeable and fools F with error ε+ 2δ.

Proof. Since the coordinates of pX take ±p-values, it is trivially p2-noticeable. For each fixed string x ∈ {−1, 1}n, the
composition ρp ◦ x has a product distribution over {−1, 1}n, where

E[(ρp ◦ x)i] = (1− p)0 + pxi = p · xi.

Therefore, E[f(ρp ◦ x)] = f(px) = Tpf(x) where Tp is the noise operator. Consequently,

EX [f(pX)] = Eρp,X [f(ρp ◦X)].

Since X fools the functions in Fsimp with error ε, we have∣∣Eρp,X [f(ρp ◦X)]− E[f ]
∣∣ = Pr[fρp

∈ Fsimp]ε+Pr[fρp
̸∈ Fsimp] ⩽ (1− δ)ε+ δ ⩽ ε+ 2δ.

□

We saw in Corollary 21.11, that as a consequence of H̊astad’s switching lemma, if f : {0, 1}n → {0, 1} is computable

by an AC circuit of depth d and size M , then for p = 1/Θδ(logM)d−1, we have

Pr[dt(fρp) ⩽ log(M/δ)] ⩾ 1− δ.

Combining with the PRGs for low-depth decision trees, we obtain the following fractional PRG for AC0.

Corollary 25.10 (Fractional PRGs for AC0). For every n,m, d ∈ N and every ε > 0, there is q = 1/Θq(logM)2d−2

and an explicit q-noticeable fractional PRG with seed length O(log(1/ε) + log log n) that ε-fools AC circuits of depth d

and size M .

For example, by combining Theorem 25.4 and Corollary 25.10, we get the following PRG for AC0.

Corollary 25.11 (PRG for AC0 based on simplification under truly random restrictions). For every n,m, d ∈ N and

ε > 0, there is an explicit ε-PRG for depth-d size-m AC0 circuits on n input bits that has seed length

Õ(logm)2d−2 · Õ(log(n/ε) · log(1/ε)).
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25.3.2 Fractional PRGs from Fourier growth

Recall from Chapter 23 that the Fourier algebra norm ∥f∥A :=
∥∥∥f̂∥∥∥

1
is the L1-sum of the absolute values of the Fourier

coefficients. Given a function f : {−1, 1}n → R and t ∈ [n], define

L1,t(f) =
∥∥f=t∥∥

A
=
∑
S⊆[n]
|S|=t

∣∣∣f̂(S)∣∣∣ .
Tail bounds on L1,d(f) are quite useful in complexity theory and theory of learning and they have been established

for several classes of functions. For example, [LPV22] recently showed that the so-called regular read-once branching

programs of width w satisfy L1,t(f) ⩽ (w− 1)t. Similarly, Tal [Tal17] proved the following tail bound for AC0 circuits.

Theorem 25.12 (Tal [Tal17]). Let f : {−1, 1}n → {0, 1} be a Boolean function computed by an AC circuit of depth d

and size M , and let t be any integer. Then

L1,t(f) ⩽ O(log(M)d−1)t.

The following proposition shows that tail bounds on L1,t(f) imply the existence of explicit noticeable fractional

PRGs against f .

Proposition 25.13 (Fourier growth and fractional PRGs). Let a, b > 0 and ε > 0 be constants and suppose f :

{−1, 1}n → R satisfies the tail bound

L1,t(f) ⩽ a · bt (25.2)

for every t ∈ [n]. Let X ∈ {−1, 1}n be a δ-almost k-wise uniform random variable where

δ :=
ε

2a
and k :=

⌈
log

(
2a

ε

)⌉
.

Then for p := 1
2b , the random variable pX is p2-noticeable and it ε-fools f .

Proof. Note E[f(pX)] = Tpf(X) and

|E[Tpf(X)]− E[f ]| =

∣∣∣∣∣∣∣∣
∑
S⊆[n]
S ̸=∅

p|S|f̂(S)EχS(X)

∣∣∣∣∣∣∣∣ ⩽
∑
S⊆[n]
S ̸=∅

p|S|
∣∣∣f̂(S)∣∣∣ · |EχS(X)| .

When |S| ⩽ k, we have |EχS(X)| ⩽ δ. When |S| > k, we use the trivial bound |EχS(X)| ⩽ 1. Plugging these bounds

into the above inequality, we get

|E[Tpf(X)]− E[Tpf ]| ⩽ δ · a ·
k∑
t=1

(pb)t + a ·
n∑

t=k+1

(pb)t ⩽ δa+ 2−ka ⩽ ε.

□

We can use the polarized random walk to convert the fractional PRG of Proposition 25.13 into a genuine PRG.

Corollary 25.14. Let a, b > 0 and ε > 0 be constants, and let F be a class of Boolean functions f : {−1, 1}n → {0, 1}.
Suppose F is closed under restrictions, and every f ∈ F satisfies L1,t(f) ⩽ a · bt for every t ∈ [n]. There is an explicit

ε-PRG for f with seed length

O(b2 · log n · (log(ab/ε) + log log n)).

Proof. Apply Proposition 25.13 with a sufficiently small error parameter ε1 = O( ε
b2 log(n) log(b/ε) ). Let p =

1
2b and

δ = ε1/(2a) and k = ⌈log(2a/ε1)⌉

162



as in the statement of Proposition 25.13. By Theorem 24.13, one can generate the fractional PRG pX using a seed of

length s = O(log(k/δ) + log log n). Applying the polarized random walk of Theorem 25.4 converts the fractional PRG

pX to a standard PRG for F with seed length

O(s · p−2 · log(n/ε1)) = O(b2 · log n · (log(ab/ε) + log log n)).

and error

O(ε1 · p−2 · log(n/ε1)) ⩽ ε.

□

25.4 Concluding remarks

More recently, it was shown in [CHLT18] that if instead of using pX for a δ-almost k-wise uniform PRGs X, one can

use a more elaborate construction of fractional PRGs, then we obtain a fractional PRG using only second-level Fourier

bounds. Combined with the discussed polarized random walk, their construction implies the following theorem.

Theorem 25.15 ([CHLT18]). Let F be a class of Boolean functions closed under restrictions. Let ε > 0 be constants

and suppose every f ∈ F satisfies

L1,2(f) =
∥∥f=2

∥∥
A
⩽ α. (25.3)

Then there is an explicit ε-PRG for f with seed length O
(
(α/ε)2+o(1) polylog(n)

)
.

Subsequently, [CGL+21] showed that better bounds could be achieved if bounds on higher Fourier levels are

available, and interestingly, that fractional PRGs can be achieved even from bounds on |
∑
S:|S|=d f̂(S)| where one can

have cancellations, as opposed to L1 bounds.

These works show that certain improved bounds on the Fourier tails of F2-polynomials will lead to new PRGs. For

isntance, the resolution of the following conjecture would be a major breakthrough in complexity theory, as currently

no explicit PRGs are known for polynomials of degree Ω(log(n)).

Conjecture 25.16 ([CHLT18]). If p : Fn2 → F2 is a polynomial of degree d and f : {0, 1}n → {0, 1} is the corresponding
Boolean function, then

L1,2(f) = O(d2).
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Chapter 26

Draft: The Semigroup method

In Chapter 10, we introduced the noise operator Tρ and studied some of its key properties. In this chapter, we take a

broader perspective by examining the noise operator as a specific instance of a more general class of operators.

The general class of operators we consider arises from random walks, and they are parameterized by time t ∈ [0,∞).

Given a (continuous time) random walk, the corresponding operator Qt maps f to the function

Qtf : a 7→ E[f(Xa(t))]

where Xa(t) is the position of the random walk at time t starting at point a.

We begin this chapter by analyzing the simplest case: the discrete random walk on the Boolean hypercube.

26.1 Poisson random walk on Hypercube

Consider the n-dimensional hypercube with the vertex set {0, 1}n, where two vertices are neighbours if and only if

they differ in one coordinate. Let us consider the standard discrete random walk on this graph, starting from a vertex

a ∈ {0, 1}n. The random walk is defined as follows:

• Initialization: Y a(0) = a is the starting point.

• Transition rule: At each discrete time t ∈ N, we choose the next vertex Y a(t) uniformly at random from the

n neighbours of the current vertex Y a(t− 1).

Let ft be the distribution of Yt, meaning ft(x) = Pr[Y a(t) = x]. Initially, this distribution is given by

f0(x) = 1a(x) = 2−n
∑
S⊆[n]

χS(a)χS(x).

Define the operator K : L2({0, 1}n)→ L2({0, 1}n) as

Kf(x) =
1

n

n∑
i=1

f(x⊕ ei), (26.1)

so that ft = Ktf0 for every integer t > 1. For every character χS , we have

KχS =
1

n
((n− |S|)χS − |S|χS) =

(
1− 2|S|

n

)
χS .

Thus, χS are eigenvectors of the operator K with corresponding eigenvalues (1− 2|S|/n). It follows that

ft = 2−n
∑
S⊆[n]

(
1− 2|S|

n

)t
χS(a)χS .
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Since ∣∣∣∣1− 2|S|
n

∣∣∣∣ < 1− 2

n
for S ̸∈ {∅, [n]} ,

we have ∥∥ft − 2−n
(
χ∅ + (−1)tχ[n]

)∥∥
∞ ⩽ (1− 2/n)

t ⩽ e−2t/n.

Therefore, as t→∞, we observe the following convergences:

• For even times:

f2t → 2−n
(
χ∅ + χ[n]

)
= 21−n1[

∑
xi≡0 mod 2],

• For odd times:

f2t+1 → 2−n
(
χ∅ − χ[n]

)
= 21−n1[

∑
xi≡1 mod 2].

In other words, on even time steps, this random walk quickly converges to the uniform measure on points with even

parity. On odd time steps, it converges to the uniform distribution on the points with odd parity. This phenomenon

corresponds to the bipartite structure of the hypercube, and it prevents the random walk from being fully ergodic (i.e.,

converging to the uniform distribution over all vertices).

The lazy random walk: To make the random walk ergodic, we modify the standard walk by introducing a lazy

transition rule. Given a parameter λ ∈ (0, 12 ), define the random walk Z(t) := Za,λ(t) as

• Initialization: Z(0) = a is the starting point.

• Transition rule: At time t ∈ N

– With probability 1− λ, stay at the current location: Z(t) = Z(t− 1);

– With probability λ, move to a uniformly random neighbour of Z(t− 1).

Let ft denote the distribution of the random walk at time t. The evolution of ft follows ft = Kλft−1, where

Kλ = (1− λ) Id+λK where K is defined in (26.1). Every character χS satisfies

KλχS = (1− λ)χS + λ

(
1− 2|S|

n

)
χS =

(
1− 2λ|S|

n

)
χS ,

and consequently

ft = Kt
λf0 = 2−n

∑
S⊆[n]

(
1− 2|S|λ

n

)t
χS(a)χS .

Since 1−2λ|S|/n < 1 unless S = ∅, the distribution ft of the lazy random walk will converge to the uniform measure on

the cube as t tends to infinity. We obtained a fully ergodic random walk by using laziness to eliminate the periodicity

of the standard random walk.

Continuous Limit of the Lazy Random Walk: When t is large, by the law of large numbers, the random walk

moves at roughly λ fraction of time steps. Hence, it is more natural to rescale time by considering f⌊nt/λ⌋. In other

words, consider n epochs, each consisting of 1/λ step so that, on average, we expect to make one move in every epoch.

By taking the limit λ→ 0, we obtain a continuous version of the walk. This leads to the formula

lim
λ→0

f⌊nt/λ⌋ = 2−n
∑
S⊆[n]

χS(a)e
−2t|S|χS .

We can rescale time by another factor of 2 to obtain the nicer formula:

lim
λ→0

f⌊nt/2λ⌋ = 2−n
∑
S⊆[n]

χS(a)e
−t|S|χS .
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The continuous random walk (Xa(t))t∈[0,∞) that is obtained as the limit in this way has the property that

Xa(t) ∼ 2−n
∑
S⊆[n]

χS(a)e
−t|S|χS . (26.2)

Note further that if instead of f0, we start with an arbitrary distribution µ and pick the starting point a randomly

according to µ, then the distribution at time t will be

lim
λ→0

µ⌊nt/2λ⌋ =
∑
S⊆[n]

e−t|S|µ̂(S)χS . (26.3)

This is equal to Te−t|S|µ. Now for the moment we depart from analyzing this random walk as the limit of the discrete

random walks, and consider a different and more direct perspective.

Recall that the exponential distribution with parameter λ is defined through its probability density function (pdf)

f(x, λ) =

{
λe−λx x ⩾ 0

0 x < 0.

An exponential distribution is supported on the interval [0,∞). Here λ > 0 is the parameter of the distribution, and

if λ = 1 the distribution is called the standard exponential distribution. Exponential distribution is the continuous

analogue of the geometric distribution, and can be interpreted as the time that it takes for an event to happen if it

has the occurrence rate of λ per unit of time (say a customer showing up in a store). It has the key property of being

memoryless, that is if E is exponentially distributed, then Pr(E ⩽ s+ t|E > s) = Pr(E ⩽ t). This means that as you

continue to wait, the chance of something happening “soon” neither increases nor decreases.

The Poisson distribution with parameter λ, denoted by Pois(λ), is the probability distribution on {0, 1, 2, . . .}
defined by

Pr[{k}] = λke−λ

k!
.

The Poisson distribution can be obtained using exponential random variables as time increments. Let E1, E2, . . . be

i.i.d. exponential random variables with parameter λ, and suppose the first event happens at time E1, the second at

time E1+E2, the third at time E1+E2+E3, etc. Then maxk(
∑k
i=1Ei < t), which is the number events that happen

until time t, has Poisson distribution with parameter λt. Now our goal is to define a continuous random walk on the

cube. First we need to define the standard Poisson process.

Definition 26.1. The standard Poisson process (N(t))t∈[0,∞) is an increasing integer-valued Markov process with

independent Poisson increments:

• N(0) = 0;

• For 0 ⩽ s ⩽ t, we have N(t)−N(s) ∼ N(t− s) ∼ Pois(t− s).

It follows from the above discussion that a Poisson process can be generated using increments with exponential

distributions: If E1, E2, . . . are i.i.d. random variables with standard exponential distribution, then defining

N(t) = max
k

(

k∑
i=1

Ei < t)

we obtain the standard Poisson process. The Poisson process has the Markov property which is defined as being

memoryless in the sense that the conditional probability distribution of future states of the process conditional on

both past and present values depends only upon the present state, not on the sequence of events that preceded it.

Since we are only concerned with the cube {0, 1}n, we project the Poisson process into {0, 1}. Define the {0, 1}-
valued process (N(t))t∈[0,∞) with M(t) = N(t) mod 2. Note that in general it is not true that the image of a Markov

process is always a Markov process, but in this case it is easy to see that (M(t))t∈(0,∞] is a Markov process.

Exercise 26.1. Show that the process (M(t))t∈[0,∞) defined above is a Markov process.

Exercise 26.2. Construct a Markov process (X(t))t∈[0,∞) and a function f such that (f(X(t)))t∈[0,∞) is not a Markov

process.
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Let us now calculate the transition probabilities of this process.

Claim 26.2. For 0 ⩽ s < t, we have

Pr[M(t) = 0|M(s) = 0] = Pr[M(t) = 1|M(s) = 1] =
(1 + e−2(t−s))

2
,

and

Pr[M(t) = 0|M(s) = 1] = Pr[M(t) = 1|M(s) = 0] =
(1− e−2(t−s))

2
.

Proof. We have

Pr[M(t) = 0|M(s) = 0] = Pr[N(t) ≡2 0|N(s) ≡2 0] = Pr[N(t)−N(s) ≡2 0|N(s) ≡2 0]

= Pr[N(t− s) ≡2 0] = Poist−s({0, 2, 4, . . .}) =
(1 + e−2(t−s))

2
.

The other cases are similar. □

We rescale time and define the process (X(t))t∈[0,∞) as X(t) =M(t/2) so that

Pr[X(t) = 0|X(s) = 0] = Pr[X(t) = 1|X(s) = 1] =
(1 + e−(t−s))

2
, (26.4)

and

Pr[X(t) = 0|X(s) = 1] = Pr[X(t) = 1|X(s) = 0] =
(1− e−(t−s))

2
. (26.5)

This process is homogeneous in both time and space. It is time homogeneous as the distribution of X(t) − X(s)

depends only on t− s, and it is space homogeneous as it is symmetric with respect to 0 and 1.

Let us also remark that we could construct the process (X(t))t∈[0,∞) directly from the transition equations (26.4)

and (26.5) without starting from the Poisson process. Indeed one only needs to verify that the Chapman-Kolmogorov

equations are satisfied. That is, setting ps,t(x, y) to the value of Pr[X(t) = y|X(s) = x] according to (26.4) and (26.5),

we need to verify that for 0 ⩽ s < t < u, and z, x ∈ {0, 1}, we have

ps,u(x, z) =
∑

y∈{0,1}

ps,t(x, y)pt,u(y, z). (26.6)

Then Kolmogorov’s extension theorem guarantees that there is a Markov process (X(t))t∈[0,∞) satisfying the transition

inequalities (26.4) and (26.5).

Now that we have constructed the Markov process (X(t))t∈[0,∞) on {0, 1}, we will use it to define a continuous

random walk on the cube {0, 1}n. Let a ∈ {0, 1}n be the starting point, and let (X1(t), . . . , Xn(t))t∈[0,∞) be i.i.d.

copies of (X(t))t∈[0,∞). Define the process (Xa(t))t∈[0,∞) as

Xa(t) = (a1 +X1(t), . . . , an +Xn(t)),

where the additions are in {0, 1}. Note that the process starts at Xa(0) = a, and then when the first change occurs in

(X1(t), . . . , Xn(t)), it jumps to the corresponding neighbors of a in the cube (i.e. to a + ei for some 1 ⩽ i ⩽ n), and

so on.

Denoting by ft the distribution of Xa(t), by (26.4) and (26.5), we have

ft(x) =

n∏
i=1

(
1 + (−1)ai+xie−t

2

)
= 2−n

∑
S⊆[n]

χS(a)e
−t|S|χS .

This is the same distribution that we obtained in (26.2) as the limit of the discrete lazy walks with proper rescaling

of time. As we will formally see in Section 26.2, this means that the two random walks coincide. This is a curious

fact. In the lazy random walk, there is no coordinate-wise independence, as at every move we change exactly one of

the coordinates. However in the Poisson random walk, coordinates behave totally independently. So it might seem
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mysterious that in the limit, the lazy random walk converges to the Poisson random walk and the coordinate-wise

dependencies disappear. Indeed this is part of a more general phenomenon that is called Poissonization. Let us explain

this using a simple example.

Example 26.3 (Poissonization). Consider a biased coin that comes up Head with probability p, and Tail with

probability 1− p. We flip the coin infinitely many times, and let Hn and Tn respectively denote the number of heads

and tails until time n. Obviously, these two random variables are totally dependent as Hn = n− Tn.
Now consider the following different process. Let E1, E2, . . . be an i.i.d. sequence of standard exponential random

variables. We wait until time E1 and toss the coin for the first time, then we wait for another E2 units of time and

toss the coin again, etc. For t ∈ [0,∞), let H ′
t and T

′
t respectively denote the number of heads and tails until time t.

Then H ′
t has distribution Pois(pt) and T ′

t has distribution Pois((1−p)t), and it is not hard to see that they are (rather

miraculously) independent.

The reason for this independence becomes apparent when we examine how the second process can be obtained as

the limit of the first one. Let N be a large number and set λ = 1
N , and consider the lazy version of the first process,

where now at time t, we do nothing with probability 1− λ, and with probability λ we flip our biased coin.

Let us compare this to two independent processes, one responsible for producing heads, and the other one for

producing tails. In the first one, at each time step, with probability λp we produce a Head, and we do nothing we

probability 1− λp. In the second process, at every time step, with probability λ(1− p) we produce a Tail, and we do

nothing we probability 1− λ(1− p). Observing these two processes simultaneously at a single time step, we see that

Pr[Nothing is produced] = (1− pλ)(1− (1− p)λ) = 1− λ+ p(1− p)λ2,

and

Pr[A Head is produced] = pλ(1− (1− p)λ) = pλ− p(1− p)λ2,

and

Pr[A Tail is produced] = (1− pλ)(1− p)λ = (1− p)λ− p(1− p)λ2,

and

Pr[A Head and a Tail are produced] = p(1− p)λ2.

Now if we let λ tend to 0, the quadratic terms in λ become negligible, and the process becomes indistinguishable form

the lazy biased coin process that we described above. That is in the limit, after proper rescaling of the time, the lazy

biased coin process, and the independent production of heads and tails converge to the same limit, the Poisson process

(H ′
t, T

′
t )t∈[0,∞) that we described above. This in particular verifies the independence for (H ′

t, T
′
t )t∈[0,∞).

The independence achieved by Poissonization of the discrete lazy random walk on the cube is highly desirable, and

it is one of the main motivations behind considering the random Poisson processes rather than the more elementary

object of the discrete random walk on the cube.

26.2 Semigroups

Consider the Poisson random walk (Xa(t))t∈[0,∞) constructed in Section 26.1. This random walk can be used to define

a class of operators. For f : {0, 1}n → R, a ∈ {0, 1}n and t ⩾ 0 define

Ptf(a) = E[f(Xa(t))].

In other words, to evaluate Ptf at a point a, we start our random walk at a, and look at the expected value of f on

the point Xa(t) obtained by running the random walk until time t. Note that by (26.4) and (26.5), we have

PtχS(a) = E[χS(Xa(t))] = E
∏
i∈S

(−1)ai+Xi(t) = χS(a)
∏
i∈S

E[(−1)Xi(t)] = χS(a)
∏
i∈S

e−t = e−t|S|χS(a).

Thus PtχS = χS and consequently for every function f : {0, 1}n → C, we have

Ptf =
∑
S⊆[n]

e−t|S|f̂(S)χS . (26.7)
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Hence, not surprisingly at this point, similar to (26.3), we have Ptf = Te−tf .

The operators Pt are clearly linear operators from L2({0, 1}n) to L2({0, 1}n). The next lemma shows that they

form a semigroup.

Lemma 26.4. We have P0 = Id, and Pt ◦ Ps = Pt+s for s, t ⩾ 0.

Proof. The fact that P0 is trivial. The identity Pt ◦Ps = Pt+s can be verified using the definition Ptf(a) = E[f(Xa(t))]

through Chapman-Kolmogorov equation (26.6) for the random walk. We leave the details as an exercise to the

reader. □

Trivially Pt satisfies the following basic properties

• Preserves Identity: Pt1 = 1.

• Preserves Positivity: If f ⩾ 0, then Ptf ⩾ 0.

• Preserves Order: If f ⩾ g, then Ptf ⩾ Ptg.

These observations motivate the following definition.

Definition 26.5. A set of linear operators (Qt)t∈[0,1) is called a semigroup if Q0 = Id, and Qt ◦ Qs = Qt+s for

t, s ∈ [0,∞). If it furthermore satisfies

1. Preserves Identity: Qt1 = 1,

2. Preserves Positivity: Qtf ⩾ 0 almost everywhere if f ⩾ 0 almost everywhere,

3. Preserves Order: If f ⩾ g almost everywhere, then Ptf ⩾ Ptg almost everywhere.

then it is called a Markovian semigroup.

Note that preserving order follows from preserving positivity, and can be omitted from the definition. Obviously

the semigroup (Pt)t∈[0,∞) constructed above is Markovian. Next we will show that in fact every Markovian semigroup

can be constructed through a Makrov process. Consider a Markovian semigroup (Qt)t∈[0,∞) and define the transition

probabilities of a time homogenuous random walk as

qt(a, b) := (Qt1b)(a), (26.8)

where 1b is the indicator function of the point {b}. That is in the corresponding Markov process (Yt)t∈[0,∞), we would

like for every s ⩾ 0, to have

Pr[Ys+t = b|Ys = a] = qt(a, b) := (Qt1b)(a).

Since Qt preserves positivity, we have qt(a, b) ⩾ 0, and since Qt1 = 1 we have that∑
b

qt(a, b) =
∑
b

(Qt1b)(a) = (Qt1)(a) = 1.

The Chapman-Kolmogorov equation (26.6) can also be verified using the semigroup property Qt ◦ Qs = Qs+t which

we leave to the reader as an exercise.

Exercise 26.3. If (Qt)t∈[0,∞) is Markovian semigroup, and qt(a, b) is defined as in (26.8). Show that qt(a, b) satisfies

the Chapman-Kolmogorov equation (26.6).

Hence by Kolmogorov’s extension theorem, there exists a corresponding Markov process (Y a(t))t∈[0,∞) with tran-

sition probabilities qt(a, b). Now note that

E[f(Y a(t))] =
∑
b

qt(a, b)f(b) =
∑
b

(Qt1b)(a)f(b) = Qt(
∑
b

1bf(b))(a) = (Qtf)(a).

Hence the semigroup (Qt)t∈[0,∞) could be recovered as Qtf(a) = E[f(Y a(t))].
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To summarize we showed that Markov processes (Y at )t∈[0,∞) are in one to one correspondence with Markovian

semigroup (Qt)t∈[0,∞) via the formulas Qtf(a) = E[f(Xa(t))] and qt(a, b) = (Qt1b)(a).

Now that we established this equivalence, we can mention an important property of Markovian semigroups, namely

that they preserve expectation with respect to the so called invariant measure.

Definition 26.6. A probability measure µ on a finite set Ω is an invariant measure for a Markovian semigroup

(Qt)t∈[0,∞), or a stationary distribution for the corresponding Markov process qt, if for every y ∈ Ω and t > 0,∑
x∈Ω

µ({x})qt(x, y) = µ(y). (26.9)

This means that the total “immigration” to y balances “emigration” from y. Note that (26.9) is equivalent to

Eµ[Qt1y] = 1y. Since {1y : y ∈ Ω} spans the set of all functions on Ω, we see that µ is invariant for the semigroup

if and only if Eµ[Qtf ] = f for every f : Ω → R. Hence A Markovian semigroup preserve expectation with respect to

invariant measure. When we work with a semigroup or a Markov process, invariant measures are the “right” measures

to consider on the space. From this point on when we talk about a semigroup or a Markov process we always assume

that the underlying measure space is an invariant measure for the semigroup, and that expectations are taken with

respect to that measure.

The operators Pt is a symmetric (a.k.a. Hermitian) operator, and in fact self-adjoint as it is defined everywhere.

Indeed by Plancherel,

⟨Ptf, g⟩ =
∑
S⊆[n]

e−t|S|f̂ ĝ = ⟨f, Ptg⟩.

In the more general case of the Markovian semi-groups when the invariant measure µ is nonuniform, the symmetry

of the operator Qt does not mean that the transition matrix qt(x, y) is symmetric. For example, in the finite case, it

means that

µ({x})qt(x, y) = ⟨Qt1x,1y⟩ = ⟨1x, Qt1y⟩ = µ({y})qt(y, x),

In general the semigroup (Qt)t∈[0,∞) is symmetric if and only if the corresponding Markov process is time reversible.

A symmetric Markovian semigroup preserve expectation. Indeed

E[Qtf ] = ⟨Qtf, 1⟩ = ⟨f,Qt1⟩ = ⟨f, 1⟩ = E[f ]. (26.10)

26.2.1 Generator of a semigroup

To define the generator of a semigroup we would like to differentiate Qt in t, but unfortunately a Markovian semigroup

need not even be continuous with respect to the parameter t: As an example one may consider Q0f := f and

Qt[f ] := E[f ] for t > 0, which is not continuous in time unless f is constant almost surely. However, in many cases

Markov semigroups are not only continuous but also differentiable with respect to time.

Definition 26.7. The linear operator − d
dtQt

∣∣
t=0+

is called a generator of the semigroup (Qt)t∈[0,∞).

Note that for a Markovian operator, since Qt1 = 1 for every t ⩾ 0, we always have that (− d
dtQt

∣∣
t=0+

)1 = 0.

Remark 26.8. For non-discrete spaces usually the generator cannot be defined on the whole L2 function space but

only a dense linear subspace. There are many technical problems and extensive literature concerning relations between

a Markov semigroup and its generator. The assumption that is usually used is that Qt is strongly continuous, i.e. it

is continuous in t in the strong operator topology. Then it is not difficult to see that d
dtQt

∣∣
t=0+

is well-defined on the

dense set of all “smoothed” functions {Qεg : ε > 0, g ∈ L2}.

Let us go back to the semi-group (Pt)t∈(0,∞] that we constructed from the parity Poisson process.

Remark 26.9. We have shown that Te−t ≡ Pt. The notation Pt is preferred by probability theorists. Harmonic

analysts however prefer the notation Tρ as for example it allows considering complex values of ρ with |ρ| ⩽ 1 which

leads to the definition of the so called holomorphic semigroups. Computer scientists also adopted the notation Tρ as

it is simpler, however there is a price to this, as the intuition that t corresponds to time, and that this operator is

defined through a Markov process becomes less apparent.
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Note that taking the derivative of

Ptf =
∑
S⊆[n]

e−t|S|f̂(S)χS .

we see that the generator L := − d
dtPt

∣∣
t=0+

of this semigroup is defined as

Lf =
∑
S⊆[n]

|S|f̂(S)χS .

Our semigroup Pt can be easily recovered from its generator:

Pt := e−tL = Id+

∞∑
k=1

(−t)kLk

k!
.

Indeed for a character, we have

PtχS =

(
1 +

∞∑
k=1

(−t)k|S|k

k!

)
χS = e−t|S|χS .

Remark 26.10. For this approach to work, it is necessary that the generator is a bounded operator (as it is the

case for L, the generator of Pt). However in the more general settings of Markovian semigroups, the generator is not

always defined on all of the space. Nevertheless, the notation e−tL is still used, and it usually means the solution to

the differential equation d
dtQt = −LQt with the boundary condition Q0 = Id.

For the semigroup (Pt)t∈[0,∞), there is a more direct way to define the generator L. We have

Lf =
1

2

n∑
i=1

f(x)− f(x+ ei),

as it can be easily verified using the Fourier transform. Hence L = n
2 (Id−K), where K is defined in (26.1).

In Theorem 10.11 we saw that the operator Tρ is a contractive operator from Lp to Lp. This phenomenon holds

for general symmetric Markovian semigroups.

Theorem 26.11. Let (Qt)t∈[0,∞) be a symmetric Markovian semigroup, and Φ : R → R be a convex function. For

every t ⩾ 0 and every function f ∈ L2 we have

E[Φ(Qtf)] ⩽ E[Φ(f)].

In particular taking Φ = | · |p for p ⩾ 1 we obtain ∥Qtf∥p ⩽ ∥f∥p.

Proof. Since Φ is convex we have Φ(x) = supα∈I aαx + bα for some family I of affine functions aαx + bα. Then for

every α ∈ I, we have the pointwise inequality Φ(f) ⩾ aαf+bα which using the order-preserving property of Markovian

semigroups reduces to the pointwise inequality

Qt(Φ(f)) ⩾ Qt(aαf + bα) = aα(Qtf) + bα.

Taking the supremum we obtain Qt(Φ(f)) ⩾ Φ(Qtf). Taking the expectation and using the fact that symmetric

Markovian semigroups preserve expectation (See 26.10), we obtain

E[Φ(f)] = E[Qt(Φ(f))] ⩾ E[Φ(Qtf)].

□

26.3 Some Examples

We close this chapter by mentioning some examples of Markovian semigroups.
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Example 26.12. Consider the space (R, λ) where λ is the Lesbagues measure. Define the semigroup (Pt)t∈[0,∞) as

Pt : f(·) → f(· + t). It can be easily seen that this is a Markovian semigroup. Note that the generator L of this

semigroup is equal to −D where D is the differentiation:

(Lf)(x) = − d

dt
Ptf

∣∣∣∣
0+

= −f ′(x).

Then if try to recover Pt from the generator using the formula

Pt = e−tL = Id+

∞∑
k=1

(−t)k

k!
Lk, (26.11)

we obtain

Ptf(x) = f(x) + tf ′(x) +
t2

2!
f ′′(x) + . . .

This is the Taylor expansion for f(x + t), and is equal to f(x + t) when f is analytic. Note that there are smooth

functions that are not analytic. For example, it is well-known that the function

f(x) =

{
e−1/x2

x ̸= 0

0 x = 0

is smooth (i.e. it has derivatives of all orders), but it is easy to see that f (k)(0) = 0 for all k, and thus f(x + t) ̸=
f(x) + tf ′(x) + t2

2! f
′′(x) + . . . for x = 0. Note that even if we replace our original space (R, λ) with the compact space

(R/Z, λ), this example still shows that it is not always possible to recover the semigroup from its generator using

(26.11).

Example 26.13 (Heat semigroup). Joseph Fourier initiated the investigation of Fourier series and their applications

to problems of heat transfer and vibrations. He discovered the law of heat conduction, also known as Fourier’s law,

which states that the time rate of heat transfer through a material is proportional to the negative gradient in the

temperature and to the area, at right angles to that gradient, through which the heat flows. Fourier’s law combined

with conservation of energy implies the so called heat equation. Suppose one has a function f(x) that describes the

temperature at a given location of a metal bar. This function will change over time as heat spreads throughout space.

The heat equation can be used to determine the change in the function f over time. It says that if Ptf denotes the

distribution of the temperature at time t, then

d

dt
(Ptf)(x) = α

∂2

∂2x
Ptf(x),

where α > 0 is a constant depending on the material and is called the thermal diffusivity. If instead of a bar, we

consider a 3-dimensional object, and denote the temperature at point x = (x1, x2, x3) with f(x1, x2, x3), then the heat

equation becomes
d

dt
(Ptf) = α∆(Ptf)(x),

where ∆ denotes the Laplacian ∆ := ∂2

∂2x1
+ ∂2

∂2x2
+ ∂2

∂2x3
.

The heat equation is used in probability and describes random walks. It is also applied in financial mathematics

for this reason.vIt is also important in Riemannian geometry and thus topology: it was adapted by Richard Hamilton

when he defined the Ricci flow that was later used by Grigori Perelman to solve the topological Poincaré conjecture.

The heat equation can be understood through the heat semigroup. First we need to introduce the Brownian

motion, an important notion that occurs frequently in pure and applied mathematics, economics and physics. The

(1-dimensional) Brownian motion (a.k.a. Wiener process) is a continuous-time stochastic process (Bt)t∈[0,∞) that is

characterized by four facts:

• B0 = 0.

• Bt is almost surely continuous.

• Bt has independent increments (i.e. Bt1 −Bs1 is independent of Bt2 −Bs2 for 0 ⩽ s1 ⩽ t1 ⩽ s2 ⩽ t2.
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• Bt − Bs ∼ N(0, t − s) for t > s, where N(0, t − s) denotes the normal distribution with expected value 0 and

variance t− s.

The Brownian motion can be obtained as the limit of the following discrete random walks. Let λ > 0 be the time

increment. The random walk starts at the origin X0 = 0, and at time (t + 1)λ its value X(t+1)λ is set with equal

probability to either Xtλ +
√
λ or Xtλ −

√
λ (we make a left or right jump of magnitude

√
λ with equal probability).

Now as the time increment λ ⩾ 0 goes to 0, this random walk converges to the Brownian motion.

Now that we have a process (Bt)t∈[0,∞) , we can consider the corresponding semigroup (Pt)t∈[0,∞). It maps every

function f : R → R, that satisfies certain integrability conditions, to Ptf(x) := E[f(Bxt )], where (Bxt )t∈[0,∞) is the

Brownian motion started at point x. Note that Bxt has the same distribution as x + Bt as the Brownian motion is

space homogeneous, and hence

Ptf(x) = E[f(Bxt )] = E[f(x+Bt)] = E[f(x+
√
tG)],

where G ∼ N(0, 1) is the standard Gaussian random variable, so that
√
tG ∼ N(0, t).

To find the generator, differentiating the operator and using the formula for the density of the normal distribution,

we get

d

dt
Ptf(x) =

d

dt
E[f(x+

√
tG)] =

1

2
√
t
E[f ′(x+

√
tG)G] =

1

2
√
t

1√
2π

∫
f ′(x+

√
ty)e−y

2/2ydy

=
1

2
√
2tπ

∫
f ′(x+

√
ty)

d

dy
(−e−y

2/2)dy =
1

2
√
2tπ

∫ √
tf ′′(x+

√
ty)e−y

2/2dy

=
1

2
Ef ′′(x+

√
tG), (26.12)

where in the integration by part we assumed that f vanishes at ±∞. Taking the limit t → 0 we obtain that the

generator is Lf = −1
2 f

′′, or in other words L = −1
2 ∆ where ∆ is the (one-dimensional) Laplace operator. Note that

(26.12) shows that
d

dt
Ptf(x) =

1

2
∆x(Ptf(x)),

where ∆x denotes the Laplacian with respect to x. This is the famous heat equation discussed above which roughly

means that the flow of heat can be approximated as the movement of many small particles, where each particle moves

according to a Brownian motion.

The heat semigroup can be defined on the n-dimensional space. Let B1(t), . . . , Bn(t) be independent 1-dimensional

Brownian motions as defined above. The n-dimensional Brownian motion (Bt)t∈[0,1) is defined as

Bt =

(
B1(t)√
n
, . . . ,

Bn(t)√
n

)
t∈[0,∞)

.

The normalization factor 1√
n
is chosen so that Bt ∼ Nn(0, 1) is an n-dimensional Gaussian random variable and thus

has density

Φn(x) :=
1

(2π)n/2
e−∥x∥2

2/2 =
1

(2π)n/2
e−(

∑n
i=1 x

2
i )/2.

Repeating the calculation in (26.12), we see that the generator of the heat semigroup defined via this process is −1
2 ∆

where ∆ = ∂2

∂2x1
+ . . .+ ∂2

∂2xn
is the Laplace operator, and the heat equation

d

dt
Ptf(x) =

1

2
∆(Ptf(x)),

holds.

Example 26.14 (The Ornstein-Uhlenbeck semigroup). This semigroup is defined on (R, γ) where γ is the Gaussian

measure. In some aspects it is closely related to the semigroup (Pt)t∈[0,∞) that we defined on the cube {0, 1}n. We will

define a process similar to the Brownian motion. Consider a time increment λ > 0, and define the process (Xtλ)t∈Z+

in the following way. To make a move from a point a, we first dilate a by multiply it by e−λ and then we make a

jump of magnitude
√
λ either to the left or right with equal probability. That is X(t+1)λ is set to one of e−λXtλ ±

√
λ
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with equal probability. If we take the limit as λ→ 0, we obtain a Gaussian process (Xt)t∈[0,∞). Now, because of the

dilation, unlike the Brownian motion, Xt does not escape to infinity as t grows, and in fact Xt converges to N(0, 1) in

distribution. It is not difficult to see that if we start the process at a point a, then Xa
t ∼ e−ta +

√
1− e−2tG, where

G ∼ N(0, 1) is a standard Gaussian. Hence the corresponding semigroup Ut satisfies

Utf(x) = E
[
f(e−tx+

√
1− e−2tG)

]
.

To describe the connection to the semigroup (Pt)t∈[0,∞) on the cube {0, 1}n, consider a function f : (R, γ) → R,
and define gn : {0, 1}n → R as gn(x1, . . . , xn) = f( 2(

∑
xi)−n√
n

). Note that Ptgn is a symmetric function and thus

Ptgn(x1, . . . , xn) = fn(
2(

∑
xi)−n√
n

) for a function fn : R→ R. It is not difficult to see that

lim
n→∞

fn = Utf,

which can be interpreted as

lim
n→∞

Ptgn = Utf.

The same trick of approximating a gaussian with 2(
∑
xi)−n√
n

allows one to deduce many geometric results in the Gaussian

space from results on the cube. Going in the opposite direction is usually much harder, but there are some tools like

the invariance principle that we will see later in Chapter ?? that allow it under some conditions.

the Ornstein-Uhlenbeck semigroup, similar to the heat-semigroup, can be defined in the n-dimensional space

endowed with the Gaussian measure. For f : (Rn, γn)→ R we have

Utf(x) = E
[
f(e−tx+

√
1− e−2tG)

]
,

where G is the standard n-dimensional Gaussian random variable.

We leave to the reader to verify that the generator of the Ornstein-Uhlenbeck semigroup in general is

(Lf)(x) = ⟨x,∇f(x)⟩ − (∆f)(x).

Exercise 26.4. Show that the generator of the n-dimensional Ornstein-Uhlenbeck semigroup is

(Lf)(x) = ⟨x,∇f(x)⟩ − (∆f)(x).
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Chapter 27

Isoperimetric Type Inequalities

Consider the hypercube with vertex set Zn2 , and let S ⊆ Zn2 be a subset of the vertices. As we have discussed earlier

the total influence of the indicator function of S corresponds to the size of the edge boundary of S. In other words for

f := 1S , we have

If = E

[
n∑
i=1

|f(x)− f(x+ ei)|

]
=

2|∂f |
2n

,

where the edge boundary of S, denoted ∂S, is the set of edges of the cube with one endpoint in S and the other

endpoint outside of S. In this chapter we study concepts related to edge-boundries.

27.0.1 Energy functions

Consider the semigroup (Pt)t∈[0,∞) that we constructed from the Poisson random walk on the cube. Define the bi-linear

form E(·, ·) via the generator L of the semigroup (Pt)t∈[0,∞) as

E(f, g) := ⟨f, Lg⟩ = ⟨Lf, g⟩.

This is a positive semi-definite form as E(f) := E(f, f) =
∑
|S||f̂(S)|2 ⩾ 0.

The positive semi-definiteness of the E can also be verified directly, without appealing to Fourier expansion, from

contractivity of the semi-group. Indeed, for t ⩾ 0 and f ∈ L2, set Ψ(t) = ∥Ptf∥22 = E[(Ptf)2]. Then taking the

derivative with respect to t, we obtain

Ψ′(t) = 2E
[
(Ptf)

d

dt
Ptf

]
= 2E[−(Ptf) · L(Ptf)],

and thus Ψ′(0+) := limt→0 Ψ
′(t) = −2E[f · Lf ] = −2E(f, f). On the other hand, because of the contractivity of

(Pt)t∈[0,∞) we have

Ψ(t) ⩽ ∥f∥22 = ∥P0f∥22 = Ψ(0),

so that Ψ′(0+) ⩽ 0. Thus E(f) := E(f, f) ⩾ 0, and E is positive semidefinite.

Let us now find a combinatorial way of describing E . Using the formula

Lf(x) =
1

2

n∑
i=1

f(x)− f(x+ ei),

we obtain

E(f, g) = ⟨f, Lg⟩ = 2−n−1
∑
x∼y

f(x)g(x)− f(x)g(y),

where x ∼ y means that x and y are neighbours in the cube (i.e. y = x+ ei for some i ∈ [n]). Using

f(x)g(x)− f(x)g(y) + f(y)g(y)− f(y)g(x) = (f(x)− f(y))(g(x)− g(y)),
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we can simplify this to

E(f, g) = 2−n−2
∑
x∼y

(f(x)− f(y))(g(x)− g(y)),

which in particular shows

E(f) = E(f, f) = 2−n
∑
x∼y

(
f(x)− f(y)

2

)2

. (27.1)

The last expression is a discrete counterpart of the averaged |∇f |2. The similarity to the physical kinetic energy

notion explains the name given to this quadratic form. Quadratic forms of this type (under some additional conditions)

are called Dirichlet forms and play important role in the theory of Markov semigroups. Given an open set Ω ⊆ Rn

and function f : Ω→ R, the Dirichlet’s energy of the function f is the real number

E(f) = 1

2

∫
|∇f |2dxdy, (27.2)

where ∇f =
(
∂f
∂x1

, . . . , ∂f∂xn

)
is the gradient of the function f .

Definition 27.1 (Discrete gradient). For a function f : Zn2 → R, define the discrete gradient of f at point x as

∇f(x) =
(
f(x)− f(x+ e1)

2
, . . . ,

f(x)− f(x+ en)

2

)
.

With this notation we have for every function f : Zn2 → R

E(f) = 2−n
∑
x∼y

(
f(x)− f(y)

2

)2

= E|∇f(x)|2,

which reminisces the Dirichlet energy formula (27.2). There is an extensive literature that investigates the conditions

under which the generator of a semigroup can be constructed from a Dirichlet form. In the case of the finite spaces

the following are indeed equivalent.

Markov processes ∼ semigroups ∼ generators ∼ Dirichlet forms

Let us finish this section by mentioning that the energy function behaves nicely when composed with Lipschitz

maps. Let Ψ : R → R be a Lipschitz map with constant C, i.e. |Ψ(a) − Ψ(b)| ⩽ C|a − b| for all a, b ∈ R. Then the

formula

E(Ψ(f)) = 2−n
∑
x∼y

(
Ψ(f(x))−Ψ(f(x))

2

)2

shows that for every f ∈ Zn2 → R, we have

E(Ψ(f)) ⩽ C2E(f).

In particular, E(|f |) ⩽ E(f). This can be generalized to other symmetric Markovian sermigroups under some mild

technical conditions.

27.1 Poincaré inequalities

The classical Poincaré inequality comes from partial differential equations. It says that given a bounded connected

open subset D ⊆ Rn with a sufficiently “regular” boundary, there exists a constant CD such that for every function

f ∈ C1(D) (that is f differentiable and it’s derivative is continuous) satisfying
∫
D
f = 0, we have∫

D

f2 ⩽ CD

∫
D

|∇f |2.
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The probabilistic analog of this is more relevant to us. A probability Borel measure ν on Rn is said to satisfy the

Poincaré inequality with constant C if for every C1 function f : Rn → R with
∫
fdν <∞, we have

Var
ν

(f) :=

∫
f2dν −

(∫
fdν

)2

⩽ C

∫
|∇f |2dν.

On the discrete group Zn2 , using the discrete gradient, the Energy function will take the place of
∫
|∇f |2dν, and

we will obtain the following Poincaré inequality

E[f2]− E[f ]2 ⩽ E(f) := E
[
|∇f |2

]
:= E[fLf ].

This follows by noticing that the left hand side is equal to
∑
S ̸=∅ |f̂(S)|2 while the right hand side is equal to

⟨f, Lf⟩ =
∑
S⊆[n]

|S||f̂(S)|2.

The above variance-energy inequality is also called an spectral gap inequality. It holds because there is a gap in the

spectrum σ(L) between the eigenvalue 0, associated to the constant function 1 (principal character), and the second

smallest eigenvalue in absolute value (which is 1 and it associated to the characters χS for |S| = 1).

The existence of the spectral gap for a symmetric Markov semigroup (Qt)t∈[0,∞) implies Qtf → E[f ] as t → ∞
and the size of the gap is responsible for the speed of convergence. This is of extreme importance in physics, and not

surprisingly the Poincaré-type inequalities were considered in physics first, already in the middle of the nineteenth

century.

27.2 Stroock-Varopoulos inequality

In this section we prove the Stroock-Varopoulos inequality which is an important inequality in the theory of semigroups.

We start with an elementary inequality whose proof can be skipped by uninterested reader.

Lemma 27.2. For p > 1 and a, b ⩾ 0 we have

(p− 2)2(ap + bp)− p2(ap−1b+ abp−1) + 8(p− 1)ap/2bp/2 ⩾ 0.

Proof. Because of the homogeneity, it suffices to prove that for t ⩾ 1

u(t) = (p− 2)2tp − p2tp−1 + 8(p− 1)tp/2 − p2t+ (p− 2)2 ⩾ 0.

Indeed, u(1) = 2(p2 − 4p+ 4)− 2p2 + 8p− 8 = 0, and

u′(t) = p(p− 2)2tp−1 − p2(p− 1)tp−2 + 4p(p− 1)tp/2−1 − p2,

so that u′(1) = (p3 − 4p2 + 4p)− (p3 − p2) + (4p2 − 4p)− p2 = 0. Now it suffices to note that

u′′(t) = p(p− 1)(p− 2)2tp−2 − p2(p− 1)(p− 2)tp−3 + 2p(p− 1)(p− 2)t
p
2−2

= p2(p− 1)(p− 2)tp−2

(
p− 2

p
+

2

p
t−p/2 − t−1

)
= 2p(p− 1)(p− 2)tp−2

(
2− p
2

+
p

2
t−1 − t−p/2

)
.

Since for p ⩾ 2,
p− 2

p
+

2

p
t−p/2 =

p− 2

p
· 1 + 2

p
t−p/2 · t−p/2 ⩾ 1

p−2
p

(
t−p/2

)2/p
= t−1,

while for p ∈ (1, 2],
2− p
2

+
p

2
t−1 =

2− p
2
· 1 + p

2
t−1 ⩾ 1

p−2
2

(
t−1
)p/2

= t−p/2,
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we conclude u′′(t) ⩾ 0 and the proof is finished. □

Now we will deduce the Stroock-Varopoulos inequality from Lemma 27.2. We state the proof for the semigroup Pt on

the hupercube, but the same proof works for every symmetric Markov semigroup (under some additional assumptions

about f).

Theorem 27.3 (Stroock-Varopoulos). For any f : Zn2 → [0,∞), and every p > 1, we have

E(fp/2) := E
[
fp/2L(fp/2)

]
⩽

p2

4(p− 1)
E[fp−1Lf ].

Proof. By Lemma 27.2, for any a ⩾ 0, we have the ponitwise inequality

(p− 2)2(ap + fp)− p2(ap−1f + afp−1) + 8(p− 1)ap/2fp/2 ⩾ 0.

Since Pt is linear and order preserving for any t ⩾ 0, it holds pointwise that

(p− 2)2(ap + Pt(f
p))− p2(ap−1Ptf + aPt(f

p−1)) + 8(p− 1)ap/2Pt(f
p/2) ⩾ 0.

Hence setting a = f we have

(p− 2)2(fp + Pt(f
p))− p2(fp−1Ptf + fPt(f

p−1)) + 8(p− 1)fp/2Pt(f
p/2) ⩾ 0.

We can take the expected value and arrive at

(p− 2)2(E[fp] + E[Pt(fp)])− p2(E[fp−1Ptf ] + E[fPt(fp−1)]) + 8(p− 1)E[fp/2Pt(fp/2)] ⩾ 0.

Since Pt is symmetric, it preserves expectation, and the above reduces to

β(t) = 2(p− 2)2E[fp]− 2p2E[fp−1Ptf ] + 8(p− 1)E[fp/2Pt(fp/2)] ⩾ 0. (27.3)

Now as P0 = Id, we have

β(0) = (2(p− 2)2 − 2p2 + 8(p− 1))E[fp] ⩾ 0,

and thus (27.3) implies that β′(0+) ⩾ 0. But as L = − d
dtPtf

∣∣
0+

, we have

0 ⩽ β′(0+) = 2p2E[fp−1Lf ]− 8(p− 1)E[fp/2L(fp/2)],

which completes the proof. □

Remark 27.4. Note that in Theorem 27.3 we have equality when p = 2.

Remark 27.5. Recall that for The Ornstein-Uhlenbeck semigroup on (Rn, (2π)−n/2e−|x|/2dx) the generator is given

by

(Lf)(x) = ⟨x,∇f(x)⟩ − (∆f)(x).

In this case for f, g ∈ C∞, it is not difficult to see that

E[f · Lg] = (2π)−n/2
∫
⟨∇f(x),∇g(x)⟩f(x)e−|x|/2dx = E[⟨∇f(x),∇g(x)⟩],

where the expectation is with respect to the Gaussian measure.

Note that in this case we will actually have equality in Theorem 27.3 for any p > 1.

27.3 Entropy and Logarithmic Sobolev inequalities

We start by defining the notion of entropy.
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Definition 27.6. For an integrable non-negative function g on a probability space we define its entropy as

Ent(g) = E[g ln g]− E[g] ln(E[g]),

where we adopt a natural convention 0 ln(0) = 0.

Clearly, Ent[g] < ∞ if and only if g ln g is integrable. Since x ln(x) is strictly convex, always Ent[g] ⩾ 0, and

Ent[g] = 0 if and only if g is constant almost everywhere. Note also that

Ent(λg) = λEnt(g).

The logarithmic Sobolev inequality (called also entropy-energy inequality) was introduced by L. Gross. It resembles

the Poincaré inequality - the variance functional on the left hand side is replaced by the entropy of the square of the

function. The inequality has the form:

Ent[f2] ⩽ CE(f).

Both sides of this inequality measure how far f is from being constant. Note that for a constant f , both Ent[f2] and

E(f) are 0.

Definition 27.7. A symmetric Markov semigroup (Qt)t∈[0,∞) on Ω, with an invariant measure µ and a self-adjoint

(with respect to the L2(Ω, µ) structure) generator L, satisfies the logarithmic Sobolev inequality with constant C > 0

if for every function f belonging to the domain of L, we have

Eµ[f2 ln(f2)]− Eµ[f2] lnEµ[f2] ⩽ CEµ[fLf ].

It turns out that logarithmic Sobolev inequalities are equivalent to hyper-contractive inequalities. Recall that in

Theorem 10.13 we showed that for 1 < p ⩽ q <∞, and 0 ⩽ ρ ⩽
√

p−1
q−1 , we always have

∥Tρf∥q ⩽ ∥f∥p.

Using our semigroup notation, we can rewrite this as ∥Ptf∥q ⩽ ∥f∥p for 0 ⩽ t ⩽ 1
2 (ln(p− 1)− ln(q− 1)). A semigroup

(Qt)t∈[0,∞) is (p, q)-hypercontractive with parameter t(p, q) if for every f in the domain and every 0 ⩽ t ⩽ t(p, q) we

have

∥Qtf∥q ⩽ ∥f∥p.

Theorem 27.8 (Gross). A symmetric generator L satisfies the logarithmic Sobolev inequality with constant C if and

only if for all p > q > 1 the semigroup (Pt)t∈[0,∞ generated by L is (p, q)-hypercontractive with t(p, q) = C
4 (ln(p− 1)−

ln(q − 1)).

Theorem 27.8 combined with the hypercontractive estimates that we obtained in Theorem 10.13 show that the

semigroup (Pt)t∈[0,∞) on the hypercube satisfies the logarithmic Sobolev inequality with constant 2, i.e. for every

f : Zn2 → R, we have

E[f2 ln(f2)]− E[f2] lnE[f2] ⩽ 2E[fLf ].

In order to prove Theorem 27.8 we first need the following lemma whose proof is based on the Stroock-Varopoulos

theorem.

Lemma 27.9. The following statements are equivalent:

(a): For every f : Zn2 → R,
E[f2 ln(f2)]− E[f2] lnE[f2] ⩽ CE[fLf ].

(b): For every nonnegative f : Zn2 → R,

E[f2 ln(f2)]− E[f2] lnE[f2] ⩽ CE[fLf ].
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(c): For every nonnegative f : Zn2 → R, and every p > 1,

E[fp ln(fp)]− E[fp] lnE[fp] ⩽
Cp2

4(p− 1)
E[fp−1Lf ].

Proof. Obviously (a) implies (b), and also setting P = 2 in (c) we recover (b). So it suffices to show that (b) implies

(a) and (c).

(b) ⇒ (a): This follows from E(|f |) ⩽ E(f) which we proved in Section 27.0.1.

(b) ⇒ (c): This follows immediately from applying (b) to fp/2 and then using the Stroock-Varopoulos inequality

(Theorem 27.3). □

Proof of Theorem 27.8. For p ⩾ q > 1, define tq(p) =
C
4 ln p−1

q−1 . Consider a nonnegative function f ∈ L2, and set

ϕq(p) = ln ∥Ptq(p)f∥q =
1

p
E
[
ln |Ptq(p)f |

p
]
.

Note that t(q, q) = 0 and thus ϕq(q) = ln ∥f∥q. Hence hypercontractivity is equivalent to ϕq(p) ⩽ ϕq(q) for p ⩾ q. For

p ⩾ q denote

fp := Ptq(p)f ⩾ 0.

Using d
dtPtf = −L(ptf), we obtain

d

dp
fpp =

1

p
fpp ln(f

p
p )−

Cp

4(p− 1)
fp−1
p L(fp).

This shows

d

dp
ϕq(p) =

1

p

E[ ddp (f
p
p )]

E[fpp ]
− 1

p2
lnE[fpp ]

=
1

p2
E[fpp ln(fpp )]

E[fpp ]
− C

4(p− 1)

E[fp−1
p L(fp)]

E[fpp ]
− 1

p2
lnE[fpp ]

=
1

p2E[fpp ]

(
Ent(fpp )−

Cp2

4(p− 1)
E[fp−1

p L(fp)]

)
.

Hence
d

dp
ϕq(p) ⩽ 0⇐⇒ Ent(fpp ) ⩽

Cp2

4(p− 1)
E[fp−1

p L(fp)]

Thus ϕq(p) is decreasing if the semigroup satisfies the logarithmic Sobolev inequality with constant C, and we obtain

the desired hyper-contractive estimates.

To deduce the logarithmic Sobolev inequality from hyper-contractivity, it suffices to notice that if hypercontractivity

holds, then d
dpϕq(p)

∣∣∣
p=q

⩽ 0. Since fq = f , this gives

Ent(fq) ⩽
Cq2

4(q − 1)
E[fq−1L(f)],

which verifies the logarithmic Sobolev inequality by setting q = 2. □

Exercise 27.1. This exercises shows that the logarithmic Sobolev inequality is stronger than the Poincaré inequality

(the converse is not true). Show that if a semigroup satisfies the logarithmic Sobolev inequality with constant C, then

it satisfies the Poincaré inequality with constant 2C.

27.3.1 Tensorization of logarithmic Sobolev inequality

Recall that in Chapter 10 to prove the hypercontractivity for the noise operator, first we proved it for dimension

1 and then used generalized Minkowski’s inequality to show that the inequality tensorizes. Theorem 27.8 shows

that hypercontractivy us equivalent to the logarithmic Sobolev inequality. This suggest that the logarithmic sobolev
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inequlity must also tensorize. Indeed there is also a standard method of tensorizing both Poincaré and logarithmic

Sobolev inequalities by using the subadditivity of the variance and entropy functionals.

Thus the logorithmic sobolev inequalty and hypercontractive estimates on the cube could also be obtained by

proving the logarithmic Sobolev inequality on 0, 1 and then deducing it on the general cube via subadditivity. For

f : {0, 1}n → [0,∞), and i ∈ [n] define the coordinate-wise entropy as

Enti(f) = Ex[n]\{i}

[
Ent fx[n]\{i}(xi)

]
,

where fx[n]\{i} : xi 7→ f(x1, . . . , xn).

Lemma 27.10 (Subadditivity of Entropy). For f : Zn2 → [0,∞), we have

Ent(f) ⩽
n∑
i=1

Enti(f).

Exercise 27.2. Prove the variational formulation of entropy:

Ent(f) = sup{⟨f, g⟩ : E[eg] ⩽ 1, g : Zn2 → R},

for every f : Zn2 → [0,∞).

Exercise 27.3. Prove Lemma 27.10 using the variational formulation of entropy.

Exercise 27.4. Use 27.10 to show that the logarithmic sobolev inequality tensorizes. That is if it holds with constant

C for nonegative functions on Z2, then it holds with constant C for nonnegative functions on Zn2 .

Exercise 27.5. Use the subadditivity of variance to show that the Poincaré inequality tensorizes. That is if it holds

with constant C for nonegative functions on Z2, then it holds with constant C for nonnegative functions on Zn2 .
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