
COMP 531

Advanced Complexity Theory

Lecture Notes

Hamed Hatami



2



1 Background: Before we start 5

Decidable and Undecidable Languages: . . . . . . 5

Exercises . . . . . . . . . . . . . . . . . . . . . . 6

2 Time complexity 7

Our computational model . . . . . . . . . . . . . 7

Time complexity . . . . . . . . . . . . . . . . . . 8

Time Hierarchy theorems . . . . . . . . . . . . . 9

Exercises . . . . . . . . . . . . . . . . . . . . . . 10

3 Polynomial Hierarchy 13

Exercises . . . . . . . . . . . . . . . . . . . . . . 15

4 Space complexity 17

Time and Space . . . . . . . . . . . . . . . . . . 17

Logarithmic Space L and NL . . . . . . . . . . . 18

Exercises . . . . . . . . . . . . . . . . . . . . . . 19

5 Savitch’s Theorem 21

Savitch’s theorem . . . . . . . . . . . . . . . . . . 22

Exercises . . . . . . . . . . . . . . . . . . . . . . 23

6 NL versus coNL: Immerman-Szelepcsenyi’s
Theorem 25

NL versus coNL: Immerman-Szelepcsenyi’s The-
orem . . . . . . . . . . . . . . . . . . . . . . 25

Exercises . . . . . . . . . . . . . . . . . . . . . . 26

7 Ladner’s Theorem: NP-completeness 29

Warm-up: Proof assuming the Exponential Time
Hypothesis . . . . . . . . . . . . . . . . . . 29

The full proof of Ladner’s Theorem . . . . . . . . 30

Exercises . . . . . . . . . . . . . . . . . . . . . . 31

8 Oracles and relativization 33

Relativization . . . . . . . . . . . . . . . . . 34

Relativization as a proof-barrier . . . . . . . . . 35

Exercises . . . . . . . . . . . . . . . . . . . . . . 36

9 Randomized Complexity Classes 39

Probabilistic Turing machines . . . . . . . . . . . 39

Polynomial time randomized complexity classes . 42

The complexity class RP . . . . . . . . . . . 42

The complexity class ZPP . . . . . . . . . . 43

The complexity class BPP . . . . . . . . . . 44

The complexity class PP . . . . . . . . . . . 46

Exercises . . . . . . . . . . . . . . . . . . . . . . 47

10 Non-uniform complexity: Circuits 49
What is a Boolean circuit? . . . . . . . . . . . . 49
The class P/Poly . . . . . . . . . . . . . . . . . . 50
Karp-Lipton Theorem . . . . . . . . . . . . . . . 51
Shannon-Muller Lower bound . . . . . . . . . . . 52
Adleman’s theorem and advice: BPP ⊆ P/Poly . 52
Exercises . . . . . . . . . . . . . . . . . . . . . . 53

11 AC0: Bounded Depth Alternating Circuits 55
Lower-bounds for AC circuits . . . . . . . . . . . 55

Parity and Maj are not in AC0 . . . . . . 57
Exercises . . . . . . . . . . . . . . . . . . . 63

12 AC0 with parity gates: Razborov-Smolensky 65
The class AC0[⊕]: Algebraic techniques . . . . . 67
Razborov-Smolensky over F2 . . . . . . . . . . . 68
Concluding Remarks . . . . . . . . . . . . . . . . 69
Exercises . . . . . . . . . . . . . . . . . . . . . . 70

13 Razborov’s monotone circuit lower-bound 73
Approximating the monotone circuit . . . . 74

The preliminary lemmas . . . . . . . . . . . . . . 75
Approximation by a small number of cliques . . . 76
Concluding remarks . . . . . . . . . . . . . . . . 77
Exercises . . . . . . . . . . . . . . . . . . . . . . 77

14 Razborov-Rudich: Natural Proof Barrier 79
What are natural proofs? . . . . . . . . . . . . . 79
The Razborov-Rudich Theorem . . . . . . . . . . 80
Preparing for the proof: Pseudo-random Gener-

ators . . . . . . . . . . . . . . . . . . . . . . 81
The proof of Razborov-Rudich Theorem . . . . . 82
Concluding Remarks . . . . . . . . . . . . . . . . 83
Exercises . . . . . . . . . . . . . . . . . . . . . . 83

15 Fourier analysis and Polynomial Represen-
tations 85
Polynomial representations of f : {−1, 1}n → R . 86
Fourier analysis of Finite Abelian Groups . . . . 88
Basic Fourier Theory . . . . . . . . . . . . . . . . 88

Infinite Ableian groups and beyond . . . . . 94
Concluding remarks: . . . . . . . . . . . . . . . . 95
Exercises . . . . . . . . . . . . . . . . . . . . . . 95

16 Learning and AC0 circuits 97
PAC learning from uniform samples . . . . 97

Decision Trees . . . . . . . . . . . . . . . . . . . 98
Linial-Mansour-Nisan . . . . . . . . . . . . . . . 99
Mansour-Nisan conjecture . . . . . . . . . . . . . 100
Exercises . . . . . . . . . . . . . . . . . . . . . . 100

3



17 Communication complexity 101
Monochromatic rectangles, and Fooling sets . . . 101
Rectangle Size Bounds . . . . . . . . . . . . . . . 102
Rank Lower-Bound . . . . . . . . . . . . . . . . . 103
Non-deterministic Communication complexity . . 103
Exercises . . . . . . . . . . . . . . . . . . . . . . 103

18 Randomized Communication complexity 105
Yao’s Min-Max Theorem . . . . . . . . . . . . . . 106
Exercises . . . . . . . . . . . . . . . . . . . . . . 108

19 Discrepancy and Sign-rank 109
Discrepancy . . . . . . . . . . . . . . . . . . . . . 109

Eigen-value method . . . . . . . . . . . . . 111
Discrepancy and Grothendieck’s inequality . 111

Unbounded-Error model . . . . . . . . . . . . . . 111
Sign-rank . . . . . . . . . . . . . . . . . . . 112

Exercises . . . . . . . . . . . . . . . . . . . . . . 113

20 Theory of Learning: Dimension and Margin115

Sign-rank in Machine Learning: Dimension 115

Margin and Discrepancy . . . . . . . . . . . . . . 117

Bounding discrepancy by spectral norm . . 118

Forster’s Sign-rank Lower-bound . . . . . . 118

An example . . . . . . . . . . . . . . . . . . . . . 119

Exercises . . . . . . . . . . . . . . . . . . . . . . 120

A Background: Basic Analysis 125

Some basic inequalities . . . . . . . . . . . . . . . 125

Measure spaces . . . . . . . . . . . . . . . . . . . 127

Probability Spaces . . . . . . . . . . . . . . 128

Normed spaces . . . . . . . . . . . . . . . . . . . 129

Hilbert Spaces . . . . . . . . . . . . . . . . 130

The Lp spaces . . . . . . . . . . . . . . . . . 131

Exercises . . . . . . . . . . . . . . . . . . . . . . 131

4



Chapter 1

Background: Before we start

These lectures are designed for an advanced course on complexity theory. We will assume that the reader is familiar with
the theory of computation: Turing Machines, Non-determinism, Decidability, Undecidability, and Turing reductions.
We will also assume that the reader is familiar with basic complexity theory: the complexity classes P, NP, coNP,
the definition of NP through efficient verifiers, the notion of NP-completeness, and the Cook-Levin theorem. Similar
to any theoretical computer science course, we shall use the asymptotic notations of O(·),Θ(·),Ω(·), o(·), ω(·). In this
short lecture, we quickly review some of these concepts.

Decidable and Undecidable Languages:

An alphabet Σ is just a finite set, where we think of its elements as “symbols”. In this course, almost always Σ = {0, 1}.
We denote by Σ∗ the set of all finite strings constructed from the symbols in Σ. For example, if Σ = {0, 1}, then
Σ∗ = {ε, 0, 1, 00, 01, 10, 11, . . .}. Here ε denotes the empty string of length zero. We emphasize that all the elements
in Σ∗ are of finite length.

Every subset L ⊆ Σ∗ is called a language. Languages correspond to decision problems, i.e., YES/NO problems,
naturally: Given an input x, we would like to know whether x ∈ L or x ̸∈ L. A Turing Machine decides a language L
if it terminates on all inputs and accepts x if and only if x ∈ L. A language is decidable if a Turning Machine decides
it. The Turing Machines that always halt are called algorithms. Since the set of all languages is uncountable, and the
set of all Turing Machines over any fixed alphabet is countable, there exist languages that are undecidable.

Recall that P is the class of the languages decidable by polynomial-time algorithms. Similarly, NP is the class of
the problems decidable by non-deterministic polynomial-time algorithms. It is also useful to define NP through the
notions of the verifiers. A verifier for a language L is an algorithm V that takes a pair (x, y) as input and has the
property that

x ∈ L⇐⇒ ∃y, V (x, y) = Accept.

Here we can think of y as a certificate/proof for x ∈ L: If x ∈ L, then there is a certificate for it, and our algorithm
can verify it. However if x ̸∈ L, then such a certificate should not exist, and V should reject (x, y) for every y. A
verifier is efficient if its running time is bounded by a polynomial p in the length of x. Note that this is stronger than
saying that V runs in polynomial time because the input of V is (x, y), but we bound its running time by p(|x|) rather
than p(|(x, y)|).

It is easy to see that NP is the set of languages with efficient verifiers. A canonical problem in NP is the SAT
problem, which, in a certain sense, is as hard as any other problem in this class. First, we define the notion of a
polynomial-time reduction.

Definition 1.1. A language A is polynomial time mapping reducible, or simply polynomial time reducible to a language
B, written as A ⩽p B, if a polynomial time computable function f : Σ∗ → Σ∗ exists, where for every w,

w ∈ A⇐⇒ f(w) ∈ B.

A Boolean formula over variables x1, . . . , xn is a formula consisting of variables and logical operators ∧,∨,¬
corresponding to AND, OR, and negation, respectively. For example

ϕ(x1, x2, x3) := (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3)

is a Boolean formula over the variables x1, x2, x3, and one can easily check that ϕ evaluates to True if and only
if majority of the variables x1, x2, x3 are True. We will identify 1 with True and 0 with False; for example
ϕ(1, 1, 0) = 1.
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Definition 1.2 (Conjunctive Normal Form (CNF)). A Boolean formula over variables x1, . . . , xn is in CNF form if
it is an AND of ORs of variables or their negations. We call formulas that are in CNF form, simply CNF formulas.
The terms xi or ¬xi appearing in a formula are called terms or literals. For a CNF formula

ϕ =

m∧
i=1

 ki∨
j=1

tij

 ,

where tij are terms, we call each (∨kij=1tij ) a clause of the formula.

For example
(x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3)

is a CNF formula with two clauses (x1 ∨ ¬x2 ∨ x3) and (x2 ∨ x3).

Theorem 1.3 (Cook-Levin Theorem, Cook [Coo71], Levin [Lev73]). The language of all satisfiable CNF formulas

SAT = {ϕ | ϕ is a CNF, and there exists y such that ϕ(y) = True},

is NP-complete. That is it belongs to NP and furthermore X ⩽p SAT for every X ∈ NP.

It is easy to see that SAT is in NP. To see this, note that a y that satisfies ϕ(y) = True can be used as a certificate
to verify that ϕ is satisfiable. In other words, an efficient certifier V takes the pair (ϕ, y), plugs y into ϕ, and checks
to see if ϕ is satisfied. If it is, then it accepts the pair; otherwise, it rejects. Note that

ϕ ∈ SAT ⇐⇒ ∃y, V (ϕ, y) = Accept.

The interesting and challenging part of the Cook-Levin theorem is the proof that every language in NP reduces to
SAT. The proof is by encoding the computation of a Turing machine as a CNF.

Big O notation: Finally, let us finish this lecture by recalling the asymptotic notations. Let f, g : N → N. We say

• f(n) = O(g(n)) if there exists n0, c > 0 such that f(n) < cg(n) for all n > n0.

• f(n) = Ω(g(n)) if there exists n0, c > 0 such that f(n) > cg(n) for all n > n0.

• f(n) = Θ(g(n)) if there exists n0, c1, c2 > 0 such that c1g(n) < f(n) < c2g(n) for all n > n0.

• f(n) = o(g(n)) if limn→∞
f(n)
g(n) = 0.

• f(n) = ω(g(n)) if limn→∞
f(n)
g(n) = ∞.

Exercises

Exercise 1.1. Where is the error in the following false proof that n = O(1). The proof is by induction. The base case
is obvious: 1 = O(1). Let us assume the induction hypothesis that n = O(1). Then we have n+1 = O(1) + 1 = O(1),
and hence we have established the induction hypothesis for n+ 1.

Exercise 1.2. Prove that NP is the set of languages L such that there exists an efficient (i.e. polytime) algorithm M ,
and a polynomial p(n) such that x ∈ L if and only if M accepts (x, y) for some y with |y| < p(n).

Exercise 1.3. Prove that 2SAT ∈ P where 2SAT is SAT restricted to CNF’s such that every clause is of size exactly
2.

Exercise 1.4. Prove that 3SAT is NP-complete by showing that SAT ⩽p 3SAT.
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Chapter 2

Time complexity

In the first half of the twentieth century, theoretical computer scientists focused on understanding which problems are
solvable by algorithms. By the 1950s, thanks to the great works of Turing, Church, Gödel, and others, we acquired
a deep understanding of this division of problems into decidable and undecidable ones. However, it quickly became
evident that this dividing line is too coarse. Many decidable problems remain intractable as the best-known algorithms
to solve them will terminate long after anyone cared or lived to see the answer. These observations created a need for a
much more refined theory that will account for the performance of different algorithms. Thus was born computational
complexity theory in the 1960s, with the initial charge of understanding efficient computation in the most general
sense: determining the minimal amounts of natural resources such as time, memory, and communication needed to
solve natural computational tasks by natural computational models [Wig19].

Our computational model

All the strongest known natural models of computation are essentially equivalent in that the complexity of a problem
can only change polynomially if we change the model. While this polynomial change is not an issue for defining
classes such as P and NP, it can become an issue for other notations we will define soon. For example, suppose we
define DTIME(n) as the class of problems that can be decided deterministically in linear time O(n). In that case, this
definition depends on the model of a Turing Machine: a problem that might require quadratic time using a single-tape
Turing Machine could potentially become solvable in linear time with a double-tape Turing Machine. Hence, to discuss
the complexity of a problem rigorously, we need to be more specific about which model we use. When defining this
model, we should also pay attention to another important detail regarding space complexity. Consider for example
the language L ⊆ {0, 1}∗ consisting of all strings of even length. Deciding whether a string is of even or odd length
requires very little “working” memory: As we read the input, we only need to keep one bit that we flip each time
we read a new input symbol. However, if we define the space complexity as the total number of the used memory
bits, even this simple language would have a linear space complexity because we start with the input written in the
memory,

Since when discussing the space complexity, one is somewhat concerned with the working memory, our model will
be a multi-tape Turing machine with a separate dedicated tape for the working space. The input alphabet in our model
is Σ = {0, 1} unless specified otherwise. We will not be as specific about the tape alphabet, as our definitions use the
O(·) notation, and different tape alphabets can change the complexity measures only by a constant factor. Finally, for
this course, rather than an accept/reject Turing Machine, it is more convenient to work with Turing Machines that
compute functions. Without further ado, let us formally describe the Three-Tape Turing Machine model that we shall
use:

• The Turing Machine has a finite set of states, including a halt state and a start state.

• There are three tapes:

– A read-only input tape.

– A read/write work tape.

– A write-only output tape. The output tape works slightly differently. The options for the transitions on
this tape are either to print a character, in which case the tape-head moves to the next cell after printing
the character, or not to print anything, in which case the tape-head remains at its current position.
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• Each tape is equipped with a tape-head pointing to a particular position on the tape. Initially, the input followed
by blanks is put on the “input tape”, and the rest of the tapes are filled with only blanks. Initially, the tape-heads
point to the left-most entry of the tapes.

The function computed by such a Turing Machine M is defined as

M(x) =

{
Output-tape content M halts on the input x
⊥ otherwise.

We say that M decides a language L ⊆ {0, 1}∗ if for every input x, we have that

x ∈ L⇒M(x) = 1;

x ̸∈ L⇒M(x) = 0.

That is we interpret the output 1 as Accept and the output 0 as Reject, and thus we can use these Turing Machines
to Accept or Reject inputs.

The running time of M on an input x is the number of steps that M takes on x until it halts.

Next, we need to decide on how to define the space complexity of M on an input x. The main question is whether
to include the output tape as part of the used space or to define the space solely based on the work tape. Consider
the function f defined as f(x) = x. That is, f simply outputs its input without processing. As we shall see in the
discussion of reductions, it is desirable to define the space complexity of this function to be O(1). This suggests we
should not include the output tape to contribute to the space complexity.

The space complexity of M on the input x is the furthest location that the work-tape pointer-head reaches during
the computation of M on x. That is the number of cells in the work tape that are “touched” by the tape-head.

Time complexity

Let us start by discussing time complexity, arguably the most important notion of complexity. Let T : N → N be a
function. Recall that we say that a Turing Machine runs in time T (n) if it halts after at most T (n) steps on every
input of length n.

Definition 2.1. Let T : N → N be a function.

• DTIME(T (n)) is the class of languages L that be decided in deterministic time O(T (n)).

• NTIME(T (n)) is the class of languages L that be decided in nondeterministic time O(T (n)).

• P =
⋃
k∈N DTIME(nk) is the class of the languages that can be decided in polynomial deterministic time.

• NP =
⋃
k∈N NTIME(nk) is the class of the languages that can be decided in polynomial nondeterministic time.

• EXP =
⋃
k∈N DTIME(2n

k

) is the class of the languages that can be decided in exponential deterministic time.

• NEXP =
⋃
k∈N NTIME(2n

k

) is the class of the languages that can be decided in exponential nondeterministic
time.

The most famous question of complexity theory is whether P = NP. This question has several interpretations,
some almost philosophical. We will not discuss those in this course and assume that the students are already familiar
with this question and related topics such as NP-completeness. See the introduction of Aaronson’s survey [Aar16]
for a discussion on the importance of this question. It is conjectured that P ̸= NP, but nobody knows how to prove
this. In fact, the question seems to be well beyond the reach of the currently known techniques in complexity theory
and mathematics. Even though we seem very far from solving this question, it plays a central and fruitful role in
complexity theory as it provides a direction for the area. Many of the results and theories covered in this course were
initially developed as attempts to get us closer to answering this question. We proceed with some remarks on the
current state of the complexity theory.
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• Reductions: This is something we are generally good at. We can often show that if one can solve a problem
X using a certain amount of computational resources, then we can also solve a problem Y using a similar
amount of computational resources. Perhaps the greatest example of this is the extensive list of NP-complete
problems compiled over the few decades since the proof of the Cook-Levin theorem and Karp’s subsequent
seminal paper [Kar72].

• Counting arguments: Sometimes, we can show that there are problems in some class Y but not in X by
counting arguments. That is by proving that Y is a much larger set compared to X. This is more or less a
finitary version of the countability argument that shows that there are languages that are not decidable: the set
of decidable languages is countable (i.e. small) while the set of all languages is uncountable (i.e. large).

• Diagonalization: This is another important technique in complexity theory that allows us to sometimes separate
complexity classes.

• We are extremely bad at proving statements which say that a specific given problem does not belong to a
complexity class. For example P ̸= NP is equivalent to the statement that SAT ̸∈ P. However, as we shall see,
we cannot even show that SAT does not belong to much smaller classes than P.

• Generally, we are quite clueless at separating complexity classes. We can often show containment results that
a class is a subset of the other, but there are few known results in complexity theory that separate complexity
classes.

Time Hierarchy theorems

The first theorem we prove in this course uses the diagonalization technique to separate P from EXP. We want to
design a language L that can be decided in exponential time but cannot be decided in polynomial time. We will need
the following technical fact.

Remark 2.2. Let M be a Turing Machine with running time T (n) and space S(n). One can use the universal Turing
Machine U to simulate M on an input w with |w| = n in time O(T (n) log T (n)) and space O(S(n) + log(n)). In other
words, simulating M on w requires a multiplicative time overlay of log(T (n)) and an additive overlay of log(n) in
space. The reason for these overlays is that simple operations such as updating the location of the tape-head of M on
its input require time and space Ω(log(n)).

Let us start with an easier task:

• Input: Description of a Turing Machine M ;

• Goal: Design a Turing Machine N such that

– N runs in time O(2n), and

– if M is a polynomial time algorithm, then L(N) ̸= L(M).

Note that to satisfy L(N) ̸= L(M), we just need to have one element w such that only one of M or N accepts w.
However, the difficulty of the question is that we cannot determine the running time of M . For example, as a naive
attempt, we might pick a fixed w, say w = 0, simulate M on it, if M accepts it, then reject w, and otherwise accept
it. The issue is that M might go to an infinite loop on w. We have no way of knowing when to stop: Even though
we only care about M ’s that have polynomial running time, this running time could be n, 10n, 100n100, etc. Here is,
however, a trick that solves this problem. Construct N as in the following.

Algorithm 1: Turing Machine N

Data: On input w
Set n = |w|, and t = 2n/2;
Simulate M on w for at most t steps;
if M halts and accepts w in these t steps then

Reject;
else

Accept;
end

By remark 2.2 simulating a Turing MachineM on an input w for t steps can be done in time O(t log(t)). Hence the
running time of N is O(2n/2(n/2)) = O(2n). Furthermore if the running time of M is bounded by some polynomial
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p(n), there exists a k such that p(k) < 2k/2. Now take any input w of length k, and note that N accepts w if and only
if M rejects w, and thus in this case L(M) ̸= L(N).

Above, we managed to construct a Turing Machine N that runs in exponential time, and its language is different
from the language of a specific M if M runs in polynomial time. However, In order to prove P ̸= EXP, we need to
construct a TM N that runs in exponential time and furthermore L(N) ̸= L(M) for every M that runs in polynomial
time. This would show L = L(N) ∈ EXP but L ̸∈ P. This is not difficult as there are infinitely many possible inputs
w. We just need to dedicate an infinite sequence of inputs to each Turing Machine M and use those to make sure that
L(M) ̸= L(N). We can do this, for example, by looking at the first part of a string w, and if it describes a Turing
Machine M , then dedicating w to M . More precisely if w = ⟨M,x⟩, where M is a description of a Turing Machine,
dedicate such w to M .

Theorem 2.3. We have P ̸= EXP.

Proof. Consider the following Turing Machine:

Algorithm 2: Turing Machine N

Data: On input w = ⟨M,x⟩, where M is a description of a TM.
Let n = |w|, and t = 2n/2.
Simulate M on w = ⟨M,x⟩ for at most t steps.
if M halts and accepts w in these t steps then

Reject;
else

Accept;
end

Note that we are simulating M on w = ⟨M,x⟩ rather than on x. The running time of N is O(2n). On the other
hand, consider any Turing Machine M with polynomial running time p(n). Consider a sufficiently long string x such
that for n = |⟨M,x⟩|, we have p(n) < 2n/2. Such a string exists because 2n/2 grows faster than any polynomial p. Let
w = ⟨M,x⟩. Note that M will halt on w in the first t steps, and thus N accepts w if and only if M rejects w.

This shows L(N) ̸= L(M) for any Turing Machine M that has a polynomial running time. Thus L(N) ∈ EXP but
L(N) ̸∈ P. □

We can easily generalize Theorem 2.3 to other running times. However one must be careful. In the description of
the Turing Machine N in the proof of Theorem 2.3, we compute t = 2n/2. This does not change the running time
of N by much because computing 2n/2 can be done very efficiently. However if t was a function that was difficult to
compute, then just computing t could have changed the total running time drastically. Hence in order to state the
so-called time-hierarchy theorem, we need to restrict our setting to functions that are computable efficiently.

Definition 2.4 (Time-constructible function). A function T : N → N is called time-constructible if it is non-decreasing,
T (n) ⩾ n log(n) for every n, and there is a Turing Machine that computes x→ 1T (|x|) in time O(T (|x|)).

Theorem 2.5 (Time Hierarchy Theorem). Let T1, T2 : N → N be such that T2 is time-constructible, and T1(n) log T1(n) =
o(T2(n)). Then DTIME(T1(n)) ̸= DTIME(T2(n)).

Proof. The log factor in the statement is an artifact of Remark 2.2. We leave the details to the reader. □

Exercises

Exercise 2.1. Where is the error in the following false proof of the false claim that every decidable language is in P?
Consider an algorithm M that decides a language L. For every input x, there exists a polynomial p such that p(|x|) is
larger than the running time of M on x. Hence for every x, we can simulate M on x, and in polynomial time decide
whether x ∈ L.

Exercise 2.2. Prove Theorem 2.5.

Exercise 2.3. Prove a Non-deterministic Time Hierarchy theorem: If T2 is time-constructible and T1(n+1) log T1(n+
1) = o(T2(n)), then NTIME(T1(n)) ̸= NTIME(T2(n)).

• First explain why the same diagonalization used for the deterministic time complexity does not work here without
any changes.
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• Show how to fix the argument so that it works for the non-deterministic time complexity. (Hint: Use a lazy
diagonalization argument: Only try to disagree at least once in an exponentially large interval. Consider a
large intervals (ℓk, uk], and for an input 1n ∈ (ℓk, uk] if n = uk, then deterministically run Mk on 1ℓk+1 for an
appropriate number of steps, and negate its output. If n < uk, then use a non-deterministic simulation.)
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Chapter 3

Polynomial Hierarchy

In order to motivate the definition of the polynomial hierarchy, it is useful to rewrite the definitions of P, NP, and
coNP in the following manner:

• P is the set of all languages L such that there exists an algorithm M that runs in polynomial-time in |x| and

x ∈ L⇔M(x) = Accept.

• NP is the set of all languages L such that there exists an algorithm M that runs in polynomial-time in |x| and

x ∈ L⇔ ∃y, M(x, y) = Accept.

• coNP is the set of all languages L such that there exists an algorithm M that runs in polynomial-time in |x| and

x ∈ L⇔ ∀y, M(x, y) = Accept.

These definitions suggest certain generalizations of these classes:

Definition 3.1. For k ∈ N, the complexity classes Σk and Πk are defined as in the following by alternating the
quantifiers.

• The class Σk is the set of all languages L such that there exists an algorithm M that runs in polynomial-time in
|x| and

x ∈ L⇔ ∃y1∀y2∃y3 . . . yk, M(x, y1, . . . , yk) = Accept, (3.1)

where the quantifiers are alternating.

• The class Πk is the set of all languages L such that there exists an algorithm M that runs in polynomial-time in
|x| and

x ∈ L⇔ ∀y1∃y2∀y3 . . . yk, M(x, y1, . . . , yk) = Accept, (3.2)

where the quantifiers are alternating

Note that P = Σ0 = Π0, NP = Σ1 and coNP = Π1, and we have the inclusions Σk ∪ Πk ⊆ Σk+1 ∩ Πk+1. Note
further that Πk = coΣk in the sense that L ∈ Σk if and only if Lc ∈ Πk. Indeed if L ∈ Σk, then there exists an
algorithm M such that (3.1) holds. Then consider the algorithm M ′ that runs M and flips its output. That is

M ′(x, y1, . . . , yk) = Accept ⇔M(x, y1, . . . , yk) = Reject.

Note that by negating (3.1) we have

x ̸∈ L⇔ ∀y1∃y2∀y3 . . . yk, M ′(x, y1, . . . , yk) = Accept,

which shows that Lc ∈ Πk. Similarly we can start from Lc ∈ Πk, and obtain L ∈ Σk.

13



Example 3.2. Define the language Unique SAT (denoted by !SAT) as

!SAT = {ϕ : ϕ is a CNF that has a unique satisfying assignment}.

Note that !SAT ∈ Σ2. Indeed let M(ϕ, y1, y2) be an efficient algorithm that takes a CNF formula ϕ, and two truth
assignments y1 and y2, and accepts them if and only if y1 satisfies ϕ and either y2 = y1 or y2 does not satisfy ϕ. Now
we have

ϕ ∈!SAT ⇔ ∃y1∀y2, M(ϕ, y1, y2) = Accept,

which shows that !SAT ∈ Σ2.

Finally, the polynomial hierarchy is defined as

PH =

∞⋃
k=1

Σk =

∞⋃
k=1

Πk.

In other words L ∈ PH if L ∈ Σk for some k.

Theorem 3.3. We have PH ⊆ EXP.

Proof. Since PH =
⋃∞
k=1 Σk, it suffices to show that for every k ∈ N, we have Σk ⊆ EXP. Consider L ∈ Σk, and let

M be a fast algorithm such that (3.1) holds. We know that there exists a polynomial p(n) such that M(x, y1, . . . , yk)
runs in time t = p(|x|). In particular, M can never read beyond the first t letters of any of the yi’s, and thus it suffices
to consider yi’s that are of length at most t.

We use M to design an exponential algorithm N that decides L. Indeed we can have k nested loops, where the
j’th loop goes over all yj ’s of length at most t. Inside the innermost loop we simulate M on (x, y1, . . . , yn). We use
these loops to verify whether the right-hand side of (3.2) holds. If it holds, we accept x. Otherwise, we reject.

Note that k = O(1), and it does not depend on the input size. Thus the running time of this algorithm is
2O(kt)t log(t) = 2O(t) = 2p(|x|), where the t log(t) accounts for simulating M on (x, y1, . . . , yn). □

Finally, we want to show that if P = NP, the polynomial hierarchy collapses to PH = P. To simplify the presentation,
we present the proof that if P = NP, then P = Σ2.

Proposition 3.4. If P = NP, then P = Σ2.

Proof. Since P = NP, and P is closed under taking complements, we conclude that P = NP = coNP.
Consider L ∈ Σ2. Let M be such that

x ∈ L⇔ ∃y1∀y2, M(x, y1, y2) = Accept,

and M runs in polynomial time p(|x|). Since M runs in time p(|x|) we can require further that the strings y1 and y2
are of size at most p(|x|):

x ∈ L⇔ ∃y1∀y2, |y1|, |y2| ⩽ p(|x|) and M(x, y1, y2) = Accept.

Define

L̃ = {(x, y1) : ∀y2 M(x, y1, y2) = Accept}.

Note that L̃ ∈ Π1 = coNP, because the condition M(x, y1, y2) = Accept can be verified in time O(p(|x|)) which is
obviously polynomial in |(x, y1)|. Hence since we assumed P = NP = coNP, we conclude that L̃ ∈ P, and thus there is
a Turing Machine N that decides whether (x, y1) ∈ L̃ in time that is polynomial in |(x, y1)|, which is polynomial in
|x| since |y1| ⩽ p(|x|).

Now note that

x ∈ L⇔ ∃y1, |y1| ⩽ p(|x|) and (x, y1) ∈ L̃1,

which, together with the above discussion, shows that L ∈ NP. □

One can use the above quantifier elimination argument to prove that if Σk = Σk+1, then Σk = Σk+2. This implies
the following theorem.

Theorem 3.5. If P = NP, then P = PH. More generally if Σk = Σk+1, then Σk = PH.

14



Exercises

Exercise 3.1. Establish the inclusion Σk ∪Πk ⊆ Σk+1 ∩Πk+1 for all k.

Exercise 3.2. Complete the proof of Theorem 3.5.

Exercise 3.3. Prove that under polynomial-time (mapping) reductions, QSATk is a complete problem for Σk. Here
QSATk is the set of true statements of the form

∃(x1, . . . , xi2)∀(xi2+1, . . . , xi3)∃(xi3+1, . . . , xi4) . . . (xik+1, . . . , xn) ϕ(x1, . . . , xn),

where ϕ is a CNF with n variables x1, . . . , xn and 1 = i1 < i2 < i3 < . . . < ik. Here the number of quantifiers is k, it
starts with ∃ and they alternate. Note that QSAT1 = SAT.

You may use the fact that SAT is NP-complete.

Exercise 3.4. Give the pseudo-code of the algorithm described in the proof of Theorem 3.3. What is the space
complexity of this algorithm?

Exercise 3.5. Let QSAT be the set of the true statements of the form

∗x1 ∗ x2 ∗ x3 . . . ∗ xnϕ(x1, . . . , xn),

where ϕ is a CNF and each ∗ is either a ∃ or a ∀ quantifier. Recall that PH = ∪∞
k=1Σk. Can we conclude that

QSAT ∈ PH? Why?

Exercise 3.6. Consider the following problem. We are given an arrangement of an n×n chess board with chess pieces
as input. We are asked “Can white win in at most 10 moves if she starts first?”. More precisely, “if white starts, can
she always win in at most 10 moves, no matter how black plays?”

Which complexity class in the polynomial hierarchy captures this problem?

Exercise 3.7. Show that if PH does not collapse, that is PH ̸= Σk for any k, then it does not have a complete problem
under the polynomial-time reductions.
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Chapter 4

Space complexity

In the previous lectures, we discussed several time complexity classes, deterministic and non-deterministic. Next, we
turn our attention to space complexity. Recall that in our computational model, we used a separate tape for the
workspace so that the sizes of the input and the output do not contribute to the space complexity. More precisely,
the space complexity of M on an input x is defined as the number of cells in the work tape that are visited during the
computation. Similar to the time complexity, the space complexity of M is a function S : N → N, where S(n) is the
maximum space complexity of M over inputs of size n.

Definition 4.1. Let S : N → N be a function.

• SPACE(S(n)) is the class of languages L that be decided in deterministic space O(S(n)).

• NSPACE(S(n)) is the class of languages L that be decided in nondeterministic space O(S(n)).

• L = SPACE(log(n)) is referred to as log-space.

• NL = NSPACE(log(n)) is referred to as non-deterministic log-space.

• PSPACE =
⋃
k∈N SPACE(nk) is the class of the languages that can be decided in polynomial deterministic space.

Similar to the time hierarchy theorem, one can use a simple diagonalization argument to prove a space hierarchy
theorem. As with the time hierarchy theorem, we need to assume that the space function can be computed using a
reasonable amount of resources.

Definition 4.2 (Space-constructible function). A function S : N → N is called space-constructible if it is non-
decreasing, S(n) ⩾ log(n), and there is a Turing Machine that computes x→ 1S(|x|) in space O(S(|x|)).

Theorem 4.3 (Space Hierarchy Theorem). Let S1, S2 : N → N be such that S2 is space-constructible, and S1(n) =
o(S2(n)). Then SPACE(S1(n)) ̸= SPACE(S2(n)).

Note that unlike Theorem 2.5, we do not need to multiply S1 by log(S1). Indeed as it is mentioned in Remark 2.2,
simulating M on x for S1 steps does not require the multiplicative overlay of log(S1). Similar to the time complexity,
by using the proof of the hierarchy theorem, we obtain

L ̸= PSPACE.

Time and Space

Next, we will investigate the relations between the time and space complexity classes. Recall the inclusions

P ⊆ NP ⊆ PH ⊆ EXP.

How large is the class PSPACE? Where does PSPACE fit in the above picture? Does it contain P? This latter
question is easy. Indeed the answer is affirmative because if a Turing Machine runs in polynomial time, then it can
never use more than a polynomial amount of memory. This shows that more generally

DTIME(T (n)) ⊆ SPACE(T (n)).
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How about NP, or PH, or even EXP? We will show that

PH ⊆ PSPACE ⊆ EXP.

It is believed that these inclusions are proper, but yet again, we do not know how to separate these classes.
First let us establish PSPACE ⊆ EXP. This is in fact an instance of a larger phenomenon. If the space complexity

of an algorithm M is bounded by S(n), then the time complexity of M is bounded by 2O(S(n)+log(n)). This is quite
easy to see. Suppose the space is bounded by S(n). In that case, there are only at most 2S(n) different possibilities for
the content of the work tape, S(n) different possibilities for the location of the work-tape-head, n possibilities for the
location of the input-tape-head, and O(1) possibilities for the state of the Turing Machine. These parameters together
form a configuration, essentially a snapshot of the Turing Machine at a particular time during its computation. Since
the number of possible configurations is at most T (n) = O(2S(n)S(n)n) = 2O(S(n)+log(n)), if the running time on
input M is larger that T (n) on any input of size n, then there will be configuration that will be repeated during the
computation. This, however, would imply that M will return to the same configuration repeatedly and thus will never
halt. This is a contradiction as M is an algorithm.

Theorem 4.4. Let S : N → N be a space-constructible function. Then SPACE(S) ⊆ ∪∞
k=1DTIME(2kS).

Note that another consequence of Theorem 4.4 is that L ⊆ P. We conclude

Theorem 4.5. We have
L ⊆ P ⊆ PH ⊆ PSPACE ⊆ EXP.

Proof. The inclusions L ⊆ P, and PSPACE ⊆ EXP are immediate from Theorem 4.4. The inclusion PH ⊆ PSPACE
follows from the proof of Theorem 3.3. It is not difficult to see that the algorithm presented in the proof of Theorem 3.3
uses a polynomial amount of space (See the Exercise 3.4 in the previous lecture). □

Remark 4.6. The only known separations in Theorem 4.5 are L ̸= PSPACE and P ̸= EXP.

Perhaps the most famous example of a language in PSPACE is QSAT. This language is defined similarly to SAT,
but now every variable can be quantified with either a ∃ or ∀ quantifier. If all the quantifiers are ∃, then we recover the
original SAT problem, which asks whether there exists a truth assignment that satisfies the CNF formula. However,
QSAT allows using ∀ quantifiers for some variables, making the problem more general and probably more difficult.

Definition 4.7 (QSAT). Let QSAT be the set of the true statements of the form

∗x1 ∗ x2 ∗ x3 . . . ∗ xnϕ(x1, . . . , xn),

where ϕ is a CNF and each ∗ is either a ∃ or a ∀ quantifier.

For example
∃x1∀x2∀x3 (x1 ∨ x2) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∈ QSAT,

while
∀x1∃x2∀x3 (x1 ∨ x2) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ̸∈ QSAT.

It is easy to see that QSAT is in PSPACE. See Exercise 4.5, where the reader is also asked to prove that QSAT is
PSPACE-complete under polynomial-time reductions.

Logarithmic Space L and NL

In the previous section, we saw that PSPACE is a powerful complexity class that includes the polynomial hierarchy.
Indeed this class might be too powerful to capture space efficiency. After all, every language in P already belongs to
PSPACE, and we deem the languages that are not in P as intractable for time-related reasons. Hence, when discussing
space-efficient algorithms, the class L is arguably a better choice. It captures the set of problems that can be solved
efficiently in terms of space. It is easy to see that the two basic arithmetic operations +, × fall into this class. It is
also true, but much harder to prove, that the division ÷ also belongs to L. This has been established in 2001 by Chiu,
Davida, and Litow [CDL01]. The class L is also important for practical reasons as sometimes the real-world data are
so massive that we cannot store them, and we have to process the data as we read it. This is captured in streaming
algorithms, where the input is presented as a sequence of items and can be examined in only a few passes, typically
just one. In most models, these algorithms have access to limited memory, generally logarithmic in the stream size.
As we shall see later in the course, the class L is also related to parallel computing.

When discussing the logarithmic space classes, polynomial-time reductions are no longer an appropriate way of
comparing the difficulty of problems. Indeed it is no longer true that if X ⩽p Y and Y ∈ L, then X ∈ L. Instead, we
need the refiner notion of Logspace mapping reductions:

18



Figure 4.1: A summary of the inclusion relation between some complexity classes

Definition 4.8. We say that X is Logspace mapping reducible to Y , and write X ⩽ℓ Y if there exists a map
f : Σ∗ → Σ∗ that can be computed in logarithmic space, and it satisfies

x ∈ X ⇔ f(x) ∈ Y.

Note that even though f : Σ∗ → Σ∗ is computed in logarithmic space, it could be the case that f(w) is not of
logarithmic size. For example in the trivial reduction X ⩽ℓ X given by f : w 7→ w, we can clearly compute f in
logarithmic space, but f(|w|) = |w| = ω(log(|w|)). This might seem an obstacle to proving that if X ⩽ℓ Y and Y ∈ L,
then X ∈ L, as given w ∈ X since we cannot simply afford to generate f(w) on the work-tape. Nevertheless, as the
following proof shows that there is a way around this.

Theorem 4.9. If X ⩽ℓ Y and Y ∈ L, then X ∈ L.

Proof. Let MY be the Turing Machine that decides Y in logarithmic space, and let f : Σ∗ → Σ∗ be the logspace
reduction from X to Y computable by a logspace algorithm Mf . Given an input w for problem X, we would like to
run MY on f(w), and accept w if MY accept f(w), and reject otherwise. Note that we cannot simply generate f(w)
on the work tape. Instead to simulate MY on f(w), on the work tape we keep a number c that refers to the location
of the tape-head for the input-tape of MY with input f(w). It follows from Theorem 4.4 that |f(w)| = 2O(log |w|) and
thus c can be stored using a logarithmic space. Since our goal is to simulate MY on f(w), we need to find out the
c-th bit of f(w). We can simply simulate Mf on w, ignoring all its outputs and just keeping a count of the number of
output bits until it prints the c-th bit of f(w). Every time the value of c changes, we repeat this step and simulate
Mf on w from scratch until we reach the new value of c. Note that with this approach, we always know the bit under
the input-tape-head of MY on f(w), and thus can proceed with the simulation. □

The logspace mapping reduction is the strongest form of reduction that we have seen so far. Since L ⊆ P, it implies,
in particular, the existence of a poly-time reduction.

Figure 4.1 summarizes the inclusion relation between the complexity classes we have seen so far.

Exercises

Exercise 4.1. Prove that the following function f : {0, 1}∗ → {0, 1}∗ defined as f(x) = 02
|x|

can be computed in
polynomial space.
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Exercise 4.2. Prove that the following language is in L.

{0n1n : n ∈ N}.

Exercise 4.3. Prove that the following language is in L.

{wwR : w ∈ {0, 1}∗},

where wR is the reverse of w.

Exercise 4.4. Prove that the addition function is in L. That is f(x, y) = x + y, where x, y and x + y are in binary
basis.

Exercise 4.5. First, write a pseudo-code which shows QSAT ∈ PSPACE. Next, prove that QSAT is PSPACE-complete
under polytime reductions.
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Chapter 5

Savitch’s Theorem

In the previous lecture, we introduced two important complexity classes L and NL. Furthermore, we discussed log
space mapping reductions and showed that if X ⩽ℓ Y and Y ∈ L, then X ∈ L. Now let us discuss an important
language,

PATH = {⟨G, s, t⟩ : G is a directed graph with an s→ t path}.

Here we can assume that G is given to us as an adjacency matrix AG, where Auv = 1 if and only if there is an edge
from u to v, and Auv = 0 otherwise. The next theorem shows that PATH ∈ NL.

Theorem 5.1. The language PATH is in NL.

Proof. To show that PATH ∈ NL, on an input ⟨G, s, t⟩, we start from the initial vertex s, and at each step, non-
deterministically guess one of the neighbours of the current vertex as the next vertex. If we reach t in at most |V (G)|
steps, we accept the input; otherwise, we reject it. Obviously, if there is an s − t path, there will be a sequence of
non-deterministic choices that lead to Accept. On the other hand, if there are no s → t paths, then no matter how
we make the non-deterministic choices, the input will be rejected.

Finally, note that since we only need to keep track of the current vertex and just the number of the visited vertices,
this algorithm requires only logarithmic space. □

PATH is an important language in NL. The following theorem shows that every language in NL can be log-space
reduced to PATH.

Theorem 5.2. The language PATH is NL-complete under the log-space reductions.

Proof. We have already shown that PATH ∈ NL. It remains to prove completeness. Consider an arbitrary X ∈ NL, and
let M be a non-deterministic Turing Machine that decides X in logarithmic space S(n). Given an input w, construct
an instance of ⟨G, s, t⟩ of PATH as in the following. The nodes of G are all the possible configurations of M with w on
the input tape and the work tape of size at most S(|w|). Note that each such configuration can be represented by at
most c log(n) bits for some constant c, encoding the location of the heads and the content of the work tape. For two
configurations c1 and c2, we include the edge (c1, c2) in the graph if c2 is one of the possible next configurations of M
if we start from c1 and make a non-deterministic choice. We assume that M is modified to have a unique accepting
configuration. We call this configuration t and let s be the starting configuration.

Obviously, this is a mapping reduction from X to PATH as M accepts w if and only if there is an s→ t path in G.
Furthermore, the reduction can be implemented using logarithmic space. We will show how the nodes and the edges
of G can be listed by a log space algorithm. To list the nodes, we go through all the strings of size c log(n) one by one,
and for each one, we test to see if it is a valid potential configuration. To list the edges, we generate pairs of vertices
(c, c′) one by one, and for each pair, we check to see whether there is a transition in M that converts c to c′. If there
is, we output (c, c′) as an edge and otherwise output it as a non-edge.

□

It is unknown whether PATH is in L or not. By Theorem 5.2 if PATH ∈ L, then NL = L. This is a very interesting
question, as unlike the P versus NP question, there are fewer reasons to believe that L and NL are necessarily different.
Towards answering these questions, in 2005, Reingold, in a breakthrough paper [Rei08] showed that the undirected
version of PATH belongs to L. That is UPATH ∈ L, where

UPATH = {⟨G, s, t⟩ : G is an undirected graph with an s− t path}.
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Savitch’s theorem

In this section, we discuss the relationship between deterministic and non-deterministic space complexity. In particular,
we prove Savitch’s theorem which shows that the gap between the deterministic and non-deterministic space complexity
is not very large. For time complexity we know that a non-deterministic Turing Machine with running time T (n) can
be simulated by a deterministic Turing Machine with an exponential blow-up in the running time 2O(T (n)). It is widely
believed that this gap is necessary and that NP-complete problems such as SAT that can be solved in polynomial
non-deterministic time require exponential deterministic time. However, for the space complexity, Savitch [Sav70]
showed that the simulation can be done more efficiently.

Theorem 5.3 (Savitch’s Theorem). We have

NL ⊆ L2
def
= SPACE(log2(n)).

Proof. By Theorem 5.2 the statement is equivalent to showing that PATH ∈ SPACE(log2(n)). Consider an instance
⟨G, s, t⟩, where G is a graph with m vertices. If we try to imitate the algorithm of Theorem 5.1, to know that all the
paths have been checked, we need to remember the list of the vertices that have been visited at any point during the
execution of the algorithm. However, this requires an Ω(|V |) amount of space, which is much larger than the desired
O(log2(n)). Instead, we will take a different approach.

The idea is to devise a recursive algorithm whose maximum recursion depth is logarithmic: Obviously ⟨G, s, t⟩ ∈
PATH if and only if there is a path of length at most m from s to t. We will do this into two subtasks For every vertex
w, we see if there is an s → w path of length at most m/2, and a w → t path of length at most m/2. If they both
exist, then we know there is an s → t-path. Now to solve those two subproblems, we can repeat the same idea and
look for paths of length m/4, and then m/8, etc. Note that the maximum depth of this recursion is O(log(m)), and
for each level, we need to remember one vertex. So, at any point, the number of stored data is O(log(m)2) as desired.

Algorithm 3: The subroutine that searches for the existence of a u→ v path of length at most k.

Data: On input w = ⟨G, u, v, k⟩.
if k ⩽ 1 then

if uv ∈ E or u = v then
Accept;

else
Reject;

end

else
for w ∈ V do

if Path(G, u,w, ⌈k/2⌉) = Accept and Path(G,w, v, ⌈k/2⌉) = Accept then
Accept;

end

end
Reject;

end

□

Corollary 5.4. We have PSPACE = NPSPACE.

Proof. The same proof as in Savitch’s theorem can be used to show that

NSPACE(nk) ⊆ SPACE(n2k),

which in particular implies PSPACE = NPSPACE. □

What is the running time of the algorithm of Theorem 5.3? Note that the running time corresponds to the recursion
T (m) ⩽ 2mT (m/2) which solves to mO(log(m)) = 2O(log(n)2). So, on the one hand, we have an algorithm that runs in

the small space of O(log2(n)) and a rather slow time of 2O(log(n)2). On the other hand, we can simply run a depth-first
search that has an efficient time of O(n log(n)) but requires a large space of O(n). Can one achieve the best of both
worlds?

Problem 5.5 (Open Problem). Is there an algorithm for PATH that runs in time nO(1) and uses space logO(1)(n)?
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Exercises

Exercise 5.1. Prove that UPATH ⩽ℓ PATH.

Exercise 5.2. A randomized Turing Machine is a Turing Machine that has an additional infinite randomness tape.
Initially, the tape is filled with an infinite sequence of independent unbiased random bits. In other words, for every
cell, a fair coin is flipped independently to decide the cell’s value.

Let C be the class of problems that can be solved with a deterministic log-space one-sided randomized algorithm:
That is, there is a randomized Turing Machine that it never accepts incorrectly but is allowed to reject incorrectly
with probability at most 1/3. Prove that C = NL.

Let RL be the class of problems that can be solved with a deterministic log-space one-sided randomized algorithm
in polynomial time. Conclude that L ⊆ RL ⊆ NL. It is not known whether L ̸= RL, but many believe that they might
be equal.

Exercise 5.3. Recall that a Boolean formula is an expression involving Boolean variables and Boolean operations
∧,∨,¬ (but no quantifiers ∃,∀). Two Boolean formulas are called equivalent if they are on the same set of variables
and are true on the same set of truth assignments. Consider the following language

MinFormula = {ϕ : ϕ has no shorter equivalent formula}.

• Prove that MinFormula ∈ PSPACE.

• Prove that if P = NP, then MinFormula ∈ P.

Exercise 5.4. Prove that the following language is in PSPACE.

{⟨r, t⟩ : r and t are equivalent regular expressions}.

Exercise 5.5. Prove that the set of properly nested parenthesis is in L. For example (()()) is properly nested, while
())( is not.

Exercise 5.6. Prove that the following is in L.

{G : G is an undirected graph with at least a cycle}.

Exercise 5.7. An NL-certifier is an Accept/Reject Turing Machine with three tapes:

• Input Tape: (Read-Only).

• Working Memory: (Read-Write) It is small O(log(n)), where n is the input size.

• Certificate/Proof Tape: (Read-Once) The tape-head cannot move to the left (every memory cell gets to be read
at most once).

Prove that L ∈ NL if and only if there is an NL-certifier M such that

x ∈ L ⇔ ∃y, M(x, y) = Accept.

Exercise 5.8. Prove that if in the definition of the NL-certifier if relax the read-once condition on the certificate-tape
to an ordinary read-only tape, then we obtain the class NP.
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Chapter 6

NL versus coNL: Immerman-Szelepcsenyi’s
Theorem

In the previous lecture, we showed that L ⊆ NL ⊆ L2, where L2 = SPACE(log2(n)). In this lecture, we consider the
relationship between NL and coNL. It is not known whether L = NL, but if true, it would imply NL = coNL. The
Immerman-Szelepcsenyi Theorem shows that the latter is true regardless. Recall that the directed PATH problem
is NL-complete under the log-space reductions, and consequently its complement PATHc is coNL-complete. Hence,
in order to show that NL = coNL, it suffices to prove PATHc ∈ NL. This is rather nontrivial. The power of a non-
deterministic Turing Machine is its ability to “guess” a proper certificate. For example to show PATH ∈ NL, simply
for |V (G)| steps, we guessed the next vertex until we reach t.

To see the difficultly of this problem, imagine someone with a very poor memory. To convince this person that
there is a path from s to t in a graph G, it suffices to show the edges of an st-path one by one, and the person can
verify those without needing to memorize anything else. But how can we convince someone with poor memory that
there are no st-paths?

NL versus coNL: Immerman-Szelepcsenyi’s Theorem

To present the proof of the Immerman-Szelepcsenyi Theorem, it is useful to think of the NL algorithms in the language
of verifiers. We refer the reader to Exercise 5.7, where the reader is asked to prove that L ∈ NL if and only if there is
an NL-certifier M such that

x ∈ L ⇔ ∃y, M(x, y) = Accept,

where an NL-certifier is an Accept/Reject Turing Machine with three tapes:

• Input Tape: (Read-Only).

• Working Memory: (Read-Write) It is small O(log(n)), where n is the input size.

• Certificate/Proof Tape: (Read-Once) The tape-head cannot move to the left (every memory cell gets to be read
at most once).

Note that here the certificate tape corresponds to the non-deterministic decisions made by the non-deterministic
Turing Machine, and as a consequence, it is natural to assume that it is read-once.

Immerman [Imm88] and Szelepcsenyi [Sze88] independently proved that NL = coNL.

Theorem 6.1. We have NL = coNL.

Proof. By NL-completeness of PATH, it suffices to prove that

NonPATH = {⟨G, s, t⟩ : G is a directed graph with no s→ t paths} ∈ NL.

Let m = |V (G)|, and let us label the vertices as u1, . . . , um. The input size is roughly n = Θ(m2) if we present the
graph with its adjacency matrix, and thus log(n) = Θ(log(m)). Note that each vertex can be represented with log(m)
bits. For k = 0, . . . ,m, define

Ak = {u : ∃su-path of length ⩽ k}.

25



Now let us try to build a “certificate” for not containing any st-paths. For each k = 0, . . . , n, define

Pk = [Bk1 , . . . , B
k
n],

where the blocks are defined as

Bki =

{
[an sui-path of length ⩽ k] ui ∈ Ak
[ ] ui ̸∈ Ak

That is, when ui ∈ Ak, then the evidence is provided to us, whereas if ui ̸∈ Ak, then B
k
i includes no evidence for this

claim. We make two key observations

1. If we know the size ck = |Ak|, then we can verify the correctness of Pk in log-space. Indeed we can verify the
memberships ui ∈ Ak by looking at their provided sui-paths, and as we do so we keep a count of them. If the
total count matches ck, then we will know that the non-memberships ui ̸∈ Ak are also given to us correctly. The
issue remains that we cannot simply rely on the certificate to provide the number ck to us, as we need to be able
to verify its correctness.

2. If we have a fixed vertex v in mind, then as we are verifying Pk (assuming we know ck), we can find out whether
v ∈ Ak+1 or v ̸∈ Ak+1. Each time we see a vertex ui ∈ Ak, we check to see if it has an edge to v. If it has,
then v ∈ Ak+1. If we do not find such a uiv with ui ∈ Ak, and also see that v ̸∈ Ak, then we shall know that
v ̸∈ Ak+1.

Algorithm 4: The subroutine that given ck, verifies the correctness of Pk and v ∈ Ak+1 in log-space.

Data: On input ck, k, Pk, v. ; // Below, only remember c, k, ck, i, v, B

Initialize c := 0, and B := ⟨v ̸∈ Ak+1⟩
for i = 1, . . . , n do

if ⟨ui ∈ Ak⟩ according to Pk then
Verify the claim by following the provided path; // requires O(log(m)) space

Increase c;
if uiv ∈ E or v = ui then

B := ⟨v ∈ Ak+1⟩
end

end

end
Verify that c = ck and return B.

It remains to compute ck = |Ak| from the certificate. We have shown that given ck and a correct Pk, we can find
out whether any given v belongs to Ak+1 or not. This should allow us to compute ck+1 from ck and Pk except for one
issue. We can only read Pk once as the certificate-tape is read-once. With a meagre memory of O(log(n)) we cannot
detect all the vertices that belong to Ak+1 in one reading of Pk. There is a simple trick to overcome this: repeat each
Pk several times. The full certificate that is provided to us is going to be the following:

P = [P0 . . . P0︸ ︷︷ ︸
m times

, P1 . . . P1︸ ︷︷ ︸
m times

, . . . , Pm . . . Pm︸ ︷︷ ︸
m times

].

Now computing ck+1 from ck is straightforward. Indeed as we read the m copies of Pk, we can use the j-th copy to
find out whether uj ∈ Ak+1. Note that c0 = 1 and A0 = {s}. We start with c0 = 1, and for each k = 0, . . . ,m− 1, we
compute ck+1 from ck.

Let us remark that we cannot require all the m repetitions of Pk to be identical, as a log-space verifier does not
have sufficient memory to verify it. All that is required is that each individual Pk correctly provides an sv-paths of
length at most k for each v ∈ Ak.

Finally, note that there are no st-paths if and only if t ̸∈ Am. So given a valid P , we can verify its correctness and
then see that t ̸∈ Am. On the other hand, if P is not valid, our algorithm will detect it and reject it. □

Exercises

Exercise 6.1. Prove that the following is in NL.

{⟨G⟩ : G is a bipartite graph}.

26



Exercise 6.2. Where is the error in the following incorrect proof that NonPATH ∈ NL?
Given an input ⟨G, s, t⟩, it is easy to see that there are no st-paths in G if and only if there exists a partition of the

vertices into two parts A and B such that s ∈ A, t ∈ B, and there are no edges going from A to B. Let the vertices
of G be u1, . . . , um, and let x = (x1, . . . , xn) ∈ {0, 1}n be such that xi = 0 if ui ∈ A and xi = 1 if ui ∈ B. To verify
that ⟨G, s, t⟩ ∈ NonPATH, the verifier is going to be provided with a certificate C consisting of k copies of x, where k
is the number of edges in G:

C = [x, x, . . . , x︸ ︷︷ ︸
k times

].

Now, as the verifier reads the i-th x, it verifies that the edge ei does not go from A to B. It will also use x to verify
that s ∈ A and t ∈ B. Once it finishes reading all of C it will have verified that none of the edges ei goes from A to
B. Thus it will successfully verify that ⟨G, s, t⟩ ∈ NonPATH.
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Chapter 7

Ladner’s Theorem: NP-completeness

Shortly after Cook and Levin introduced the notion of NP-completeness, Karp [Kar72] proved that several fundamental
combinatorial optimization problems are NP-complete, and subsequently, many other NP-complete problems were
discovered by other mathematicians. By 1979 the list of the known NP-complete problems was so extensive that
Gary and Johnson compiled a compendium of known NP-complete problems in a 330-page book [GJ79]. Curiously,
most natural problems in the class NP seem to be either NP-complete or fall into P. A partial explanation for this
phenomenon is given by dichotomy theorems. Such theorems state that for certain classes of problems, each problem is
either in P or NP-complete. Consider the following combinatorial problem as an example: for a fixed undirected graph
H, the problem of deciding whether a given graph G has a homomorphism to H is called the H-colouring problem.
Hell and Nesetril [HN90] proved a dichotomy theorem for the H-coloring problem, stating that if H is bipartite, then
the H-coloring problem is in P, and otherwise, it is NP-complete. The H-coloring problem and many other natural
combinatorial problems can be expressed as part of a broad class of problems referred to as constraint satisfaction
problems. This class of problems is known to be NP-complete in general, but certain restrictions on the form of the
constraints can ensure polynomial-time tractability. A dichotomy theorem for constraint satisfaction problems was
conjectured by Feder and Vardi in 1998 [FV98], and proved after about twenty years [Zhu20]. A natural question
arises:

Is it the case that NP consists only of NP-complete problems and the problems in P?

Ladner’s theorem [Lad75] refutes this by showing that if P ̸= NP, then there are problems in NP that are neither
NP-complete nor belong to P.

Theorem 7.1 (Ladner’s theorem [Lad75]). If P ̸= NP, then there is a problem L ∈ NP \ P that is not NP-complete.

The proof presented below is due to Russell Impagliazzo. We will unfortunately not be able to find a natural
language that is NP-intermediate assuming P ̸= NP. In fact, to this day, no such decision problem is known, and there
are very few candidates for such problems as Factorization and Graph Isomorphism. Instead, the idea of the proof
is to take an NP-complete problem such as SAT, and use padding to make it strictly easier, but not easy enough to
fall in P. In particular, we will consider a padded version of SAT, {⟨ϕ, 1f(|ϕ|)⟩ | ϕ ∈ SAT}⟩ for some carefully chosen
relatively large f(|ϕ|).

Warm-up: Proof assuming the Exponential Time Hypothesis

We first give proof of Ladner’s Theorem under the stronger assumption that the exponential time hypothesis is true.
This hypothesis states that 3SAT cannot be solved in sub-exponential time. Note that the exponential time hypothesis,
if true, would imply that P ̸= NP, but it is potentially a stronger statement as it assumes a concrete and very strong
lower-bound on the running time of any algorithm that solves 3SAT.

Now consider the language

L =
{
⟨ϕ, 1h(|ϕ|)⟩ | ϕ is a satisfiable 3CNF

}
,

where h(n) = nlog(n) = 2log
2 n, so that for a 3CNF ϕ of size n, the size of the new input ⟨ϕ, 1h(|ϕ|)⟩ is Θ(2log

2 n), which
is super-polynomial and sub-exponential in n.

• L ∈ NP: This is true as a truth assignment that satisfies ϕ can be used to verify in polynomial time that
⟨ϕ, 1h(|ϕ|)⟩ ∈ L.
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• L ̸∈ P: Note that if L ∈ P, then given a 3CNF ϕ, we can decide in time 2O(log2 n) whether ϕ ∈ 3SAT by running
the polynomial time algorithm of L on ⟨ϕ, 1h(|ϕ|)⟩. This contradicts the exponential time hypothesis as 2O(log2 n)

is sub-exponential.

• L is not NP-complete: If it is, there is a polynomial time reduction from 3SAT to L. In particular there exists a
polynomial time computable g : Σ∗ → Σ∗ that given a 3CNF ϕ of size n produces ⟨ψ, 1h(|ψ|)⟩ = g(ϕ) such that

ϕ ∈ 3SAT ⇐⇒ ⟨ψ, 1h(|ψ|)⟩ ∈ L⇐⇒ ψ ∈ 3SAT.

Since this is a polynomial-time reduction, we have |g(ϕ)| = nO(1), which shows that ψ must be small enough

to satisfy h(|ψ|) ⩽ |g(ϕ)| = nO(1). Recalling h(k) = 2log
2 k, we conclude |ψ| ⩽ 2

√
logn = o(n), which is in fact

much smaller than n. Note that now to see whether ϕ ∈ 3SAT we can try all the truth assignments to the much

smaller 3CNF ψ. This will require time O(22
√
n

) = 2o(n), which is sub-exponential in n.

The full proof of Ladner’s Theorem

The difficulty in proving Ladner’s theorem without the exponential time hypothesis is that we cannot assume any
concrete super-polynomial lower-bound on the running time of the algorithms that solve 3SAT. The assumption
P ̸= NP only tells us that every such algorithm must run in super-polynomial without proving us with any concrete
functions.

Proof of Theorem 7.1. Note that for every polynomial p(n), there exists a constant k ∈ N such that p(n) ⩽ nk + k
for all n ⩾ 0. Consequently, we can construct an enumeration1 of Turing Machines M1,M2, . . . that are clocked to
guarantee thatMk always halts before time nk+k, and for every language L ∈ P, there is some k such thatMk decides
L.

For any function H : N → N, define the language

SATH = {⟨ϕ, 1|ϕ|
H(|ϕ|)−|ϕ|⟩ : ⟨ϕ⟩ ∈ SAT},

so that a CNF ϕ is padded to a length |ϕ|H(|ϕ|) input for SATH . Provided that H can be computed efficiently, this
blow-up in the input size will make the problem easier than SAT because the running time is always measured with
resepct to the input length. On the other hand, we have to choose H carefully so that SATH ̸∈ P if SAT ̸∈ P.

We will define the function H : N → N as in the following. Define H(n) = 1 for all n ⩽ 100. For n > 100, we define
H(n) to be the smallest k < log log n such that Mk decides SATH correctly on all inputs of length at most log n, and
we set H(n) = log log n if such k does not exist. Since we do care about the complexity of H itself, we will also present
an algorithm that recursively computes H.

H(n):

1. Recursively compute H(1), . . . ,H(log(n)), and store them in h(1), ..., h(log(n)).

2. For each k = 1 to log log(n) do

(a) flag = True.

(b) For every x of length |x| ⩽ log(n):

i. Decide whether x ∈ SAT by checking that x = ⟨ϕ, 1|ϕ|h(|ϕ|)−|ϕ|⟩ for some ϕ ∈ SAT
with |ϕ| ⩽ log(n), and iterating over all assignments to the inputs of ϕ to determine
its satisfiability (Note that we know what h(|ϕ|) = H(|ϕ|) by the first step.).

ii. Run Mk on input x and if Mk(x) decides incorrectly whether x ∈ SATH then set
flag = False.

(c) If flag = True, then return k and terminate.

3. return log log n.

An important property of H that is immediate from its definition is that H is a nondecreasing function.
We proceed with some easy claims.

1Here and throughout the notes, when we mention such an enumeration, we assume that given i, Mi can be constructed in log-space.
This, for example, can be achieved by looking at the binary representation of i, and interpreting it as a potential Turing Machine description.
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Claim 7.2. H(n) can be computed in time nO(1).

Note that we are not claiming H is polynomial-time computable since that would require a running time that is
polynomial in log n.

Proof. Let T (n) denote the running time of computing H(n) using the above algorithm. Within each iteration for a
fixed x, Step (i) takes nO(1) time as there are only O(n) possible assignments to the variables of ϕ (as |ϕ| ⩽ log n),
and for each assignment, ϕ can be evaluated in time O(|ϕ|) = O(log n). Similarly, the contribution from Step (ii)
within each iteration is bounded by the running time of Mk on an input of size at most log(n), which is bounded by
O(log(n))k) ⩽ O((log(n)log log(n)) = o(n). Finally, observing that there are O(n) choices of x, with |x| ⩽ log n, we
arrive at the recursion T (n) ⩽ T (1) + . . .+ T (log(n)) + nO(1) which solves to T (n) = nO(1). □

Claim 7.3. We have SATH ∈ NP.

Proof. Since H(n) can be computed in nO(1), given an input w, we can check (even deterministicaly) in polynomial

time whether it is of the right format w = ⟨ϕ, 1|ϕ|H(|ϕ|)−|ϕ|⟩, and then use the fact that SAT ∈ NP. □

Claim 7.4. If P ̸= NP then SATH ̸∈ P, and limn→∞H(n) = ∞.

Proof. Suppose for contradiction that SATH ∈ P. Then there exists a k < ∞ such that Mk decides SATH correctly
on all inputs. This means that for every n with log log(n) ⩾ k, we have H(n) ⩽ k = O(1). Then the mapping

f : ⟨ϕ⟩ 7→ ⟨ϕ, 1|ϕ|
H(|ϕ|)−|ϕ|⟩,

is a polynomial time mapping reduction from SAT to SATH . This together with SATH ∈ P implies SAT ∈ P, which is
in contradiction with NP ̸= P.

Now suppose for contradiction that limn→∞H(n) < ∞. Then since H is a nondecreasing function, there exists
k, n0, such that H(n) = k for all n > n0. This implies that Mk decides SATH for all inputs. Since Mk is a polynomial-
time algorithm, this contradicts the previous assertion that SATH ̸∈ P. □

Claim 7.5. If P ̸= NP then SATH is not NP-complete.

Proof. Suppose that SATH is NP-complete. Then SAT ⩽p SATH , and hence there is a polynomial-time computable
map f such that

ϕ ∈ SAT ⇐⇒ f(ϕ) ∈ SATH .

Since f can be computed in polynomial time, there exists a constant c such that |f(ϕ)| ⩽ |ϕ|c, for every ϕ of size at
least 2. For a CNF ϕ, define π(ϕ) := ψ if

f(ϕ) = ⟨ψ, 1|ψ|
H(|ψ|)−|ψ|⟩,

and otherwise ψϕ =⊥ (⊥ representing the constant contradiction CNF). Note that

ϕ ∈ SAT ⇐⇒ π(ϕ) ∈ SAT.

Since limn→∞H(n) = ∞, there exists n0 such that H(n) > c for all n > n0. Hence if |ϕ| > n0, then since

|π(ϕ)|c < |π(ϕ)|H(|π(ϕ)|) = |f(ϕ)| < |ϕ|c,

and thus |ψϕ| < |ϕ|.
Since π is polynomial-time computable, we have spent a polynomial amount of time, and have reduced the sat-

isfiability of ϕ to the satisfiability of a shorter CNF π(ϕ). We can repeat this process by at most |ϕ| many times to
eventually obtain a formula η = π(π(· · · (ϕ)) that is of size at most n0 = O(1). We can then solve the satisfiability of
η in O(1). This would lead to a polynomial-time algorithm for SAT, which contradicts our assumption NP ̸= P. □

The above claims imply Theorem 7.1. □

Exercises

Exercise 7.1. Prove that if P ̸= NP, then there is an infinite sequence of languages L1, L2, . . . in NP such that neither
of them is in P, and moreover Li+1 ⩽p Li but Li ̸⩽p Li+1, for all i.
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Chapter 8

Oracles and relativization

In general terms, an algorithm is a systematic procedure that produces, in a finite number of steps, the answer to a
question or the solution to a problem. What a step is could be left for interpretation. In the first half of the 20th
century, the works of Church and Turing, among others, lead to the understanding (known as the Church-Turing
thesis) that all the natural and practical computational models can be simulated by Turing Machines. In other words,
a handful of simple basic steps suffice to implement even the most sophisticated algorithms. However, we know that
Turing Machines have their limitations, in that there are languages such as

HALTTM = {⟨M,w⟩ : M halts on w},

that cannot be decided by any Turing Machine.
While this is a limitation in practice, theoretically, one can define a computational model that is capable of solving

this problem by simply allowing queries of the form “⟨M,w⟩ ∈ HALTTM?” as part of the legal basic steps of an
algorithm. We can formalize such models through the notion of an oracle. Informally an oracle for a language B is
a hypothetical black-box that is able to produce a solution for any instance of the problem in a single computation
step. An oracle Turing Machine MB is a Turing Machine that has access to such an oracle. Intuitively MB is a
Turing Machine that is further allowed to make queries whether y ∈ B for different strings y. Each such query takes
only one computation step and will always be answered correctly. Note that in this definition B can be any language
of any complexity, and even undecidable problems, such as the halting problem, can be used to define oracle Turing
Machines.

Definition 8.1. An oracle for a language B is a device capable of reporting whether any string w is a member of B.
An oracle Turing machine MB is a modified Turing Machine with the additional capability of querying an oracle for
B. This is implemented by an additional write-only query tape and a special state called the query state. Whenever
MB enters the query state, it receives an answer to whether the content of the query tape is in B or not. The query
tape resets immediately. These happen instantaneously so that each query to the oracle counts as a single computation
step.

Remark 8.2. We have assumed that the query tape is a write-only tape, and thus the oracle Turing Machine cannot
use it as a work space. This allows us to define the space complexity of MB as the amount of the used work space,
which could be much smaller than the sizes of the queries. This is important as it allows us to decide B with an oracle
Turing Machine MB in time and space O(1).

Remark 8.3. Note that the description of an oracle Turing Machine is independent of the oracle that it uses. It is
only during the computation that the oracle plays a role. That is, we can consider a description of an oracle Turing
Machine M without knowing the oracle. Using two different oracles B1 and B2 with this will result in two different
oracle Turing Machines MB1 and MB2 .

The concept of oracle Turing Machines arises naturally in the study of reducibility of languages: Can we solve A
if we know how to solve B? Indeed oracle Turing Machines can be used to define some of the most liberal notions of
reducibility.

• We say A is Turing reducible to B (denoted A ⩽T B) if there is an oracle Turing Machine MB that decides A.

• We say A is polynomial time Turing reducible (a.k.a. Cook reducible) to B (denoted A ⩽pT B) if there is a
polynomial time oracle Turing Machine MB that decides A.
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Note that if A ⩽T B, and B is decidable, then A must also be decidable because we can replace the oracle part of
MB with an ordinary Turing Machine that decides B. Namely, every time a query of the form “y ∈ B?” is made, we
run the algorithm that decides B to find the answer to the query. Similarly, if A ⩽pT B, and B ∈ P, then A ∈ P, since
in this case, the oracle queries can be computed by an ordinary Turing Machine in polynomial time.

Oracle-based notions of reducibility are more liberal than mapping reducibility notions: To answer questions of the
form “x ∈ A?”, not only can we query the oracle B more than once, but the queries can also be adaptive, i.e. depend
on the answer to previous queries. See Exercises 8.1, 8.2, 8.3 for some rigorous comparison between these reductions.

Relativization

We can relativize most of the standard complexity classes to a language B simply by adding B as an oracle. For
example, one might wonder, which problems are decidable relative to B? Which problems can be solved in polynomial
time relative to B?

Definition 8.4 (Semi-formal). Let C be the class of languages that can be decided by Turing Machines with certain
resources. Then CB is the class of languages that can be solved by B-oracle Turing Machines with the same resources.
More generally for a set B of languages, we define CB =

⋃
B∈B CB .

Note that PB is exactly the set of languages A that are Cook reducible to B.

PB := {A : A ⩽pT B} .

Remark 8.5 (Warning). Note that Definition 8.4 is not very formal. It provides a template to define analogous
complexity classes with respect to oracles by taking the definition of the complexity class and replacing algorithms
with oracle algorithms. As a result, if a complexity class has two different definitions (say NL = coNP), then depending
on what definition one chooses, one might end up in two different complexity classes. In other words it is possible that
C = D while CB ̸= DB for some oracle B. See Exercise 8.8.

Next, let us consider some easy examples. We have PP = P and NPP = NP as we can replace the oracle for any
language in P with a polynomial time algorithm that decides it.

We have PSAT = PNP, and generally, the following proposition is easy to prove.

Proposition 8.6. Suppose that a language B is complete for some class D under some notion of reduction. Then
CB = CD provided that the machines in the definition of C can execute that notion of reduction.

Note that NP and coNP are both subsets of PNP, so it is very likely that PNP ̸= NP.
We can also consider the stronger class NPNP, which turns out to belong to the second level of the polynomial

hierarchy.

Proposition 8.7. We have NPNP = Σ2.

Proof. First note that if L ∈ Σ2, then

x ∈ L⇐⇒ ∃y1∀y2M(x, y1, y2) = Accept,

where M is a deterministic Turing Machine that runs in polynomial time in |x|. Let

B = {(x, y1) : ∃y2M(x, y1, y2) = Reject},

and note that B ∈ NP and furthermore
x ∈ L⇐⇒ ∃y1 (x, y1) ̸∈ B.

This shows that L ∈ NPB , and consequently Σ2 ⊆ NPNP. We leave proof of the opposite direction as an exercise. See
Exercise 8.5.

□

Proposition 8.7 hints at an oracle-based definition of the polynomial hierarchy.

Definition 8.8 (Oracle Definition of the Polynomial Hierarchy). Define Σ0 = Π0 = ∆0 = P, and for every i ⩾ 0, let

• ∆i+1 = PΣi ;

• Σi+1 = NPΣi ;

• Πi+1 = coNPΣi .

In Exercise 8.6 you are asked to prove that this definition of Σpi and Πpi is consistent with the earlier definition of
these classes involving quantifiers and polynomial-time verifiers. Note that here we defined a new set of complexity
classes ∆i. It is straightforward to see that Σi ∪Πi ⊆ ∆i+1 ⊆ Σi+1 ∩Πi+1.
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Relativization as a proof-barrier

Many of the known lower-bound techniques in the theory of computation and complexity theory can be relativized to
any oracle model: they hold even if we allow access to an oracle B. Take, for example, the following argument that
shows there are languages which are not recognizable by any Turing Machine: The set of Turing Machines is countable
while the set of all languages is uncountable, and thus there must be a language that is not recognizable by any Turing
Machine. This argument relativizes to any oracle B. Indeed for any language B, the set of oracle Turing Machines
MB is countable, and thus for every B, some languages are not recognizable by any oracle Turing Machine MB .

The diagonalization argument that we used to prove the time and space hierarchy theorems merely uses the
fact that our computational model allows us to construct an efficient universal machine capable of simulating the
computation of any machine M on an input w without much overlay. This obviously is true for oracle Turing
Machines MB as well. Hence the same diagonalization argument implies similar hierarchy theorems: e.g. PB ̸= EXPB

and PSPACEB ̸= EXPSPACEB for every language B.

To celebrate or to grieve? The proofs that relativize imply impressively broad statements. For example, as we
discussed above, for every language B, we have PB ̸= EXPB . While we can celebrate the broadness of such results, we
suspect that, unfortunately, this robustness may be a sign of the limitations of these proof techniques. Such robust
techniques cannot be employed to prove the statements that do not relativize, as any statement established by them
must be true in any oracle model. With this realization, one immediately wonders about the P versus NP question.
Does it relativize? Baker, Gill, and Solovay [BGS75] proved that the answer is negative.

Theorem 8.9 (Baker, Gill, and Solovay [BGS75]). There exist languages A and B such that PA = NPA, and PB ̸=
NPB.

Proof. Note that for every L, we have PL ⊆ NPL, thus the statement is equivalent to ensuring that NPA ⊆ PA and
NPB ̸⊆ PB .

The first part is easy. We will show that for any PSPACE-complete language A (such as TQBF), we have PA =
NPA = PSPACE. It suffices to show NPA ⊆ PSPACE, as the inclusions PSPACE ⊆ PA is obvious from the completeness
of A. Let L ∈ NPA. Then there exists a polynomial time non-deterministic oracle Turing MachineMA that decides L.
Note that with an additional polynomial amount of space, we can go over all the computational paths of MA, and for
each occurring query, run the PSPACE algorithm to decide its result. The total space is still going to be polynomially
bounded.

Next, we turn to the less obvious part of the theorem. Our goal is to construct a language B such that NPB ̸⊆ PB .
To achieve this, we need to guarantee the existence of a language LB ∈ NPB such that LB ̸∈ PB . A good candidate is

LB = {1n | ∃y ∈ B, |y| = n},

which is the set of the lengths of the words in B, represented in unary. Note that independent of the choice of B, the
language LB is always in NPB , as to accept 1n, we simply need to non-deterministically guess an x of length n, and
use the oracle to verify that x ∈ B.

The set LB is a good candidate for a problem in NPB\PB because the membership of 1n depends on the membership
situation of 2n elements in B, and it seems unlikely that for a generic B we can deduce the required information from
only polynomially many queries to the B-oracle. In particular, we will choose B to be very sparse. For every value of
n, B has at most one element in the set {0, 1}n, and thus any polynomial time deterministic oracle Turing Machine
will be incapable of finding whether such an element exists.

We will prove a very strong separation, showing that not only no polynomial time MB can decide LB , but any
oracle Turing machine deciding LB must essentially query all the 2n strings of size n.

Claim 8.10. There exists a language B such that every deterministic oracle Turing Machine MB that decides LB
must have a running time of at least 2n on infinitely many inputs w = 1n.

Proof. We will construct B using an enumeration M1,M2, . . . of the descriptions of all oracle Turing Machines (recall
Remark 8.3). We will assume that every description is repeated infinitely many times in this enumeration1. We will
construct B and a sequence of integers 0 < n1 < n2 < . . . such that MB

k cannot correctly decide 1nk ∈ LB in time
that is less than 2nk . Since every Turing Machine appears infinitely many times in the sequence, we conclude that any
MB that does not have running time ⩾ 2n for infinitely many n will eventually fail on some nk.

The set B is going to be constructed in such a way that Mk will fail to correctly decide whether 1nk ∈ LB unless
it queries all the 2nk strings w ∈ {0, 1}nk .

1Using say 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, . . ..
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In the process, we will keep track of a set S of all the strings w whose memberships/non-memberships to B are
already decided.

Initialize S = ∅. For k = 1, 2, . . ., let nk = 1 + maxw∈S |w|, so that no element in {0, 1}nk belongs to S. Run Mk

on 1nk for at most 2nk − 1 steps, and each time it makes a query “w ∈ B?”, if w ∈ S, then reply according to what
that has been decided about w, and otherwise reply “w ̸∈ B”, set w ̸∈ B, and add w to S. When our simulation
terminates, Mk has made at most 2nk − 1 queries to the oracle, and thus there is at least one y0 ∈ {0, 1}nk that has
not been queried by Mk. We will use this y0 to make the outcome of Mk incorrect, but first for every y ̸∈ S ∪ {y0}
with |y| ⩽ maxw∈S |w| we set y ̸∈ B, and update S. It remains to decide the fate of y0. We can have three different
cases:

• Mk rejected 1nk . In this case, set y0 ∈ B, and update S. Since Mk has never queried y0, this does not influence
its outcome. Now Mk is rejecting 1nk but 1nk ∈ LB because y0 ∈ B.

• Mk accepted 1nk . In this case, set y0 ̸∈ B, and update S. Now Mk is accepting 1nk but 1nk ̸∈ LB because
{0, 1}nk ∩B = ∅.

• M = Mk has not terminated yet. In this case, the running time of Mk is at least 2nk on 1nk , so it is fine if it
correctly decides 1nk . We can do either y0 ∈ B or y0 ̸∈ B.

Note that with the construction of B we achieved our goal that Mk fails to correctly decide whether 1nk ∈ LB unless
it queries all the 2nk string w ∈ {0, 1}nk . □

□

What does this non-relativization of P vs NP mean? Theorem 8.9 means that any proof of NP ̸= P must
contain elements that are non-relativizing. For example, we cannot just rely on the fact that it is possible to use a
universal Turing Machine to simulate a polynomial time M on an input w in polynomial time. Also note that the
proof of Claim 8.10 provides some intuition why one would expect to have P ̸= NP. For problems such as SAT, a
non-deterministic Turing Machine can simply guess a satisfying truth assignment, while if the set of satisfying truth
assignments is very sparse, a deterministic Turing Machine will have to somehow find the needle in a haystack of
unsatisfying truth assignments.

An interesting related story is the IP versus PSPACE problem, where IP stands for Interactive Polynomial time, a
class that we will not discuss in this course. It was first shown by Fortnow and Sipser that there exists a language
such that IPB ̸= PSPACEB . This to some extend was interpreted as evidence that IP ̸= PSPACE. However, a few years
later in a breakthrough paper Shamir [Sha92] proved that in fact IP = PSPACE.

Below is a quotation from a paper by Lance Fortnow [For94] entitled “The Role of Relativization in Complexity
Theory”.

The recent result IP = PSPACE surprised the theoretical computer science community in more ways
than one. A few years earlier, Fortnow and Sipser created an oracle relative to which coNP did not have
interactive proofs [Thus IPB ̸= PSPACEB for that oracle B]. The IP = PSPACE result was honestly a
non-relativizing theorem.

Several questions immediately popped up: Why didn’t this result relativize? What specific techniques
were used that avoided relativization? How can we use these techniques to prove other non-relativizing
facts?

Also much older questions resurfaced: What exactly do oracle results mean? What should we infer, if
anything, from a relativization?

Exercises

Exercise 8.1. Prove that if A ⩽m B, then A ⩽T B, and if A ⩽p B, then A ⩽pT B.

Exercise 8.2. Give an example of languages A and B such that A ⩽T B but A ̸⩽m B. Similarly show that if
NP ̸= coNP, then there are languages A and B such that A ⩽pT B but A ̸⩽p B.

Exercise 8.3. Prove that there are languages A,B ∈ EXP such that A ⩽pT B but A ̸⩽p B. (Hint: Construct A and
B such that n ∈ A if and only if either 2n ∈ B or 2n+ 1 ∈ B.)
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Exercise 8.4. Prove that NP ∪ coNP ⊆ ∆2, and that under the assumption NP ̸= coNP, this inclusion is proper.

Exercise 8.5. Prove that NPNP ⊆ Σ2 by showing that if L ∈ NPB and B ∈ NP, then L ∈ Σ2.

Exercise 8.6. Prove that Definition 8.8 is consistent with the usual definition of the polynomial hierarchy.

Exercise 8.7. Does the proof of NL = coNL relativize? In other words, is it true that for every B we have NLB =
coNLB?

Exercise 8.8. Let A be an oracle such that PA = NPA. Prove that there is an oracle such that PA,B ̸= NPA,B .
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Chapter 9

Randomized Complexity Classes

The law of averages, if I have got
this right, means that if six
monkeys were thrown up in the
air for long enough they would
land on their tails about as often
as they would land on their heads.

Rosencrantz and Guildenstern
Are Dead by Tom Stoppard

A randomized algorithm receives, in addition to its input data, a stream of random bits that it can use to make
random choices. As a result, even for a fixed input, different executions of the same randomized algorithm may end
in different results; thus it is inevitable that a description of the properties of a randomized algorithm will involve
probabilistic statements, and allow for some probability of error. For example, even when the input is fixed, the
execution time and space complexity of a randomized algorithm are random variables.

It is important to understand that the area of randomized algorithms is not about analyzing the algorithms on
randomly chosen inputs. The latter is called the average case analysis of algorithms, in which one analyzes the
performance of an algorithm when the inputs are randomly drawn from a distribution. In contrast, when analyzing
randomized algorithms, similar to the deterministic algorithms, we are interested in the worst-case analysis of these
algorithms, meaning that we analyze the performance and accuracy of the algorithm on its worst possible input.

Two principal reasons are that randomized algorithms are often superior to the best-known deterministic algorithms.
First, to this day, for many problems, the best-known randomized algorithms are faster and more space-efficient than
their deterministic counterparts for the same problem. Second, if we survey the various randomized algorithms that
have been discovered, we notice that invariably they are extremely simpler to understand and implement; often, the
introduction of randomization suffices to convert a simple and naive deterministic algorithm with bad worst-case
behaviour into a randomized algorithm that performs well with high probability on every possible input.

The success of randomized algorithms raises important and fundamental theoretical questions:

Are randomized algorithms inherently stronger than deterministic algorithms, or to the contrary, every
problem that can be solved by a randomized algorithm can also be solved by a deterministic algorithm using
a comparable amount of resources?

To formalize this question, we will introduce the randomized complexity classes, and we shall try to compare them
to their deterministic complexity counterparts. Most of these classes were introduced by Gil [Gil77] in 1977.

Probabilistic Turing machines

There are two equivalent ways to define a probabilistic Turing machine. The first definition of a probabilistic Turing
machine is a Turing machine with two transition functions, such that in each nondeterministic step, a fair “coin-flip”
is used to decide which transition function to use. Note the similarity with the definition of nondeterministic Turing
Machines. The difference is the way computation is carried over; a nondeterministic Turing Machine accepts input
if there is a sequence of choices that leads to halting at the accept state. However, a probabilistic Turing Machine’s
output is a random variable, depending on the random choices it makes.
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We prefer the following equivalent definition as it has the advantage that one can keep track of the number of used
random bits and interpret it as another complexity measure. That is time, space, and randomness are each considered
a valuable resource.

Definition 9.1. A probabilistic Turing machine is a type of Turing machine with an additional infinite read-once
randomness tape. Initially, this tape is filled with an infinite sequence of independent unbiased random bits. In other
words, for every cell, a fair coin is flipped independently to decide the cell’s value.

Read-once access to a tape means that at each computation step, the tape-head can either stay at its current
position or move to the right. The equivalence of the two definitions is immediate from corresponding the random bits
on the tape to the random choices made in the former definition.

Note that the content of the randomness tape is a random variable R which is uniformly distributed over {0, 1}N.
It is convenient to denote such a probabilistic Turing Machine as MR to emphasize that the randomness is in the
random variable R. We denote the outcome of MR on an input x by MR(x), which is a random variable that could
take three different possible values Accept, Reject, ⊥, the latter corresponding to an infinite loop. Let us consider
an example to demonstrate the power of randomized algorithms.

Example 9.2 (Matrix Multiplication). Let L be the set of all triples ⟨A,B,C⟩, where A,B,C are n×n matrices with
integer entries satisfying AB = C. To solve this problem deterministically, one can compute the matrix product AB
and then compare it to C entry-wise. Computing this product in the most straightforward way results in a running time
of Ω(n3) addition and multiplication operations, but this can be improved by using Strassen’s matrix multiplication
algorithm to O(n2.81). Matrix multiplication algorithms have seen many improvements over the decades, and currently,
the fastest known [LG14] algorithm for computing the product of two n×n matrices involves Ω(n2.372863) operations.
Now, let us consider the following very simple randomized algorithm.

Algorithm 5: A randomized matrix product verification AB = C

Data: Three n× n matrices A,B,C
Select u ∈ {0, 1}n uniformly at random;
if ABu ̸= Cu then

Reject
else

Accept
end

Note that the vector v = Bu can be computed using O(n2) operations, and then ABu = Av can be computed in an
additional O(n2) steps. Hence verifying ABu ̸= Cu can be done in O(n2) operations. Hence the above algorithm takes
only O(n2) addition and multiplication operations to perform. It remains to analyze the probability of correctness. It
is not difficult to see that if D is a nonzero n × n matrix, then for at least half1 of the vectors u ∈ {0, 1}n, we have
Du ̸= 0. It follows that if AB ̸= C, then for at least half of the vectors u ∈ {0, 1}n, we have ABu ̸= Cu. Hence

• If AB = C, the algorithm is correct with probability 1.

• If AB ̸= C, the algorithm is correct with a probability of at least 1/2.

This is an algorithm with one-sided error—it does not err if AB = C. The bound 1/2 is not very satisfactory, but
fortunately, for algorithms with one-sided error, we can easily reduce the error probability. For example, we can simply
run the above algorithm 1000 times with fresh randomness, and if at any of these runs we conclude that AB ̸= C,
then we know confidently that AB ̸= C. If all the runs return AB = C, then we accept the input. The probability
that we are wrong now is bounded by (1/2)1000 ⩽ 10−300 which is extremely small. The number of operations of the
new algorithm is still O(n2 log(n)), which is faster than any known deterministic algorithm for this problem.

Example 9.3 (Polynomial Identity Testing). The polynomial identity testing (PIT) problem involves deciding whether
two given multivariate polynomials f(x1, ..., xn) and g(x1, ..., xn) are equal, that is, we want to efficiently decide whether
f = g.

To make the PIT problem statement explicit, we need to specify the space of the coefficients of the polynomials,
what we mean by f = g, and in what format are the polynomials f and g given to the algorithm as inputs.

1If Dij ̸= 0, then no matter what the other coordinates of u = (u1, . . . , un) are, always at least one of the two choices uj ∈ {0, 1} leads
to Du ̸= 0
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Coefficient space: Recall that n-variate polynomial f(x1, . . . , xn) over F , where F is a field (such as R,Q,C,Fp)
or an integral domain (such as Z) is a linear combination of monomials of the form xe11 x

e2
2 · · ·xenn , where the coefficients

belong to F . The total degree of a monomial xe11 x
e2
2 · · ·xenn is e1 + · · · + en, and the total degree of a polynomial is

equal to the largest total degree of a monomial with a nonzero coefficient. To specify the PIT problem, we need to
specify F . In the discussion of algorithms, we will fix F = Z, and give an efficient randomized algorithm for PIT over
the integers.

Identity: There are two ways that polynomials can be considered equal:

1. f = g syntactically, meaning that each monomial has the exact same coefficient in f and g.

2. f = g as functions. Meaning that for every x ∈ Fn, f(x) = g(x).

The two above definitions of polynomial identity are not the same over all domains. For example over any finite field
Fp, the univariate polynomial f(x) =

∏p−1
i=0 (x − i) is equal to g(x) = 0 as a function, but syntactically f ̸= 0. When

F is either of Z, R, Q, or C, this is not a concern and both the definitions coincide. In the case of finite fields, the two
definitions still coincide as long as the field size is larger than the degree of f and g.

The inputs: To study efficient algorithms for PIT, we need to specify how the algorithm is given access to the input
polynomials f and g. The obvious choice is when the algorithm is given f and g via their list of coefficients. In this
case, the problem becomes trivial, as the algorithm can compare the two polynomials syntactically in linear time (in
input length). However, two other natural settings where the problem becomes interesting:

1. We are given f, g as Arithmetic circuits: An arithmetic circuit is a directed acyclic graph with a single sink
node labelled as the output node, the nodes of in-degree 0 are labelled by input variables x1, ..., xn or domain
elements, and all other nodes (called “gates”) are labelled by + or × operations. An arithmetic circuit naturally
corresponds to a polynomial over the input variables on its source nodes. This input form makes the problem
more interesting because there are polynomials with exponentially many monomials but polynomial-sized circuits.
For example, the polynomial

∏n
i=1(1 + xi) has 2

n monomials while a simple linear-sized circuit computes it.

2. We are given black-box access to f, g: In this case, the algorithm is not given any representation of the polynomials
f and g; Instead, at any point of its computation, the algorithm can ask for the value of f(x) or g(x) for a
particular input x ∈ Fn. In this case, we have to specify the parameters we use to measure the algorithm’s
efficiency. When F is finite, it is reasonable to demand polynomial-time algorithms in n log |F |. Otherwise, we
can ask for a polynomial-time algorithm in n log d where d is the maximum degree of f and g.

Randomized PIT Algorithm. No efficient deterministic algorithm is known for the PIT problem in any of the
nontrivial settings above. Here we present a simple randomized algorithm when the domain is Z (in both black-box
and arithmetic circuit settings). The key tool is the Schwarz-Zippel Lemma, which gives useful information about the
roots of a degree d multivariate polynomial.

Lemma 9.4 (Schwarz-Zippel). Let f(x1, ..., xn) be a nonzero polynomial of total degree at most d over Z. For every
finite set S ⊆ Z, choosing (x1, . . . , xn) ∈ Sn uniformly at random, we have

Pr[f(x1, . . . , xn) = 0] ⩽
d

|S|
.

This lemma suggests a simple black-box algorithm for PIT.

Algorithm 6: Black-box randomized PIT algorithm:

Data: Query access to two degree d polynomials f and g
Pick S ⊆ Z of cardinality |S| = 3d
Pick x1, . . . , xn independently and uniformly from S
if f(x1, . . . , xn) ̸= g(x1, . . . , xn) then

Reject
else

Accept
end

When f = g, the algorithm outputs the correct answer with probability 1. However, when f ̸= g, since f − g ̸= 0,
by Lemma 9.4, the above algorithm outputs the correct answer with probability at least 2/3. Note that the running
time of the algorithm is O(n log d), and the constant 2/3 can be improved to any k/(k + 1) by picking |S| = (k + 1)d.
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The algorithm for the arithmetic setting is a variation of the above algorithm. In this case, we are not given query
access to f and g and are also not given a bound on their degree. The degree, however, is not a problem since a size
m arithmetic circuit corresponds to a polynomial of degree at most 2m. Thus the above algorithm can be modified to
pick |S| = 3 · 2m. The next issue, is that we are no longer given query access to f and g, and thus instead we can try
and verify whether f(x1, . . . , xn) ̸= g(x1, . . . , xn) by evaluating the input circuits. When the field is small, this can be
done efficiently. However, over Z, f(x1, . . . , xn) can be as large as (3 · 2m)2

m

, which takes exponential time and space
to even write down. The way around this issue is to pick a random prime p ⩽ 22m and do all the arithmetic modules
that prime. That is, we compute f(x1, . . . , xn)mod p and compare it to g(x1, . . . , xn)mod p, and we reject if they are
different. Note that this can be done in poly(m) time, and the algorithm still makes no error when f = g. Thus all
that is left to show is that when f(x1, . . . , xn) ̸= g(x1, . . . , xn), then with high probability over the randomness of p
we have f(x1, . . . , xn) ̸≡p g(x1, . . . , xn).

The key here is to use the Prime Number Theorem, which guarantees that there are at least 22m/4m prime
numbers p ⩽ 22m. Moreover, since log |f(x1, . . . , xn)− g(x1, . . . , xn)| ⩽ log(3 · 2m)2

m

= O(m · 2m) = o(22m/4m), then
f(x1, . . . , xn) − g(x1, . . . , xn) has at most 3 · 22m prime factors, and thus with probability 1 − o(1), f(x1, . . . , xn) ̸≡p
g(x1, . . . , xn).

Polynomial time randomized complexity classes

We introduce four complexity classes ZPP,RP,BPP,PP, all concerning polynomial time randomized algorithms but
allowing different types and probabilities of error. In the following, error refers to accepting an x ̸∈ L, or rejecting an
x ∈ L.

The complexity class RP

The complexity class RP (randomized polynomial time) consists of languages L for which a probabilistic Turing machine
exists with the following properties:

• It always runs in polynomial time in the input size.

• If x ̸∈ L, then the probability of Reject is 1.

• If x ∈ L, then the probability of Accept is ⩾ 1/2.

In particular, the only type of error allowed is false-negatives.
In other words, this is the class of languages L for which x ∈ L can be decided probabilistically with one-sided

error. Due to asymmetry in the roles of accepts and rejects, we also consider the class coRP, which only allows error
when x ̸∈ L. Note that the algorithm presented for PIT and Matrix Product Verification both place the corresponding
languages in coRP as both the algorithms make no error when x ∈ L, and make an error with probability at most 1/2
when x ̸∈ L.

Error-reduction in RP: The constant 1/2 in the definition of RP is quite arbitrary as one can repeat the same
algorithm several times to decrease the constant. We can run the algorithm k = nO(1) times, and if the algorithm
outputs accept at any of these trials, we can accept x confidently, as we know the original algorithm never outputs
accept for x ̸∈ L. We will reject the input if all the k trials output Reject. Note that if x ∈ L, then the probability
of an erroneous reject is bounded by (

1

2

)k
= 2−n

O(1)

.

By a similar argument, observing that (1 − n−c)n
c

< 1/2, we could have equivalently defined RP with a milder
requirement of

• If x ∈ L, then the probability of accept is ⩾ n−c, for some fixed c > 0.

How large is RP? It is often helpful to interpret the randomness of a probabilistic algorithm as some sort of
advice/certificate. In the context of non-deterministic classes such as NP, we are interested in the existence of advice
that leads to acceptance, whereas, in the probabilistic classes such as RP, we demand certain bounds on the probability
that random advice leads to a correct answer. In other words, NP can be thought of as a probabilistic class: L ∈ NP
if there exists a polynomial time probabilistic Turing Machine MR such that

• If x ̸∈ L, then the probability of Reject is 1.
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• If x ∈ L, then the probability of Accept is > 0.

Using this view, it is easy to observe that RP is contained in NP, that is, nondeterminism is at least as powerful as
one-sided error randomness.

Theorem 9.5. We have RP ⊆ NP, and coRP ⊆ coNP.

Proof. It suffices to prove RP ⊆ NP. Consider L ∈ RP. There exists a polynomial time probabilistic Turing Machine
MR such that

• If x ̸∈ L, then the probability of Reject is 1.

• If x ∈ L, then the probability of Accept is ⩾ 1/2.

Then obviously
x ∈ L⇐⇒ ∃r Mr(x) = Accept,

which establishes L ∈ NP. □

The complexity class ZPP

The complexity class ZPP (Zero-error probabilistic polynomial time) consists of problems that can be solved by a
probabilistic Turing machine MR that returns Accept,Reject, or Do Not Know such that

• MR runs in polynomial time.

• For every x,

Pr
R
[MR(x) = Do Not Know] ⩽

1

2
.

• For every x, the output of MR(x) is always either Do Not Know, or the correct answer.

This class is very restricted as, despite the randomness, the algorithm is not allowed to make any errors.

Amplifying correctness in ZPP: One can easily decrease the probability of Do Not Know by repeating the
algorithm. We can simply run the algorithm k = nO(1) times, and if any of these k trials lead to accept or reject, then
we will know whether x ∈ L or not. The probability of Do Not Know will be bounded by

Pr
R
[Do Not Know] ⩽

(
1

2

)k
= 2−n

O(1)

.

Note also that in the definition of the class ZPP, we could have asked for a milder condition of

Pr
R
[MR(x) = Do Not Know] ⩽ 1− n−c,

for any fixed constant c > 0. Repeating this k = nc would have resulted2 to

Pr[Do Not Know] ⩽
(
1− n−c

)nc
⩽ e−1 ⩽

1

2
.

The next theorem shows that the class ZPP can alternatively be defined as the intersection of RP and coRP.

Theorem 9.6. We have ZPP = RP ∩ coRP.

Proof. First consider L ∈ ZPP. Then there is a polynomial time probabilistic Turing Machine MR such that it always
outputs Accept, Reject, or Do Not Know, such that for every input

Pr
R
[MR = Do Not Know] ⩽

1

2
.

To convert this to an RP algorithm, we can simply output Reject if MR(x) ∈ {Reject,Do Not Know}, and
otherwise output Accept. Note that if x ̸∈ L, we will always reject, and if x ∈ L, then we will accept with probability
at least 1/2. Changing the roles of accept and reject gives shows similarly ZPP ⊆ coRP.

Next, suppose that L ∈ RP∩ coRP, and thus there are polynomial time probabilistic algorithms MR, NR such that

2Using the inequality 1 + x ⩽ ex that holds for all x.
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• If x ̸∈ L, then Pr[MR(x) = Reject] = 1, and Pr[NR(x) = Reject] ⩾ 1/2.

• If x ∈ L, then Pr[MR(x) = Accept] ⩾ 1/2, and Pr[NR(x) = Accept] = 1.

Now we can simply run MR(x) and NR(x), and

• Accept if MR(x) = Accept;

• Reject if NR(x) = Reject;

• Otherwise output Do Not Know.

It is straightforward to see that this is a ZPP algorithm. □

The complexity class BPP

The complexity class BPP (bounded-error probabilistic polynomial time) consists of languages L that can be decided
by a probabilistic Turing machine such that the following conditions hold.

• It always runs in polynomial time in the input size.

• For every x, the probability of error is at most ⩽ 1/3.

In other words, the (two-sided) error probability is bounded by 1/3 for all instances. Note that achieving an error
probability of ⩽ 1

2 is always obvious as a randomized algorithm can simply output a random Accept or Reject,
which will be correct with probability 1/2. The class BPP is the set of problems for which we can improve this obvious
bound by a significant margin.

Example 9.7. Define L as the language consisting of triples of polynomials (p1, p2, p3) such that exactly two of the
polynomials are identical. We leave it as an exercise to show that L ∈ BPP. It is not known whether L is in RP or
coRP.

In the above definition, we used the constant 1/3, but in fact, one could use any 1
2 − ε as long as ε is not too small.

More precisely ε > n−c for some constant c. This follows from the following error-reduction argument.

Error-reduction in BPP: We wish to show that similar to RP algorithms, one can decrease the probability of
error of a BPP algorithm by repeating it. Suppose that there is a probabilistic Turing Machine MR that decides L
in polynomial time such that for every x, the probability that MR(x) is incorrect is at most 1

2 − ε, for some ε > 0.
Consider the following randomized algorithm. Run k independent simulations of MR(x) . Let X be the number of
times MR(x) outputs accept. If X ⩾ k/2 then accept and otherwise reject.

Every single run of the algorithm is biased towards the correct answer, and hence one expects (by the law of
large numbers) that the majority of outputs are correct with a large probability. To be more rigorous, we will apply
the Chernoff bound. Without loss of generality, consider x ∈ L. Let Xi be the random variable such that Xi = 1
if the outcome of the i-th trial is correct, and Xi = 0 otherwise. By our assumption E[Xi] ⩾ 1

2 + ε, and hence

µ := E[
∑
Xi] ⩾ k

2 + εk. Note that our majority count algorithm makes an error if∑
Xi <

k

2
⩽ µ(1− ε).

Applying Chernoff bound3 we obtain

Pr[Error] ⩽ Pr
[∑

Xi ⩽ (1− ε)µ
]
⩽ e−

µε2

2 ⩽ e−
kε2

4 .

Note that this is a strong bound and is comparable to the error-reduction of RP. In particular, by taking k = nO(1),
we can guarantee that

Pr[Error] ⩽ 2−n
c

,

for any constant c = O(1) that we wish, even if the starting success probability was guaranteed to be at least 1
2+n

−O(1).

3Chernoff bound says that if X is the sum of k i.i.d. Bernoulli random variables, then denoting µ = E[X], for every δ > 0, we have

Pr[X < µ(1− δ)] ⩽ e−
δ2µ
2 and Pr[X > µ(1 + δ)] ⩽ e

− δ2µ
2+δ .
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How large is BPP? It is believed by many that BPP = P. It is easy to show that P ⊆ BPP ⊆ PSPACE. The
one-sided version of BPP, the class RP, is contained in NP, hence naturally, one wonders if BPP is contained in a
smaller class than PSPACE. We will show that BPP is contained in the second level of the polynomial hierarchy.

Theorem 9.8. We have BPP ⊆ Σ2 ∩Π2.

Proof. Since BPP is closed under taking complements, it suffices to show that BPP ⊂ Σ2. Let L ∈ BPP. By definition,
there is a polynomial time probabilistic algorithm that correctly decides every membership query with a probability
of at least 2/3. This constant is not large enough for the argument to go through, so we start by applying a strong
error reduction argument to obtain a randomized algorithm with polynomial running time p(n) such that MR(x) is
incorrect with probability at most 2−n. Fix the input length n, and let ℓ = p(n). For every x of length n, let

Ax = {r ∈ {0, 1}ℓ :Mr(x) = Accept}.

From the correctness probabilities of MR, we know that

• If x ∈ L, then |Ax| ⩾ 2ℓ
(
1− 1

2n

)
;

• If x ̸∈ L, then |Ax| < 2ℓ
(

1
2n

)
;

In other words, if x ∈ L, then Ax is almost all the points in 2ℓ, and if x ̸∈ L, then Ax is very sparse. We will only need
such strong bounds for the case x ̸∈ L. These bounds will allow us to extract some structure about Ax to describe L
as a Σ2 language.

For any subset A ⊆ {0, 1}ℓ, and any t ∈ {0, 1}r, define the corresponding shift of A as

A⊕ t := {s⊕ t : s ∈ A}.

How many shifts of a set A does one need to cover all of {0, 1}ℓ?
Since |A ⊕ t| = |A|, if |A| ⩽ 2−n2ℓ, then one needs at least 2n shifts of A to cover all of {0, 1}ℓ. We will use this

for the case x ̸∈ L, where |Ax| is very small. How well can we do in the other case where Ax is almost everything?

Claim 9.9. If A is a subset of {0, 1}ℓ with |A| ⩾
(
2
3

)
2ℓ, then there are t1, . . . , tℓ ∈ {0, 1}ℓ such that {0, 1}ℓ =⋃ℓ

i=1A⊕ ti.

Proof. Pick t1, . . . , tℓ independently and uniformly at random from {0, 1}ℓ. Consider a fixed y0 ∈ {0, 1}ℓ. Note that
y0 ∈ A⊕ t if and only if y0 ⊕ t ∈ A, and moreover for a uniformly random t, y0 ⊕ t also has uniform distribution, and
thus Pr[y0 ∈ A⊕ t] = |A|/2ℓ. Hence the probability that y0 is not covered by any of our random shifts is bounded by

Pr

[
y0 ̸∈

ℓ⋃
i=1

A⊕ ti

]
=

(
1− |A|

2ℓ

)ℓ
⩽ (1/3)ℓ.

Applying the union bound over all 2ℓ choices of y ∈ {0, 1}ℓ, we have

Pr

[
∃y ̸∈

ℓ⋃
i=1

A⊕ ti

]
⩽ 2ℓ(1/3)ℓ < 1.

Since this probability is less than 1, there must be at least one choice of shifts such that a y ̸∈
⋃ℓ
i=1A ⊕ ti does not

exist. □

Since ℓ = p(n) is a polynomial, there exists a constant n0 such that for every n ⩾ n0, 2
n > ℓ. From the above

discussion we conclude that for every x with |x| ⩾ n0, the set {0, 1}ℓ can be covered with ℓ shifts of Ax if and only if
x ∈ L. Hence

x ∈ L⇐⇒ ∃t1, . . . tℓ ∈ {0, 1}ℓ ∀r ∈ {0, 1}ℓ,
ℓ∨
i=1

Mr⊕ti(x) = Accept.

Note that this is a Σ2 formula with a polynomially bounded number of variables, each in polynomial size. More
precisely, we have a deterministic Turing Machine that, given

(x, [t1, . . . , tℓ], r),

if |x| ⩾ n0, runs Mr⊕ti on x for i = 1, . . . , ℓ, and accepts x if any of these runs outputs accept (if |x| < n0, then it
accepts if x ∈ L. There are only finitely many such x). The running time of N is polynomial in |x|, and

x ∈ L⇐⇒ ∃[t1, . . . tℓ]∀r N(x, [t1, . . . , tℓ], r) = Accept.

□
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Theorem 9.8 shows that BPP is contained in the second level of the polynomial hierarchy. It is not known whether
BPP ⊆ NP, but it is conjectured that BPP = P. One reason to believe this conjecture was given by the “hardness vs
randomness” line of work that, in essence, shows that the existence of an explicit difficult function implies P = BPP.
To be more precise, as an example, Impagliazzo and Wigderson [IW97] proved that P = BPP if E requires exponential
size circuits (see Chapter 10 and Conjecture 10.6), where E is the class of languages that can be solved in deterministic
time 2O(n). This assumption is very natural, and it is something that is widely believed.

For a long time, one of the most famous problems that were known to be in BPP but were not known to be in
P was the problem of determining whether a given number is prime. However, in a 2002 paper Agrawal, Kayal, and
Saxena [AKS04, AKS19] discovered a deterministic polynomial-time algorithm for this problem, thus showing that it
is in P.

It is also known that the problem of P versus BPP does not relativize [BG81]. In other words, there are oracles
A,B such that BPPA = PA and BPPB ̸= PB .

The complexity class PP

This is the class of decision problems solvable by a probabilistic Turing machine in polynomial time, with an error
probability of strictly less than 1/2 for all instances. The abbreviation PP refers to probabilistic polynomial time. As
discussed above, an error probability of 1/2 can be achieved by outputting Accept/Reject by tossing a fair coin.
The condition in the definition of PP asks for beating this obvious bound.

Since every PP algorithm must have a polynomial nO(1) running time, it can never read more than that many
random bits from its randomness tape. This shows that if the probability of correctness is at least 1/2, then it must
be at least 1

2 + 2−n
c

for some fixed c > 0. In other words, even though our definition does not require any explicit
advantage over the obvious probability of correctness 1/2, such an explicit lower bound is implied by the restriction on
the running time. Note that this is different from the definition of BPP, where the error reduction argument allowed
us to assume the probability of correctness of 1

2 + n−O(1).
The following theorem shows that we can relax one of the strict inequalities.

Theorem 9.10. The class PP can be equivalently defined as the class of languages that can be decided by a polynomial
time probabilistic Turing Machine such that

• If x ∈ L, then Pr[Accept] > 1
2 .

• If x ̸∈ L, then Pr[Reject] ⩾ 1
2 .

Proof. See Exercise 9.3 □

Example 9.11. Define the language Majority SAT to be the set of CNF’s ϕ such that more than half of truth
assignments to ϕ’s satisfy it.

MAJSAT = {ϕ : more than half of the truth assignments satisfy ϕ}.

Note that MAJSAT ∈ PP. We can pick a truth assignment uniformly at random, accept if it satisfies ϕ and reject
otherwise. Note that if ϕ ∈ MAJSAT, then it will be accepted with probability > 1

2 , and if ϕ ̸∈ MAJSAT, then it will
be rejected with probability ⩽ 1

2 . Hence by Theorem 9.10 MAJSAT is in PP. In Exercise 9.4 you are asked to prove
that MAJSAT is in fact PP-complete under polynomial-time many-one reductions.

How large is PP? With Theorem 9.6, and a glance at the definitions, we see

P ⊆ ZPP = RP ∩ coRP ⊆ RP ∪ coRP ⊆ BPP ⊆ PP.

How large is PP, the largest of these classes?

Theorem 9.12. We have NP ⊆ PP ⊆ PSPACE.

Proof. First we show PP ⊆ PSPACE. Consider a PP algorithmMR with polynomial running time p(n), for a language L.
Since the running time is bounded by p(n), the algorithm can never read beyond the first p(n) bits of its randomness,
and hence it suffices to consider random bit sequences of length p(n). In other words, we are assuming that R is
randomly and uniformly chosen from {0, 1}p(n). To convert this to a PSPACE algorithm, we can simply go over all
r ∈ {0, 1}p(n), and for each one, run the deterministic algorithm Mr on x. As we do so, we reuse the space and only
keep a count of the number of runs that have resulted in Accept. This will require a space of O(p(n)). By the
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definition of PP, if x ∈ L, then this count must be strictly larger than
∣∣{0, 1}p(n)∣∣ /2 = 2p(n)−1, and if x ̸∈ L, then it

must be strictly less than 2p(n)−1. Hence we can deduce whether x ∈ L is from the count.
Next we show that NP ⊆ PP. Consider L ∈ NP. Then there is a deterministic algorithm V with polynomial

running time p(n) where n = |x| such that

x ∈ L⇐⇒ ∃yV (x, y) = Accept.

Without loss of generality we can assume |y| = p(n). We construct a PP algorithm as follows:

• Pick Y uniformly at random from {0, 1}p(n).

• Run V (x, y) and if it accepts, then accept.

• If it rejects, then

– With probability 1
2 accept.

– With probability 1
2 reject.

If x ∈ L, then there is at least a probability of 2−p(n) that we pick one of the existing y’s with V (x, y) = Accept.
Hence in this case

Pr[Accept] = 2−p(n) +
1

2
(1− 2−p(n)) ⩾

1

2
+ 2−p(n)−1 >

1

2
.

On the other hand, if x ̸∈ L, then

Pr[Reject] ⩾
1

2
.

The proof now follows from Theorem 9.10.
□

In contrast to BPP, which some people believe to be equal to P, it is widely believed that PP is a much larger class.
The following theorem of Toda [Tod91] can be considered evidence for this belief.

Theorem 9.13 (Toda’s theorem). We have PH ⊆ PPP.

Since MAJSAT is PP-complete (see Exercise 9.4), this theorem is equivalent to the statement that given oracle
access to MAJSAT, one can solve any problem in PH in polynomial time. In Exercise 9.6 shows that if PP ⊆ PH, then
the polynomial hierarchy collapses.

Exercises

Exercise 9.1. Prove that ZPP can be alternatively defined as the class of languages for which a probabilistic Turing
machine exists that with probability 1 returns the correct Accept/Reject answer, and furthermore for every input
x, the running time is polynomial in expectation for every input.

• For every x,
Pr
R
[MR(x) is correct] = 1.

• There is a polynomial such that for every x,

ER[Running time of MR on x] ⩽ p(|x|).

Exercise 9.2. Prove that the language in Example 9.7 is in BPP.

Exercise 9.3. Prove Theorem 9.10.

Exercise 9.4. Prove that MAJSAT is PP-complete under polynomial time mapping reductions.

Exercise 9.5. Prove that
NP ⊆ BPP ⇐⇒ NP = RP.

Exercise 9.6. Prove that if MAJSAT ∈ PH then there is some k such that PH ⊆ Σk.
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Chapter 10

Non-uniform complexity: Circuits

Computational models are divided into two classes: The uniform models where a single machine such as a Turing
Machine, a context-free grammar, a push-down automaton, or a Finite automaton is supposed to handle the inputs of
all sizes, and the non-uniform models such as decision trees, circuits, branching programs, communication protocols
that can vary depending on the length of the input.

We will start our study of non-uniform complexity theory by discussing circuit complexity. In 1949 Shannon [Sha49]
proposed the size of Boolean circuits as a measure of the computational difficulty of a function. Circuits are closely
related in computational power to Turing machines, and thus they provide an excellent framework for understanding
the time complexity. On the other hand, their especially simple definition makes them amenable to combinatorial,
algebraic, probabilistic, and analytic methods. Such a variety of techniques makes circuit complexity one of the richest
areas of complexity theory, with an abundance of beautiful results and ingenious proofs with deep connections to other
areas of mathematics.

What is a Boolean circuit?

In the discussion of non-uniform models of computation, it is more convenient to work with Boolean functions, rather
than sets. A Boolean function on k variables is a map from {0, 1}k to {0, 1}. It assigns a 0 or 1 value to each vector
from {0, 1}k.

A Boolean circuit is a directed acyclic graph. The vertices of in-degree 0 are called inputs. Each input is labelled
with a variable xi or a constant 0 or 1. The vertices of in-degree k > 0 are called gates, and each such gate is labelled
with a k-ary Boolean function. In the context of circuits, the in-degrees and out-degrees of vertices are respectively
referred to as their fan-ins and fan-outs. Most standard circuits are restricted to have gates ¬, ∧, and ∨, where
∧ and ∨ have fan-in 2. One of the nodes of the circuit is designated the output node, and with this, the circuit
represents a Boolean function in a natural way. Sometimes we allow multiple output nodes to represent functions
f : {0, 1}n → {0, 1}m. The size of a circuit is the number of its gates1.

Example 10.1. Figure 10.1 illustrates a simple circuit with 3 inputs and six gates. It computes a function f :
{0, 1}3 → {0, 1}. For example, as it is illustrated in the picture, f(0, 1, 0) = 1.

1In some texts, the input nodes are counted towards the circuit’s size.
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Figure 10.1: A circuit with 3 inputs and six gates.

It is sometimes useful to study sets of gates other than ¬, ∧, and ∨. In the context of the circuits, the set of the
allowed gates is called a basis. A basis B is called universal if all Boolean functions can be computed with gates from
B.

• {¬,∧,∨} is a universal basis, where ∧ and ∨ are binary AND and OR functions. To see this recall that every
function f : {0, 1}n → {0, 1} can be expressed as a DNF:

f(x) =
∨

y:f(y)=1

 ∧
i:yi=1

xi

 ∧

 ∧
i:yi=0

xi

 .

The right-hand side can be broken further to use only binary ∧ and ∨’s.

• For every k ⩾ 2, the set Bk of all 22
k

functions g : {0, 1}k → {0, 1} is a universal basis.

• {nand} by itself is a universal basis, where x nand y = ¬(x ∧ y).

• {∧,∨} is a not a universal basis, but every monotone function can be computed with gates from this set. Here
monotone means that changing an input bit from 0 to 1 cannot change the output value from 1 to 0.

• {∧,⊕} is a universal basis where ⊕ is the binary xor function.

Definition 10.2. Let B be a basis. The corresponding circuit complexity of a function f : {0, 1}n → {0, 1}, denoted
by sizeB(f), is the size of the smallest circuit with gates from B that computes f . If such a circuit does not exist, then
we define sizeB(f) to be infinity.

One important feature of Definition 10.2 is that as long as finite universal bases are considered, the circuit size is
essentially independent of the particular choice of the universal basis, at least up to a constant factor. More precisely,
if B and B′ are two finite universal bases, then since we can replace the gates in B′ with B-circuits and vice versa,
there are constants c1, c2 > 0 such that

sizeB(f) ⩽ c1sizeB′(f) ⩽ c2sizeB(f),

for every f .
In light of the above discussion, the circuit complexity of a function f is often defined as the size of the smallest

circuit (of fan-in 2) over the basis B2, that computes f .

The class P/Poly

Consider a deterministic Turing Machine M with a polynomial running time p(n). We claim that if we fix the input
length n, the computation of M can be simulated by a polynomial-size fan-in 2 circuit. This can be easily seen by
considering the configurations. Since the Turing Machine will never use beyond the first p(n) cells of the tape, for the
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sake of convenience, let every configuration contain the content of the first p(n) cells of the tape, the location of the
tape-head, and the state of the Turing Machine, so that all these configurations are of the same length ℓ = O(p(n)).
Note that the computation of M on an input x of length n can be represented as an ℓ × p(n) table where the i-th
row contains the i-th configuration. We can convert this to a circuit. The first row forms the inputs of the circuit. It
consists of the n input bits x1, . . . , xn, and an additional set of constant bits, corresponding to the initial state, the
initial location of the tape-head, and the rest (the blanks) of the content of the tape. The Turing Machine steps are
so elementary that one can easily construct a simple polynomial-size circuit that takes a configuration row as input
and outputs the next configuration row. We can put a copy of this circuit between each row and its successor row.
Finally, we can feed the last row to a simple circuit that outputs 1 if the row corresponds to an “accept” configuration
and outputs 0 otherwise. We conclude:

Proposition 10.3. Let M be a deterministic Turing Machine with a polynomial running time that decides a language
L. There is a poly(n)-time algorithm that given n, outputs a B2-circuit ϕn such that for every x with |x| = n,

x ∈ L⇐⇒ ϕn(x) = 1.

Proposition 10.3 gives an alternative equivalent definition for the class P.

Definition 10.4 (Alternative Definition of P). A language L is in P if and only if there is a poly(n)-time algorithm
ML that given n, outputs a B2-circuit ϕn (of size poly(n)) such that for every x with |x| = n,

x ∈ L⇐⇒ ϕn(x) = 1.

The uniformity in this definition comes from the fact that a single Turing Machine ML can generate these circuits
for different values of n. Removing this condition leads to the definition of the non-uniform analog of P called P/Poly.

Definition 10.5. P/Poly is the class of languages L such that for every n, there is a B2-circuit ϕn of size poly(n) such
that for every x with |x| = n,

x ∈ L⇐⇒ ϕn(x) = 1.

Of course, P ⊆ P/Poly, and one immediately wonders whether the two classes are the same. The answer is a strong
“No!”; in fact, P/Poly contains some languages that are not even Turing recognizable. For example, every language
over the unary alphabet Σ = {1} belongs to P/Poly, since one can take ϕn ≡ 1 if 1n ∈ L, and ϕn ≡ 0 otherwise. Note
that some unary languages are not Turing recognizable as there are uncountably many of them. Also note that every
function f : {0, 1}n → {0, 1} can be represented as a DNF, which is a circuit of size O(n2n). It follows that if we
define the class EXP/Exponential, analogous to P/Poly, as the set of the languages with exponential size circuits, then
all languages fall into this class.

The above discussion makes a further point. Circuit complexity, as well as other notions of non-uniform computa-
tion, are not about computability. They are purely about the number of basic operations needed to compute a function
f : {0, 1}n → {0, 1}. This is very useful as many of the important problems in uniform complexity theory seem to
be, in essence, about non-uniform lower bounds. Take for example the question of P ̸= NP , which is equivalent to
the statement SAT ̸∈ P. The reason we believe that SAT ̸∈ P is not because the problem varies so much from one
value of n to another that makes it impossible for an efficient Turing Machine to solve the problem on all values of n;
We believe that for every large n it is not possible to solve SAT with polynomially many elementary operations. In
other words we believe that SAT ̸∈ P/Poly. Obviously if we succeed in proving SAT ̸∈ P/Poly, then we would establish
P ̸= NP. This allows us to focus on the circuit complexity of SAT, a simpler object to study than the time complexity.

Conjecture 10.6. SAT has circuit complexity 2Ω(n).

Karp-Lipton Theorem

In the previous section, we discussed that it is reasonable to believe that SAT ̸∈ P/Poly, which would imply P ̸=
NP. However, it is unclear from that discussion whether the statement SAT ∈ P/Poly would have any unexpected
implications. Is it possible that SAT ∈ P/Poly, and yet P ̸= NP? As far as it is known, this is a possibility. However,
Karp and Lipton [KL80] showed that if SAT ∈ P/Poly, then the polynomial hierarchy collapses. The original proof of
Karp and Lipton collapses PH to Σ3, but Sipser improved it to Σ2 in the following theorem.

Theorem 10.7 (Karp-Lipton-Sipser). If SAT ∈ P/Poly, or equivalently NP ⊆ P/Poly, then PH = Σ2.
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Proof. We start with a simple observation: Any algorithm A that can decide whether a given CNF ϕ is satisfiable can
be modified so that it also outputs a satisfying truth assignment in the case where ϕ is satisfiable. Indeed let x1, . . . , xn
be the variables. We use A to see if ϕ is satisfiable. If it is, we use A again to see if ϕ|x1=0 is still satisfactory. If it
is, then we know that we can safely fix x1 = 0, and thus we replace ϕ with ϕ|x1=0, and continue with the rest of the
variables x2, x3, . . . , xn. On the other hand if ϕ|x1=0 is not satisfiable, then ϕ|x1=1 must be satisfiable, and thus we
can fix x1 = 1 and continue similarly.

This argument can also be applied to circuits. That is, assuming SAT ∈ P/Poly, there exists a sequence of circuits
Cm of polynomial-size p(m) such that given any CNF ϕ of size m, the output of Cm(ϕ) is a truth assignment that
satisfies ϕ if ϕ is satisfiable. We will show that this implies Π2 ⊆ Σ2 from which one can easily deduce PH = Σ2

(why?).
Consider the Π2-complete problem of L = ∀∃SAT. Here, for CNF formulas ϕ(y, z) with two sets of variables yis

and zis,

ϕ(y, z) ∈ L⇐⇒ ∀y∃z ϕ(y, z) = True.

Now, by the above discussion, denoting m = |ϕ|, we have

ϕ ∈ L⇐⇒ ∃Cm∀y |Cm| ⩽ p(m) and ϕ(y, Cm(ϕ|y)) = True.

This shows L ∈ Σ2. □

Shannon-Muller Lower bound

We saw that to prove P ̸= NP it suffices to prove a super-polynomial circuit lower bound for SAT. At first glance, this
might not seem a difficult problem considering that a simple counting argument shows that most functions require
exponential size circuits: Roughly speaking, there are too many Boolean functions f : {0, 1}n → {0, 1} compared to
the number of small circuits.

Theorem 10.8 (Shannon). Almost every Boolean function f : {0, 1}n → {0, 1} requires B2 circuits of size 2n/20n.

Proof. There are exactly 22
n

Boolean functions f : {0, 1}n → {0, 1}. The number of circuits with t gates can be
upper-bounded as follows: Since |B2| = 16, there are 16t choices assigning gates to nodes. There are (n + 2 + t)2

choices for the two incoming wires of a gate: The n input variables, the two constant inputs 0 and 1, or the t other
nodes. Finally, we need to designate one of the t gates as the output gate. Hence the number of circuits of size t over
B2 is at most

16t(t+ n+ 2)2tt.

If t = 2n/20n, then

lim
n→∞

16t(t+ n+ 2)2tt

22n
= 0.

Thus almost every function has a circuit complexity larger than 2n/20n. □

On the other hand, we know from the DNF representation that every function f : {0, 1}n → {0, 1} can be computed
by a fan-in 2 circuit of size O(n2n). In fact, with some extra work (proved first by Shannon and Lupanov), this bound
can be improved to O(2n/n) that matches the lower bound of Theorem 10.8.

Theorem 10.8 has a major shortcoming. It does not provide any explicit examples of functions that require large
circuits. Also, unfortunately, it does not provide any example of a function in NP that requires circuits of super-
polynomial size. Note that any function on n bits that depends on all its inputs requires fan-in circuits of size at least
n − 1 just to read the inputs. Despite the incredible body of research on circuit complexity lower-bounds, the best
explicit known construction due to Blum 1984 provides a function that requires fan-in 2 circuits of size 3n− o(n). The
main open problem of circuit complexity is beating this linear lower bound for natural problems (say, in NP).

Problem 10.9. Find an explicit function f : {0, 1}n → {0, 1} with circuit complexity ω(n).

Adleman’s theorem and advice: BPP ⊆ P/Poly

We finish this lecture by proving BPP ⊆ P/Poly, suggesting that possibly BPP = P.

Theorem 10.10 (Adleman [Adl78, BG81]). BPP ⊆ P/Poly.
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Proof. Suppose L ∈ BPP. Consider any k ∈ N. By applying the error reduction for BPP, we can obtain a polynomial-
time randomized algorithm Mk

R such that for every x,

Pr
R
[Mk

R(x) is incorrect] <
1

2k
.

Since there are at most 2m different inputs x of length n, by applying the union bound

Pr
R
[∃x, |x| = n and Mn

R(x) is incorrect] < 1.

Hence, there exists a value of r such that fixing the randomness to r, the deterministic Turing Machine Mn
r correctly

decides whether x ∈ L for all x ∈ {0, 1}n.
We can convert Mn

r to a polynomial-size circuit ϕn. Hence L ∈ P/Poly. □

The above proof suggests a different definition of P/Poly based on “advice” strings.

Definition 10.11 (Alternative definition of P/Poly). A language L is in P/Poly if there exists a sequence of advice
strings {r1, r2, . . .} and a polynomial time Turing Machine M such that rn is polynomial in size in n, and for every x,

x ∈ L⇐⇒M(r|x|, x) = Accept.

Note that rn only depends on n and not on the particular choice of x. To see the equivalence of this definition and
the circuit-based definition of P/Poly, note that we can take rn to be the polynomial-size circuit ϕn that computes L
on inputs of size n. The Turing Machine M plugs x into the circuit and follows the circuit to compute its output. For
the other direction, note that given rn, we can convert M(rn, x) to a polynomial-size circuit.

Exercises

Exercise 10.1. Prove that the 2-bit nand is a universal basis.

Exercise 10.2. Prove that the following language is P-complete with respect to ⩽ℓ reductions:

CircuitValue = {⟨ϕ, x⟩ : ϕ(x) = 1},

where ϕ is an {¬,∨,∧} circuit. Recall that ⩽ℓ refers to log-space reduction, and note that using poly-time ⩽p
reductions, every nontrivial language in P would be P-complete.

Exercise 10.3. Suppose that there is a randomized Turing MachineMR that decides L with two-sided error probability
at most ε. Prove that there exists a set S of size 2O(log(n)+log(1/δ)) such that

Pr
R∼S

[MR(x) is incorrect] ⩽ ε+ δ,

where R ∼ S means that R is randomly and uniformly sampled from the rather small set S.

Exercise 10.4. Prove that for every constant k, we have Σ3 ̸⊆ Size(nk), where Size(nk) is the set of languages with
circuit complexity at most O(nk).

Exercise 10.5. Let C ⊆ {0, 1}n, and f : C → {0, 1} be known to us. In the terminology of machine learning,
C is called a concept class, and f(x) is called the label of the concept x ∈ C. The goal is to determine the label
of an unknown x by making the smallest possible of queries about x. A query model specifies what queries are
allowed. Some commonly used query models are coordinate queries xi, parity queries ⊕i∈Sxi, and threshold queries
sign(t−

∑n
i=1 wixi). Consider a query model Q (e.g., the threshold query model).

The deterministic query complexity of C, denoted by dtQ(C), is the smallest k such that the label of every point
x ∈ C can be determined by making at most k queries about x. Note that this corresponds to a decision tree of
depth at most k, where the internal nodes correspond to queries, and the leaves correspond to the predicted labels
(see Definition 11.10).

The randomized query complexity of C, denote by rdtQ(C), is the smallest k such that the label of every point
x ∈ C can be determined with error probability of at most 1

3 by making at most k random queries. Prove that

dtQ(C) = O(rdtQ(C) log |C|).
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Chapter 11

AC0: Bounded Depth Alternating Circuits

Considering our inability to prove lower bounds on the circuit complexity of explicit Boolean functions, we need to
impose substantial restrictions on the circuits in order to be able to prove meaningful lower bounds. We will start by
restricting to bounded depth circuits. The depth of a circuit is the longest distance from the input nodes to the output
node.

While the size of a circuit essentially measures the time required to compute a function using a single simple
processor, the depth of a polynomial-size circuit corresponds to the amount of time it takes a parallel algorithm to
compute it.

When defining bounded-depth circuits, we need to decide what each parallel processor can compute at a time step.
The NC family is defined by such circuits, with ∧, ∨ gates of fan-in 2.

Definition 11.1 (Nick’s class (NC)). For every i ⩾ 0, NCi consists of languages L ⊆ {0, 1}∗ that can be decided by
polynomial-sized circuit families of depth O(logi n) with gates of fan-in 2.

Define NC = ∪∞
i=0NC

i.

Since the 2-bit gates ∧ and ∨ together with ¬ form a universal basis, we could have defined the classes NCi

equivalently by allowing only these gates.
Due to the bound on fan-in of the gates, NC0 circuits compute functions that only depend on O(1) input variables.

Allowing gates of arbitrary fan-in leads to a more interesting (and more powerful) class of constant-depth circuits.

Definition 11.2 (AC). For every i ⩾ 0, ACi consists of languages L ⊆ {0, 1}∗ that can be decided by polynomial-sized
circuit families of depth O(logi n) with ∧, ∨ gates of arbitrary fan-in and ¬ gates.

Define AC = ∪∞
i=0AC

i.

The name AC was inspired by NC, with the ‘A’ standing for “alternating” as will be clear later. It is easy to see

NC0 ⊆ AC0 ⊆ NC1 ⊆ AC1 ⊆ NC2 ⊆ · · · .

Moreover, since each ∧ and ∨ gate of polynomial fan-in can be simulated by a simple NC1 circuit, for every i we
have

NCi ⊆ ACi+1,

and thus
AC = NC ⊆ P/Poly.

Unfortunately, our understanding of circuit lower bounds does not even extend to NC1. We do not know any
explicit function that is not provably in NC1. In fact, even a super linear lower bound for NC1 is considered a major
open problem in circuit complexity.

Problem 11.3. Give an explicit function that requires size ω(n) for circuits of depth O(log(n)) and fan-in 2.

Lower-bounds for AC circuits

We are interested in proving lower bounds for bounded-depth circuits. Since NC0 circuits only depend on a constant
portion of their input variables, it is easy to prove lower-bounds for NC0. In particular, any function that depends on
all its input variables is not computable by NC0 circuits. For example simple functions such as x1 ∧ x2 ∧ · · · ∧ xn do
not have constant-depth NC0 circuits. On the other hand, AC0 is more interesting, and it is not obvious how to prove
lower-bounds against it. Before we pursue this task, we will make some simplifying assumptions about the structure
of the AC0 circuits.
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1. Note that by De Morgan’s laws
¬(p1 ∨ . . . ∨ pk) = (¬p1) ∧ . . . ∧ (¬pk),

and
¬(p1 ∧ . . . ∧ pk) = (¬p1) ∨ . . . ∨ (¬pk).

This will allow us to push down the negation gates all the way down to the inputs without much increase in the
size of the circuit. Hence we will assume that there are no ¬ gates in the circuit, and instead, the inputs are
either of the form xi or ¬xi for variables xi, or constants 0 and 1.

2. We will assume that the circuits are of the particular form where all ∧ and ∨ gates form alternating levels with
edges only between each level and the immediate level above it. To achieve the latter, we can add the dummy
∧ or ∨ gates of fan-in 1 on the wires that skip levels at little cost in circuit size.

3. Finally, we may assume that each gate has a fan-out of exactly 1. To achieve this, we can repeat gates with
multiple outputs several times. It is easy to see that this will not increase the depth and will at most, increase
the size by a power of the depth of the circuit (see Exercise 11.1).

In particular, every depth d circuit with S gates can be computed by a depth d circuit with O((dS)d) gates which
satisfies all the above properties.

Remark 11.4. Circuits that satisfy (1) and (2) are called alternating circuits, and it is easy to see that such assump-
tions can be made without loss of generality for ACi for any i ⩾ 0.

On the other hand, circuits that satisfy (3) are called formulas, and only in the constant depth setting do we know
of a procedure that turns a circuit into a formula with only a polynomial loss in size.

Note that the depth of an alternating circuit is precisely the number of levels in the circuit.
Alternating circuits of depth 2 are particularly important. Note that because of the “alternation” condition, there

are two different types of depth 2 alternating circuits, which correspond to conjunctive normal form (CNF) and
disjunctive normal form (DNF) formulas. We recall their definitions next.

Definition 11.5 (Conjunctive Normal Form, ∧ of ∨). A formula is in conjunctive normal form, abbreviated to CNF,
if it is a conjunction (i.e. ∨) of clauses, where a clause is a disjunction (i.e ∨) of literals (i.e. xi or ¬xi), where a literal
and its negation cannot appear in the same clause. A t-CNF is a CNF, where each clause consists of at most t literals.

For example (x1 ∨ x2) ∧ (¬x1 ∨ x2 ∨ x3) is a formula in conjunctive normal form. It corresponds to an alternating
circuit of depth 2 with 3 gates.

Definition 11.6 (Disjunctive Normal Form, ∨ of ∧). A formula is in disjunctive normal form, abbreviated to DNF,
if it is a disjunction (i.e. ∨) of conjunctive clauses (i.e ∨ of literals). A t-DNF is a DNF, where each clause consists of
at most t literals.

∨

∧ ∧ ∧

¬x1 ¬x2 ¬x1 x2 x1 x2

Figure 11.1: Depth-2 alternating circuit satisfying (1),(2), and (3) for DNF (¬x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) ∨ (x1 ∧ x2)

Consider a fixed point y = (y1, . . . , yn) ∈ {0, 1}n, and T = {i : yi = 1}. Note that the only assignment that satisfies
the clause (∧

i∈T
xi

)
∧

∧
i ̸∈T

¬xi
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is the assignment x := y. Hence given a Boolean function f : {0, 1}n → {0, 1}, for every point y with f(y) = 1 we
can create a clause which is satisfied only if x = y. By taking the ∨ of these clauses, we create a DNF formula that
represents the function f .

Example 11.7. Consider the function f : {0, 1}2 → {0, 1} such that f(0, 0) = f(0, 1) = f(1, 1) = 1 and f(1, 0) = 0.
Then the DNF

(¬x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) ∨ (x1 ∧ x2)

from Fig. 11.1 represents f .

By changing the role of 0’s and 1’s and ∧ and ∨, we can represent f in CNF. We conclude the following observation:
the depth 2 alternating circuits are powerful enough to compute any Boolean function.

Observation 11.8. Every function f : {0, 1}n → {0, 1} can be represented in both DNF and CNF formulas using at
most 2n clauses.

The DNF/CNF representations show that even alternating circuits of depth 2 are powerful enough to compute
every function f : {0, 1}n → {0, 1}, albeit often requiring exponentially many gates. Thus it is a nontrivial question
to establish lower bounds even for alternating circuits of depth 2.

Parity and Maj are not in AC0

The class AC0 is one of the few complexity classes that are relatively well understood. We will show that the parity
function Parity : {0, 1}n → {0, 1} defined as

Parity(x) = x1 ⊕ . . .⊕ xn,

or equivalently

Parity(x) = x1 + . . .+ xn mod 2,

does not belong to AC0. In contrast, if we allow mod 2 gates of arbitrary fan-in, there is a depth 1, size 1 circuit that
computes this function.

The fact that Parity ̸∈ AC0 was first established by Ajtai [Ajt83] and Furst, Saxe, Sipser [FSS84]. They proved
super-polynomial lower bounds for any constant depth alternating circuits that compute the parity function. Later
Yao [Yao85] gave a sharper exponential lower bound. In 1986 H̊astad [Has86] further strengthened and simplified this
argument and obtained near-optimal exponential lower bounds.

Theorem 11.9 ([Has86]). Any depth d alternating circuit that computes Parity is of size 2Ω(n1/d).

Proof strategy: Consider an AC0 circuit of depth d = O(1), and let us assume that the first level (i.e., the gates
directly connected to inputs) consists of ∧ gates, the second level consists of the ∨ gates, etc. The basic idea of
Ajtai [Ajt83] and Furst, Saxe, Sipser [FSS84] for proving lower-bounds on bounded depth AC circuits was to assign
random values to a random subset of variables. Select a random subset of the variables and assign an independent
random bit to each of these variables. Such restrictions simplify a small size AC0 circuit greatly. Consider one of the
∧ gates at level 1. If this gate has a large fan-in, then there is a high chance that our random partial assignment
determines its value. Indeed an ∧ gate only needs one 0 input to be set to 0. Note that the bottom two circuit levels are
a collection of DNF’s (∨ of ∧’s). After applying the random restriction, all the gates with large fan-in will disappear
from the bottom level, and as a result, all these DNF’s will have small clauses. We apply a second random restriction,
setting values to more randomly chosen variables. A vital element of the proof, known as the switching lemma, shows
that starting with a DNF with small clauses, an application of such a random restriction will simplify the DNF to a
function that has a decision tree of small depth h. A decision tree with depth h can then be converted to an h-CNF.
Hence we can take those DNF’s and replace them with h-CNFs. Since now we have CNF’s at the bottom, the 2nd
and the 3rd level, both being ∧ gates, can be collapsed into a single layer. Hence we reduced the depth of the circuit
to d− 1. Repeating this process d times, we arrive at a function that depends only on O(1) variables. This conclusion
contradicts the assumption that the circuit computes Parity, as no matter how many variables we set (and the values
we set them to), the Parity function will still depend on all of the remaining variables.
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Decision tree complexity

A key complexity measure used in the proof of Parity ̸∈ AC0 is the decision tree complexity of a Boolean function.

Definition 11.10. A decision tree over variables x1, . . . , xn is a binary tree where each internal node has two children,
left and right. Moreover, each internal node is labelled with a variable, and each leaf is labelled with a value of 0 or
1. To evaluate a decision tree at a point x = (x1, . . . , xn) ∈ {0, 1}n, we start from the root, and at each internal node
with label xi we query the value of xi, go left if xi = 0 and right if xi = 1 until we reach a leaf. The leaf’s value is the
decision tree output for x.

For a Boolean function f : {0, 1}n → {0, 1}, let dt(f) be the smallest depth of a decision tree computing f .

Obviously, for every Boolean function f , we have dt(f) ⩽ n. As a result, the parity function is as hard as it gets
for decision trees.

Observation 11.11. dt(Parityn) = n.

A decision tree can be converted to a DNF formula in the following manner: For every leaf v with value 1, include
a clause that is true if and only if we take the path from the root to v. That is, if T is the set of variables on the path
that returned the value 1, and F is the set of the variables that returned the value 0, we include the clause(∧

i∈T
xi

)
∧

(∧
i∈F

¬xi

)
.

One can apply a similar argument to obtain a dt(f)-CNF.

Proposition 11.12. Let f be a function with decision tree complexity dt(f). Then f is computable by a dt(f)-DNF
and a dt(f)-CNF with the number of clauses bounded by the number of the leaves.

x1

0 1

x2

0 1

x3

10

0 1 0 1

Figure 11.2: A depth 2 Decision Tree computing the function f : {0, 1}3 → {0, 1} that can be represented by 2-DNF
(¬x1 ∧ x2) ∨ (x1 ∧ x3) and 2-CNF (x1 ∨ x2) ∧ (¬x1 ∨ ¬x3).

H̊astad’s switching lemma

As we mentioned earlier, H̊astad obtained near-optimal bounds for the size of a depth d circuit that computes Parity.
The core of his proof is an important lemma known as the switching lemma. It is a vital tool for proving lower bounds
on the size of constant-depth Boolean circuits.

Definition 11.13. Let X = {x1, . . . , xn} be the input variables to a circuit C computing a function f . A restriction
ρ is an element1 in {0, 1, ∗}X .

A restriction ρ sets the values of the variables assigned 0 or 1 and leaves those assigned stars alive. Under ρ, we
may simplify C by eliminating gates whose values become determined. Call this the induced circuit Cρ computing the
induced function fρ.

Lemma 11.14 (H̊astad’s switching lemma). Let f be given by a t-CNF formula. Choose a random restriction ρ by
setting every variable independently to ∗ with probability p, and to 0 and 1 each with probability 1−p

2 . Then for every
s ∈ N,

Pr[dt(fρ) > s] ⩽ (5pt)s.

In particular for p = 1
10t ,

Pr[dt(fρ) > s] ⩽ 2−s.
1{0, 1, ∗}X means the set of functions ρ : X → {0, 1, ∗}
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Remark 11.15. Note that the bound in the switching lemma does not depend on the number of clauses in the CNF.
The only parameter about the CNF that appears in the assertion is its width t.

We will prove the switching lemma by induction on the number m of clauses; however, since the bound does not
depend on m, we cannot afford to lose anything in the induction step: Starting with the bound (5pt)s for t-CNF’s with
m − 1 clauses, we must conclude the same bound for t-CNFs with m clauses. The general proof strategy is simple.
Consider the first clause, and without loss of generality, assume that this clause is (x1 ∨ . . . ∨ xt).

• (Case I) If the random restriction assigns any 1’s to this clause, then this clause evaluates to 1 and we can remove
it and apply the induction hypothesis to the remaining m− 1 clauses.

• (Case II) If the random restriction assigns 0’s to all of x1, . . . , xt, then the clause evaluates to 0, and as a result
fρ ≡ 0, which satisfies dt(fρ) = 0.

• (Case III) The remaining case is when ρ assigns some ∗’s (and no 1’s) to x1, . . . , xt. Let T be the subset of the
variables in this clause that receive ∗’s. In this case, it suffices to find a decision tree of depth s − |T | for the
remaining m− 1 clauses, as we can extend such a decision tree to a decision tree of depth s by always querying
the values of the variables in T . The induction hypothesis tells us that the probability that the remaining clauses
do not have such a decision tree is at most (5pt)s−|T |. This bound is worse than our goal (5pt)s, but fortunately,
∗’s are generally unlikely, and the probability that all the variables in T receive ∗’s is at most p|T |. Putting these
together and taking a union bound over all possibilities of T gives us the desired bout (5pt)|T |.

As we mentioned above, we are going to prove this lemma by induction. In the sketched proof, we assumed that
what happens in the rest of the m− 1 clauses is independent of the variables x1, . . . , xt. However, this is not the case,
for example, in Case I. To deal with this technical issue, we need to strengthen the statement of the lemma.

Lemma 11.16 (H̊astad’s switching lemma, stronger version). Let f be given by a t-CNF formula. Choose a random
restriction ρ by setting every variable independently to ∗ with probability p, and to 0 and 1 each with probability 1−p

2 .
For every s ∈ N, and every function F : {0, 1}n → {0, 1}, we have

Pr[dt(fρ) > s|Fρ ≡ 1] ⩽ (5pt)s, (11.1)

where Fρ ≡ 1 is the event when Fρ is the constant 1 function.

Proof. Set α := 5pt, and suppose that f = ∧mi=1Ci where Ci’s are clauses of size at most t. We prove this statement
by induction on m the number of clauses in f . If m = 0, then f ≡ 1 and the lemma is obvious. For the induction step
let us study what happens to C1, the first clause in the circuit. First note that by possibly changing the role of 0’s
and 1’s for some variables, we can assume without loss of generality that there are no negated literals in C1 and hence

C1 =
∨
i∈T

xi,

for a subset T ⊆ {1, . . . , n}, |T | ⩽ t. First, we split the LHS of Eq. (11.1) into two terms based on whether C1 receives
a 1 from the restriction:

Pr[dt(fρ) > s|Fρ ≡ 1] = Pr[dt(fρ) > s, ρT ̸∈ {0, ∗}T |Fρ ≡ 1] +Pr[dt(fρ) > s, ρT ∈ {0, ∗}T |Fρ ≡ 1].

Hence in order to prove (11.1) it suffices to prove both

Pr[dt(fρ) > s|Fρ ≡ 1, ρT ̸∈ {0, ∗}T ] ⩽ αs, (11.2)

and

Pr[dt(fρ) > s|Fρ ≡ 1, ρT ∈ {0, ∗}T ] ⩽ αs, (11.3)

as then we would have

Pr[dt(fρ) > s|Fρ ≡ 1] ⩽ Pr[ρT ̸∈ {0, ∗}T |Fρ ≡ 1]αs +Pr[ρT ∈ {0, ∗}T |Fρ ≡ 1]αs = αs.

To prove (11.2) note that for g = ∧mi=2Ci (which has only m− 1 clauses),

L.H.S of (11.2) = Pr[dt(gρ) > s|Fρ ≡ 1, ρT ̸∈ {0, ∗}T ] = Pr[dt(gρ) > s | (F ∧ C1)ρ ≡ 1] ⩽ αs,
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where in the last inequality we used the induction hypothesis applied to g and F ∧C1. It remains to prove (11.3). We
break (11.3) into 2|T | terms based on which coordinates in T are ∗’s and which ones are 0’s:

L.H.S of (11.3) =
∑
Y⊆T

Pr[dt(fρ) > s, ρY = ∗, ρT−Y = 0 | Fρ ≡ 1, ρT ∈ {0, ∗}T ]

⩽
∑
Y⊆T

Pr[ρY = ∗, ρT−Y = 0 | Fρ ≡ 1, ρT ∈ {0, ∗}T ]×

Pr[dt(fρ) > s | Fρ ≡ 1, ρY = ∗, ρT−Y = 0, ρT ∈ {0, ∗}T ]

⩽
∑
Y⊆T

Pr
[
ρY = ∗

∣∣Fρ ≡ 1, ρT ∈ {0, ∗}T
]
×Pr [dt(fρ) > s |Fρ ≡ 1, ρY = ∗, ρT−Y = 0 ] .

First note that if Y = ∅, then ρT = 0, and thus C1 is not satisfied and fρ ≡ 0, and consequently dt(fρ) = 0. Hence we
can remove the corresponding term from the above calculation and obtain:

L.H.S of (11.3) ⩽
∑
Y⊆T
Y ̸=∅

Pr
[
ρY = ∗

∣∣Fρ ≡ 1, ρT ∈ {0, ∗}T
]
×Pr [dt(fρ) > s |Fρ ≡ 1, ρY = ∗, ρT−Y = 0 ] . (11.4)

We bound the two terms in the product separately.
First observation (bounding Pr

[
ρY = ∗

∣∣Fρ ≡ 1, ρT ∈ {0, ∗}T
]
): Since setting variables in Y to ∗ cannot

increase the probability that Fρ ≡ 1, we have

Pr[Fρ ≡ 1 | ρY = ∗, ρT ∈ {0, ∗}T ] ⩽ Pr[Fρ ≡ 1 | ρT ∈ {0, ∗}T ],

Hence using Pr[A|B]Pr[B] = Pr[A ∧B] we have

Pr[ρY = ∗ | Fρ ≡ 1, ρT ∈ {0, ∗}T ] =
Pr[Fρ ≡ 1 | ρY = ∗, ρT ∈ {0, ∗}T ]

Pr[Fρ ≡ 1 | ρT ∈ {0, ∗}T ]
Pr[ρY = ∗ | ρT ∈ {0, ∗}T ]

⩽ Pr[ρY = ∗ | ρT ∈ {0, ∗}T ] =
(

2p

1 + p

)|Y |

⩽ (2p)|Y |

Second observation: (bounding Pr [dt(fρ) > s |Fρ ≡ 1, ρY = ∗, ρT−Y = 0 ]): Note that the variables in Y
can contribute by at most |Y | to the decision tree depth, or more precisely if for every σ ∈ {0, 1}|Y |, we have
dt(fσρ) ⩽ s−|Y |, then dt(fρ) ⩽ s. Indeed to verify this, note that we can always build a decision tree of depth at most
|Y | +maxσ dt(fσρ) as follows: In the first |Y | levels, we query all the variables xi for i ∈ Y to obtain a σ ∈ {0, 1}Y ,
and then we follow a decision tree of depth dt(fσρ) afterwards. Hence for Y ̸= ∅, recalling that g = ∧mi=2Ci, we have

Pr[dt(fρ) > s | Fρ ≡ 1, ρY = ∗, ρT−Y = 0] ⩽ Pr
[
∃σ ∈ {0, 1}|Y |, dt(fσρ) > s− |Y |

∣∣∣ Fρ ≡ 1, ρT−Y = 0
]

⩽
∑

σ∈{0,1}|Y |

Pr[dt(fσρ) > s− |Y | | Fρ ≡ 1, ρT−Y = 0]

=
∑

σ∈{0,1}|Y |

Pr[dt(fσρ) > s− |Y | | (F ∧ ∧i∈T\Y xi)ρ ≡ 1]

=
∑

σ∈{0,1}|Y |

Pr[dt(gσρ) > s− |Y | | (F ∧ ∧i∈T\Y xi)ρ ≡ 1]

⩽
∑

σ∈{0,1}|Y |

αs−|Y | ⩽ 2|Y |αs−|Y |.

where we applied the union bound and then the induction hypothesis.
Combining the two observations with (11.4), we finish the proof:

L.H.S of (11.3) ⩽
∑
Y⊆T
Y ̸=∅

2|Y |αs−|Y |(2p)|Y | = αs
∑
Y⊆T
Y ̸=∅

(
4p

α

)|Y |

= αs

((
1 +

4p

α

)|T |

− 1

)

= αs

((
1 +

4

5t

)t
− 1

)
⩽ αs(e

4
5 − 1) ⩽ αs.

□
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Remark 11.17. Since the negation of a CNF is a DNF of similar size and vice versa, the switching lemma can be
used to convert a t-DNF formula to an s-CNF in the same way as Lemma 11.16.

Corollary 11.18. Let f be a Boolean function computed by an AC circuit of size M and depth d. Choose a random
restriction ρ by setting every variable independently to ∗ with probability p = 1

10dsd−1 , and to 0 and 1 each with

probability 1−p
2 . Then

Pr[dt(fρ) > s] ⩽M2−s.

Proof. We sample the restriction ρ by first sampling a random restriction ρ0 with Pr[∗] = 1/10, and then sampling
d− 1 consecutive restrictions ρ1, . . . , ρd−1 each with Pr[∗] = 1

10s .
Assume without loss of generality that the bottom gates are ∨. We claim, With high probability, after the restriction

ρ0, all the remaining bottom fan-ins are at most s. To see this, consider two cases for each gate at the bottom level
of the original circuit:

1. The original fan-in is at least 2s. In this case, the probability that the gate was not eliminated by ρ0, that is, no
input to this gate got assigned a 1 is at most (0.55)2s < 2−s.

2. The original fan-in is at most 2s. In this case, the probability that at least s inputs got assigned a ∗ by ρ0 is at
most

(
2s
s

)
(1/10)s ⩽ 2−s.

Thus, the probability of failure after the first restriction is at most m12
−s, where m1 is the number of gates at the

bottom level.
We now apply the next d − 2 restrictions, each with Pr[∗] = 1

10s . After each of these, we use H̊astad’s switching
lemma (see Remark 11.17) to convert the lower two levels from CNF to DNF (or vice versa), collapse the second
and third levels (from the bottom) to one level, reducing the depth by one. For each gate of distance two from the
inputs, the probability that it corresponds to a function g with dt(gρi) > s, is hence bounded by (5 1

10ss)
s ⩽ 2−s. The

probability that a particular gate fails to satisfy the desired property is no more than 2−s. Since the top gate is ∧,
after these d− 2 stages, we are left with a CNF formula of bottom fan-in at most s. We now apply the last restriction
and by switching lemma we get a function fρ with dt(fρ) ⩽ s. The probability of failure at this stage is at most 2−s.
To compute the total probability of failure, we observe that each gate of the original circuit contributes 2−s to the
probability of failure, and hence applying the union bound yields the desired bound. □

Using the above statement, if M2−s is bounded away from 1, and s ≪ pn, then with positive probability over
the restriction, the circuit simplifies to a decision tree of depth at most s while the number of surviving variables is
larger than pn while Parityρ requires decision trees of full depth (Observation 11.8), which is > s. Comparing the
parameters proves Theorem 11.9.

Note that if in the above proof we stop before applying the last restriction ρd−1, then we obtain the following
corollary, which uses a larger value for p.

Corollary 11.19. Let f be a Boolean function computed by an AC circuit of size M and depth d ⩾ 2 whose output
gate is ∧. Choose a random restriction ρ by setting every variable independently to ∗ with probability p = 1

10d−1sd−2 ,

and to 0 and 1 each with probability 1−p
2 . Then

Pr[fρ does not have a CNF with fan-in ⩽ s] ⩽M2−s.

Similarly, if the output gate of the original circuit is ∨, then the probability that fρ does not have a DNF with fan-in
⩽ s is bounded by M2−s.

In the next section, we will show that this improvement implies a better lower bound of 2Ω(n1/d−1) for Parity, as
well as a lower-bound for the Majority function.

Influences in bounded depth circuits

Let us introduce an essential notion in the study of Boolean functions, namely the influence of a variable.

Definition 11.20 (Influence). Let f : {0, 1}n → {0, 1}. The influence of the ith variable on f is the probability
that changing the ith coordinate changes the the value of f . That is,

Ii(f) = Pr[f(x) ̸= f(x⊕ ei)],

where x ∈ {0, 1}n is sampled uniformly and ei is the i-th standard basis vector, and ⊕ refers to entry-wise XOR. The
total influence of f is defined as

If =

n∑
i=1

Ii(f).
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Note that always 0 ⩽ Ii(f) ⩽ 1 and 0 ⩽ If ⩽ n. The parity function has total influence n, and a constant function
has total influence 0. The influence of the ith variable on f captures the changes in f as a function of the changes
in the i-th coordinate in the input. In that sense it is the discrete analogue of the average (magnitude) of the partial

derivative of a continuous function h with respect to a particular variable
∫ ∣∣∣ ∂h∂xi ∣∣∣ = ∫ limδ→0

|h(x+δei)−h(x)|
t .

The sensitivity of a point x with respect to f , denoted by sf (x), is the number of coordinates i for which f(x) ̸=
f(x⊕ ei). This is the discrete analogue of the magnitude of the gradient in the setting of the differentiable functions.
Writing

If =

n∑
i=1

Pr[f(x) ̸= f(x⊕ ei)],

linearity of expectation shows
If = E[sf (x)], (11.5)

and thus sometimes If is called the average sensitivity of f .
Our next goal is to show that the total influence of small circuits of small depth cannot be large. First, we consider

the CNF and the DNF circuits with small clauses.

Lemma 11.21. Let f be a CNF or a DNF formula where all the clauses are of size at most t. Then If ⩽ 2t.

Proof. We prove the lemma for the DNF case, and the CNF case follows by replacing f with 1− f . z □

Boppana [Bop97] proved that small-size, low-depth AC circuits have small total influences.

Theorem 11.22 (Boppana [Bop97]). Let f be a Boolean function computed by an AC circuit of depth d and size M
(including the input gates), then

If ⩽ (20 logM)d.

Proof. Applying Corollary 11.18 with s = 2 logM and p = 1
10dsd−1 , and combining it with the easy fact that If ⩽ dt(f),

we conclude that

Pr[Ifρ ⩾ s] ⩽M2−s ⩽
1

M
⩽

1

n
.

Here we are using n ⩽M by counting the input gates in the size of the circuit. Hence

Eρ[Ifρ ] ⩽ Pr[Ifρ > s]n+ s ⩽
1

n
n+ s ⩽ s+ 1 ⩽ 2s.

On the other hand, note that for every i,

Pr
ρ,x

[fρ(x) ̸= fρ(x⊕ ei)] = pPr
x
[f(x) ̸= f(x⊕ ei)],

where p is the probability that the ith variable is not fixed by ρ. Hence

Eρ[Ifρ ] = pIf .

We conclude

If ⩽
2s

p
⩽ 2s · (10s)d−1 ⩽ (20 logM)d.

□

One can improve the bound slightly by using Corollary 11.19 and Lemma 11.21 instead of Corollary 11.18.

Theorem 11.23 (Boppana [Bop97]). Let f be a Boolean function computed by an AC circuit of depth d and size M ,
then

If ⩽ (20 logM)d−1.

The majority function Maj is defined as Maj(x) = 1 if and only if
∑
xi ⩾ n/2. As we saw above, the total

influence of Parity is n. It is also straightforward to see (Exercise 11.2) that the total influence of Maj is Θ(
√
n).

We conclude

Corollary 11.24. The functions Parity and Maj are not in AC0. In particular, Parity and Maj require AC

circuits of depth d and size at least 2Ω(n
1
d−1 ) and 2Ω(n

1
2(d−1) ) respectively.
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To this day, H̊astad’s bound for parity remains the strongest explicit known lower bound against small-depth
circuits for any function, even in the case of d = 3. The special case of depth-3 has received significant attention as
one of the simplest restricted models where our understanding is lacking. The following open problem is one of the
frontiers of circuit complexity.

Problem 11.25. Find an explicit function f : {0, 1}n → {0, 1} that requires circuit size 2ω(
√
n) for AC circuits of

depth 3.

Valiant proved that a construction with a stronger lower bound of 2Ω(n) for Problem 11.25 would imply a solution
to Problem 11.3. More precisely, if f : {0, 1}n → {0, 1} requires circuit size 2ω(

√
n) for AC circuits of depth 3, then it

requires circuit size ω(n) for fan-in 2 circuits of depth O(log(d)).

Exercises

Exercise 11.1. Prove that every depth d alternating circuit of size S can be computed by a depth d formula of size
at most Sd. A circuit is called a formula if its gates have fan-out at most 1.

Exercise 11.2. Prove that the total influence of Maj : {0, 1}n → {0, 1} is Θ(
√
n).

Exercise 11.3. Consider the DNF Tr,t(x) =
∨r
i=1

∧t
j=1 xij on n = rt variables xij . For r = n/t and t = log(n) −

log log(n) prove that Ii(Tr,t) = Θ( log(n)n ).

Exercise 11.4. Prove that
Var[f ] ⩽ If .

Exercise 11.5. Prove that every function f : {0, 1}n → R has a unique polynomial representation f(x) =
∑
S⊆{1,...,n} αSx

S ,

where xS denotes the monomial
∏
i∈S xi. Prove that the degree of this polynomial deg(f) is bounded by dt(f). Is it

true that deg(f) ⩽ t if f has a t-CNF representation?

Exercise 11.6. Let sizedt(f) denote the smallest number of leaves in a decision tree computing f . Prove that for
every f : {0, 1}n → {0, 1} if ρ is a random restriction with parameter p (that is Pr[∗] = p), we have

Eρ[sizedt(fρ)] ⩽ sizedt(f)
log(1+p).

Give an example where the bound is sharp.
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Chapter 12

AC0 with parity gates:
Razborov-Smolensky

We have seen that AC circuits of bounded depth cannot compute Parity and Maj. A natural way to strengthen
such circuits is to allow gates capable of computing such hard functions. In particular, two classes TC0 and ACC0 are
defined as follows.

For i ⩾ 0, let TCi be the class of Boolean functions computable by Boolean threshold circuits with a polynomial
number of gates and depth O(logi n). Threshold circuits are Boolean circuits with ∧, ∨, ¬, and Maj gates. Since
Maj ∈ NC1 ⊆ AC1, we have

ACi ⊆ TCi ⊆ NCi+1 ⊆ ACi+1.

Our understanding of the class TC0 is very limited. It is not known whether P ̸⊆ TC0.
On the other hand, define ACi[m] to be the class of decision problems decidable by Boolean circuits with ability

to count modulo the integer m, with a polynomial number of gates and depth O(logi n). More specifically, ACi[m]
circuits are allowed gates ∧,∨,¬ in addition to modm(x) gates which evaluate to 1 if and only if

∑
xi ≡ 0 mod m.

Define ACCi = ∪mACi[m]. It is easy to verify that

ACi ⊆ ACCi ⊆ TCi.

It is conjectured that Maj ̸∈ AC0[6], however, it is not yet ruled out whether P/poly ̸⊆ AC0[6]. It is not even
ruled out whether EXP ̸⊆ AC0[6]. The strongest lower-bounds known for ACC0 are due to recent work of Murray and
Williams [MW18] who built on a breakthrough of Williams [Wil14] to prove that NQP ̸⊆ ACC0. Here NQP refers to
nondeterministic quasipolynomial time.

The case of AC0[2] (also denoted AC0[⊕]) turns out to be very different, and as we will see in this section, much
stronger lower-bounds can be proved for very simple functions.

While of the two hard functions Parity and Maj, the former belongs to AC0[⊕], Razborov [Raz87] and Smolen-
sky [Smo87] proved that the latter, Maj, is hard even for AC0[⊕]. Their proof has an important implication that every
AC0 function can be approximated point-wise by a low-degree polynomial.

The key to answering such questions is the polynomial representation of Boolean functions. Every function f :
{0, 1}n → R has a unique representation as a multivariate polynomial in R(x1, . . . , xn) with monomials

∏
i∈S xi. Since

the variables take only 0 and 1 values, every variable appears with power 0 or 1 in each monomial.

Example 12.1. We have

Maj(x1, x2, x3) = x1x2 + x2x3 + x1x3 − 2x1x2x3.

Parity(x1, x2, x3) = x1 + x2 + x3 − 2x1x2 − 2x2x3 − 2x1x3 + 4x1x2x3.

∧(x1, . . . , xn) = x1x2 . . . xn,

and

∨(x1, . . . , xn) = 1− (1− x1)(1− x2) . . . (1− xn) =
∑

∅⊊S⊆[n]

(−1)|S|+1
∏
i∈S

xi.

Note that even the simplest AC0 functions such as ∧ and ∨ have a full degree as a polynomial. However, the
following theorem shows that every AC0 function can be approximated well with a low-degree polynomial.
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Theorem 12.2 ([Raz87], [Smo87]). Let f : {0, 1}n → {0, 1} be computed by an AC circuit of depth d and size M .
For every s, there is a polynomial g ∈ Z(x1, . . . , xn) with degree ⩽ (s logM)d such that

Pr
x
[f(x) ̸= g(x)] ⩽

(
1− 1

2e

)s
M,

where x is chosen randomly and uniformly from {0, 1}n. In particular, taking s = 100 log(M), there is a polynomial
of degree ⩽ (100 logM)2d, such that

Pr
x
[f(x) ̸= g(x)] ⩽ 0.01.

Proof. The key is approximating the ∧ and ∨ gates with low-degree polynomials. The function g is constructed
inductively. We will show how to make a step with an ∧ gate. Since the whole construction is symmetric concerning
0 and 1, the step also holds for an ∨ gate. Let

f = ∧ki=1fi

where k < M . For convenience, let us assume that k = 2ℓ is a power of 2. For every j = 1, . . . , ℓ, pick s random subsets
of {1, . . . , k} by including every element in the subset independently with probability p = 2−j . We obtain a collection
of sets S1, . . . , St with t := sℓ ⩽ s logM . Let g1, . . . , gk be the approximating functions for f1, . . . , fk provided by the
previous inductive step. We set

g :=

t∏
i=1

(1− |Si|+
∑
j∈Si

gj).

By the induction assumption, the degrees of gj are⩽ (s logM)d−1. Hence, the degree of f is bounded by t(s logM)d−1 ⩽
(s logM)d. Next, we bound the probability of f(x) ̸= g(x) conditioned on the event that all of the inputs f1, . . . , fk
are computed correctly. Consider any x such that gj(x) = fj(x) for all j. We have

Pr
S1,...,St

[f(x) ̸= g(x)] = Pr
S1,...,St

 t∏
i=1

1− |Si|+
∑
j∈Si

fj

 ̸=
k∏
j=1

fj

 .
To bound this, we fix a vector of specific values f1(x), . . . , fk(x) and calculate the probability that an error occurs over
the possible choices of the random sets Si.

• Note that if all the fj(x)’s are 1, then the value of f(x) = 1 is calculated correctly with probability 1.

• Suppose that f(x) = 0, and thus at least one of the fj ’s is 0. Note that in order for the product

t∏
i=1

1− |Si|+
∑
j∈Si

fj


to evaluate to 0, it suffices to have one of the terms 1 − |Si| +

∑
j∈Si fj to be 0. Let 1 ⩽ z ⩽ k be the number

of zeros among f1(x), . . . , fk(x), and α ∈ Z be such that 2α ⩽ z < 2α+1. Let S be a random set with parameter
p = 2−α−1. Our approximation will be correct if S hits exactly one 0 among the z zeros of f1(x), . . . , fk(x), as
in this case, we would get 1− |S| −

∑
j∈S fj = 0, making the whole product 0. The probability of this event is

exactly

zp(1− p)z−1 ⩾
1

2
(1− p)

1
p−1 >

1

2e
.

Hence the probability that all the s sets that are chosen with parameter p = 2−α−1 fail is bounded by (1− 1
2e )

s

and

Pr

 t∏
i=1

(1− |Si|+
∑
j∈Si

fj) ̸=
k∏
j=1

fj

 < (1− 1

2e

)s
.

By making the same probabilistic argument at every node, by the union bound over all the ⩽ M gates in the
circuit, we conclude that the probability that an error happens is at most M

(
1− 1

2e

)s
. Hence the polynomial g that

we randomly constructed satisfies: For every x ∈ {0, 1}n,

Pr
g
[f(x) ̸= g(x)] ⩽M

(
1− 1

2e

)s
.
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Since this holds for every x, we have

Pr
g,x

[f(x) ̸= g(x)] ⩽M

(
1− 1

2e

)s
,

which shows that there is a fixed polynomial g0 such that

Pr
x
[f(x) ̸= g0(x)] ⩽M

(
1− 1

2e

)s
,

as desired.
□

The class AC0[⊕]: Algebraic techniques

In this section, we study the class AC0[⊕] and ultimately show that Maj ̸∈ AC0[⊕]. Since we are interested in “mod 2”
additions, working in the two-element field F2 is more convenient. Here F2 = {0, 1} with addition and multiplication
defined modulus 2. In particular, addition corresponds to the ⊕ function.

Boolean functions as f : Fn2 → F2: Identifying {0, 1} with F2, we can think of Boolean functions as f : Fn2 → F2.
Note that the set of all functions f : Fn2 → F2 is a 2n dimensional vector space over the field F2. One obvious linear
basis for this vector space is the set of Dirac functions δy defined as

δy : x 7→
{

1 x = y
0 x ̸= y.

Indeed there are 2n Dirac functions, and every function f : Fn2 → F2 can be expressed as a linear combination of δy’s
with coefficients from F2 as

f =
∑
y∈Fn2

f(y)δy.

Monomials
∏
i∈S xi form a different set of linear basis for this vector space. This basis lead to the polynomial

representation of f in the ring of polynomials F2(x1, . . . , xn). To be more precise, for every S ⊆ {1, . . . , n}, define the
function xS =

∏
i∈S xi. Here we use the convention x∅ =

∏
i∈∅ xi ≡ 1. Now let us establish that these functions are

linearly independent.

Lemma 12.3. The monomials xS, where S ⊆ {1, . . . , n}, are linearly independent over F2.

Proof. Consider any ordering S1, S2, . . . , S2n of subsets of {1, . . . , n} such that i ⩽ j implies |Si| ⩽ |Sj |.
For every S ⊆ {1, . . . , n} denote ϕS(x) = xS . Moreover, identify S with the vector y ∈ Fn2 defined as yi = 1 ⇔ i ∈ S.

With this notation, note that
ϕS(S) = 1,

while
ϕT (S) = 0,

for all T ̸= S with |T | ⩾ |S|.
This shows that

ϕSi ̸∈ spanF2
{ϕSj : j > i}.

Thus ϕS1 , ϕS2 , . . . , ϕS2n
are linearly independent. □

Since there are exactly 2n monomials xS , which is equal to the dimension of the vector space of all functions
f : Fn2 → F2, we conclude that they must form a linearly independent basis. Consequently, every such function has a
unique polynomial representation

f(x) =
∑

S⊆{1,...,n}

aSx
S .

The proof of Lemma 12.3 has the following corollaries that we will use later in the lecture.

Corollary 12.4. For every A ⊆ Fn2 , the set of monomials xS for S ∈ A is a linear basis for the F2-vector space of all
functions f : A→ F2. (Here, we are identifying y ∈ A ⊆ Fn2 with the set S = {i : yi = 1}).

Corollary 12.5. For every A ⊆ Fn2 , the set of monomials
∏
i∈[n]\S(1−xi) for S ∈ A is a linear basis for the F2-vector

space of all functions f : A→ F2.
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Razborov-Smolensky over F2

In Theorem 12.2, we saw how to approximate every AC circuit of size M and depth d with a low degree polynomial in
Z(x1, . . . , xn). The result immediately translates over to F2. Indeed simplifying the coefficients modulus 2, we obtain
a low-degree polynomial in F2(x1, . . . , xn) that approximates the circuit.

Now consider a circuit in AC0[⊕]. It is no longer true that such a circuit can be approximated well by a low-degree
polynomial in Z(x1, . . . , xn), simply because even a single ⊕-gate with a large fan-in (i.e., the parity function) does
not have such a low degree approximation. However, over the field F2, this changes, as the ⊕-gates are simply linear
polynomials over F2:

k⊕
i=1

fi =

k∑
i=1

fi,

where the addition is in F2. We conclude the following version of Theorem 12.2.

Theorem 12.6 (Theorem 12.2 over F2). Let f : Fn2 → F2 be computed by an AC[⊕] circuit of depth d and size M .
For every s, there is a polynomial g ∈ F2(x1, . . . , xn) of degree ⩽ (s logM)d such that

Pr
x
[f(x) ̸= g(x)] ⩽

(
1− 1

2e

)s
M,

where x is chosen randomly and uniformly from {0, 1}n.

Proof. The ⊕-gates are linear functions:
k⊕
i=1

fi =

k∑
i=1

fi.

For the ∧ and ∨ gates we can use the same approximation as in Theorem 12.2 but simplify everything mod 2, or
equivalently carry all the operations over F2. □

Finally, we will show that Maj : Fn2 → F2 cannot be approximated by any polynomial of degree at most
√
n, and

thus conclude that Maj ̸∈ AC0[⊕].

Theorem 12.7. Let p ∈ F2(x1, . . . , xn) be a polynomial of degree t. Then

Pr
x
[Maj(x) = p(x)] ⩽

1

2
+O(t/

√
n).

Proof. The proof is a clever algebraic proof based on the notion of rank. We will start by proving the following claim.

Claim 12.8. For every function f : Fn2 → F2 there are two F2-polynomials g, h of degrees at most n
2 such that

f(x) = g(x) +Maj(x) · h(x).

Proof. Let A0, A1 ⊆ Fn2 be A0 = Maj−1(0) and A1 = Maj−1(1). Applying Corollary 12.4 for A0, there is a linear
combination g(x) of xS for S ∈ A0 such that

f(x) = g(x) ∀x ∈ A0.

Since A0 = Maj−1(0), every S ∈ A0 satisfies |S| ⩽ n/2 and thus deg(g) ⩽ n/2.
To handle A1, consider f̃(x) = f(x)− g(x). Applying Corollary 12.5 to A1, we obtain a polynomial h of degree at

most n/2 such that

f̃(x) = h(x) ∀x ∈ A1.

It is easy to check that, f(x) = g(x) +Maj(x)h(x): For x ∈ A0,

g(x) +Maj(x)h(x) = g(x) = f(x).

And for x ∈ A1,

g(x) +Maj(x)h(x) = g(x) + h(x) = g(x) + f̃(x) = f(x).

□
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By the above claim, for every f : Fn2 → F2, there are polynomials g, h of degree at most n/2 such that

f(x) = g(x) +Maj(x) · h(x) ∀x ∈ Fn2 .

Let

T = {x : p(x) = Maj(x)},

so that

f(x) = g(x) + p(x)× h(x) ∀x ∈ T.

Note that deg(g + ph) ⩽ n
2 + t. We have shown that the |T |-dimensional space of all functions f : T → F2 is in the

span of all monomials of degree at most n
2 + t. Consequently,

|T | ⩽
(
n

0

)
+

(
n

1

)
+ . . .+

(
n

n
2 + t

)
⩽

2n

2
+

n
2 +t∑
k=n

2

(
n

k

)
⩽ 2n

(
1

2
+O

(
t√
n

))
,

using the fact that
(
n
k

)
⩽
(
n
n/2

)
∼ 2n√

nπ
= O

(
2n√
n

)
, for all k.

□

Theorem 12.9. Let C be an AC0[⊕] circuit of size M and depth d such that

Pr
x
[Maj(x) ̸= C(x)] ⩽

1

3
.

Then M ⩾ 2Ω(n
1
4d ).

Proof. See Exercise 12.1. □

Concluding Remarks

By this point, we have proved that small depth circuits are limited in their power, and even uncomplicated functions
such as Maj and Parity require exponentially many gates if we limit the depth to a fixed constant. The core idea
behind both proofs can be interpreted as the broad statement that every low-depth polynomial-size circuit C(x) can
be approximated by a low-degree polynomial p(x). In the case of the Razborov-Smolensky, this approximation is
formalized by providing a bound on the point-wise error

Pr
x
[C(x) ̸= p(x)].

In the case of the proofs by random restrictions of Chapter 11, this is less apparent, but as we will see in Chapter 16,
Linial, Mansour, and Nisan [LMN93] use Corollary 11.18 to show the existence of a low-degree polynomial p(x) such
that the so-called L2 error term

Ex |C(x)− p(x)|2

is small.

The proof of the Razoborov-Smolensky theorem allows one to prove correlation bounds as small as 1
2 + d√

n
with

polynomials of degree d. This is a nontrivial correlation bound for degrees as high as
√
n. Achieving stronger than

1
2 + 1√

n
correlation bounds even for degree log n remains a major open problem with applications that we will not

discuss here.

Problem 12.10 (Major open problem). Construct an explicit function f : Fn2 → F2 such that for every polynomial of
degree d = log(n), we have

Pr
x
[p(x) = f(x)] ⩽

1

2
+

1

n
.

For an in-depth look into the importance of such correlation bounds for polynomials, we refer the reader to [Vio09].
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Exercises

Exercise 12.1. Prove Theorem 12.9 using Theorem 12.7 and Theorem 12.6.

Exercise 12.2. In this exercise we consider Boolean functions as f : {−1, 1}n → {−1, 1}. Note that in this setting
Parity(x) =

∏
i∈{1,...,n} xi.

Consider the vector space of all functions f : {−1, 1}n → R. Prove that every such function can be written as

f = g +Parity× h,

where g and h are polynomials of degree at most n/2.

Exercise 12.3. Let f : {0, 1}n → {0, 1}, and let g be a random polynomial of degree ⩽ d such that for every x, we
have

Pr
g
[f(x) = g(x)] ⩾

1

2
+ ε.

Prove that for every k, there is a random polynomial h of degree ⩽ kd such that for every x, we have

Pr
h
[f(x) ̸= h(x)] ⩽ e−kε

2/4.

Exercise 12.4. A parity decision tree is generalization of a decision tree in which at every node v we branch according
to the value of

⊕
i∈Sv xi for a subset Sv ⊆ {1, . . . , n}. Prove that there is a (one-sided error) randomized parity decision

tree TR of constant depth that computes the OR function.
That is for all x, if ∨ni=1xi = 0, then PrR[TR(x) = 0] = 1, and if ∨ni=1xi = 1, then

Pr
R
[TR(x) = ∨ni=1xi] ⩾

1

2
.

Exercise 12.5. Let k > 0 be a fixed constant, and let the threshold function tk : {0, 1}n → {0, 1} be defined as
tk(x) = 1 if and only if

∑
xi ⩾ k. Prove that there is a (one-sided error) randomized parity decision tree TR of

constant depth that computes tk(x).
That is for all x, if tk(x) = 0, then PrR[TR(x) = 0] = 1, and if tk(x) = 1, then

Pr
R
[TR(x) = tk(x)] ⩾

1

2
.

Note that k = 1 corresponds to the previous exercise.

Exercise 12.6. Deduce an analogue of Theorem 12.7 for the Parity function from the Switching lemma methods:

There are constants c1, c2 > 0 such that for every AC circuit C of depth d and size at most 2c1n
1/d

,

Pr[C(x) = Parity(x)] ⩽
1

2
+ 2−c2n

1/d

.

Exercise 12.7. In this exercise our goal is to prove that unlike majority, approximate majority can be solved by an
AC0 circuit. More precisely we want to construct a polynomial size circuit C of depth 3 such that if |x| :=

∑
xi ⩾ 3n

4 ,
then C(x) = 1, and if |x| < n

4 , then C(x) = 0. For n
4 ⩽ |x| < 3n

4 , we do not care about the output of C.
We construct a sequence of random circuit as follows:

• C0 is a single variable randomly chosen from x1, . . . , xn.

• C1 =
∧10 logn
i=1 Di, where Di are independent copies of the random variable C0.

• C2 = ∨n15

i=1Di, where Di are independent copies of the random variable C1.

• C3 =
∧n2

i=1Di, where Di are independent copies of the random variable C2.

For any fixed x, prove that if |x| < n
4 , then

Pr
C3

[C3(x) = 1] < 2−n
2

,

and if |x| ⩾ 3n
4 , then

Pr
C3

[C3(x) = 0] < 2−n
2

.

Conclude that there is a polynomial size depth 3 circuit C such that for all |x| < n
4 , C(x) = 0, and for all |x| ⩾ 3n

4 ,
C(x) = 1.
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Exercise 12.8 (Difficult). In this exercise, we see another proof where we need to pick random elements with different
scales.

Let (X, d) be a metric space with n points. That is |X| = n, and the distance function d : X ×X → R⩾0 satisfies
the following properties:

• d(x, y) = 0 implies x = y.

• d(x, y) = d(y, x) for all x, y.

• d(x, y) + d(y, z) ⩾ d(x, z) for all x, y, z.

Prove that there is an embedding of X into the Euclidean space that has distortion O(log(n)). More precisely, there
is a map ψ : X → Rd for some d that does not distort the distances by more than a factor of O(log(n)): For all x, y:

d(x, y) ⩽ ∥ψ(x)− ψ(y)∥ ⩽ O(log(n))× d(x, y).

Hint: Pick subsets S1, . . . , Sd ⊆ X randomly and according to carefully chosen parameters for an appropriate value of
d, and define ϕ(x) = (d(x, S1), . . . , d(x, Sd)), where d(x, S) := miny d(x, S). Obtain ψ by scaling ϕ so that d(x, y) ⩽
∥ψ(x)− ψ(y)∥.
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Chapter 13

Razborov’s monotone circuit lower-bound

We continue our study of the computational power of restricted classes of circuits. In Chapters 11 and 12, we considered
bounded depth circuits. In this chapter, we turn our attention to monotone circuits with no depth restriction. Since
we allow arbitrary depth, we can assume that all gates have fan-in 2, as breaking the larger fan-in ∧ and ∨ gates into
binary gates does not increase the circuit size by much.

Many natural functions, such as Maj, are monotone in the sense that they are increasing in the input bits: Flipping
input bits from 0 to 1 cannot decrease the value of the function from 1 to 0. Every such function can be computed by
a DNF without any negated terms:

f(x) =
∨

y:f(y)=1

 ∧
j:yj=1

xj

 .

This observation suggests removing the ¬ gate and considering the circuits with the gates ∧ and ∨ as a natural
model of computation for monotone functions. Such circuits are called monotone circuits. It is also easy to see that
every monotone circuit computes a monotone function.

Example 13.1. Let Cliquek : {0, 1}(
n
2) → {0, 1} be the function that, given a graph G on n vertices, outputs 1 iff G

contains a complete subgraph of size k. Here, the graph G is represented by
(
n
2

)
input variables xij , where xij = 1 if

and only there is an edge between the vertices i and j.
Obviously, Cliquek is a monotone function and can be represented by a monotone circuit of size O(nk) =

O(2k log(n)) as ∨
S⊆{1,...,n}

|S|=k

∧
i,j∈S
i ̸=j

xij . (13.1)

□

A counting argument similar to the one we used for general circuits shows that most monotone functions require
exponential-size monotone circuits. Nevertheless, proving a super-polynomial lower bound on an explicit monotone
function was open for more than 40 years until the invention of the approximation method by Razborov.

Theorem 13.2. [Raz85a, AB87] For sufficiently large n, Cliquen1/6 requires monotone circuits of size at least 2n
1/12

.

Note that Theorem 13.2 looks incredibly impressive, as unlike the AC lower-bounds of Chapters 11 and 12, it does
not restrict the depth of the circuit. Indeed at the time, many people believed this was very close to proving a general
circuit lower-bound, hence establishing P ̸= NP. After all, at first glance, it appears that one only needs to squeeze
in the negation gate somewhere in the proof, and one would have an exponential lower bound for Cliquek. However,
as later research showed, monotone circuits are very different from general circuits as they cannot simulate general
algorithms. Indeed we are still nowhere near proving P ̸= NP.

Let V = {1, . . . , n} denote the vertex set. For every S ⊆ V , define CS(G) as the indicator function that outputs 1
if and only if S is a clique in the input graph G. With this notation, we can rewrite (13.1) as

Cliquek(G) =
∨

S∈(V[k])

CS(G),

where
(
V
[k]

)
denotes the collection of all subsets of size k of V .
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Figure 13.1: A sunflower with 3 petals.

Razborov’s idea is to show that every small monotone circuit that tries to compute the clique function can be
“approximated” by a DNF of the form

∨
S∈T CS(G) for a small collection T of subsets of V . To achieve this, he

applies an important combinatorial result due to Erdös and Rado [ER60] called the sunflower lemma: A collection
of sets Z1, . . . , Zp is called a sunflower if Zi ∩ Zj = ∩pk=1Zk for all i ̸= j. The set ∩pk=1Zk is called the core of the
sunflower, and the sets Zi are called its petals. See Figure 13.1.

Theorem 13.3 (Sunflower lemma [ER60]). Every collection of (p− 1)ℓℓ! sets of sizes at most ℓ contains a sunflower
with p petals.

Remark 13.4. Erdös and Rado [ER60] conjectured that their (p−1)ℓℓ! ≈ Θ(pℓ)
ℓ
bound could be improved to Θ(p)ℓ.

Recently, Alweiss, Lovett, Wu, and Zhang, in a breakthrough paper [ALWZ20], used some ideas from Razborov’s
proof [Raz95] of Hastad’s switching lemma to improve the bound in Theorem 13.3 to Θ(p log(ℓ))ℓ. However, for our
application, the bound in Theorem 13.3 suffices.

Approximating the monotone circuit

The notion of approximation appearing in Razborov’s proof is defined according to how well the circuit handles the
“hardest” Yes instances and the “hardest” No instances of Cliquek.

• Sparsest Yes instances: G consists of a single k-clique, and no other edges.

• Densest No instances: G is a complete (k − 1)-partite graph, where partitions are chosen of nearly equal sizes.

Note that intuitively these instances are hard: for the case where G is a single k-clique, even though most of the
graph is empty, we need to detect the clique and accept it. In the case of the (k − 1)-partite graph, there are many
edges present, and yet the circuit should be able to detect that the graph is free of any cliques of size k. We define
two distributions to capture these hard instances.

• µYes: Here G is generated by picking a subset K ⊆ V of size |K| = k uniformly at random and placing a k-clique
on K.

• µNo: Pick a colouring of the vertices c : V → {1, . . . , k − 1} uniformly at random, and for all i, j ∈ V , connect i
to j if c(i) ̸= c(j).

Note that if a circuit C correctly computes Cliquek, then

Pr
G∼µYes

[C(G) = Yes] = 1 and Pr
G∼µNo

[C(G) = No] = 1.

Solving Cliquek on either µYes or µNo is very easy. For µYes, it suffices always to output Yes, and for µNo, one
has always to output No. However, Razborov’s proof shows that no sub-exponential size monotone circuit can
simultaneously succeed on both distributions.

To this end he shows that if C is a small monotone circuit that computes Cliquek correctly, then there exists a
small collection T of subsets of V such that C̃(G) =

∨
S∈T CS(G) satisfies

Pr
G∼µYes

[C̃(G) = Yes] ⩾ 0.9 and Pr
G∼µNo

[C̃(G) = No] ⩾ 0.9.

In other words, C̃ is a good approximation of C if the inputs are drawn from either of these two distributions.
We conclude the theorem by showing that one needs a large T for C̃ to do well on the distributions µYes and µNo.
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The preliminary lemmas

Throughout the proof, we set the following parameters:

k = n1/6, ℓ =
√
k, p = 10

√
k log k, t = k2ℓ ⩾ (pℓ)ℓ ⩾ (p− 1)ℓℓ!. (13.2)

We show that a single CS is a very poor approximation of Cliquek.

Lemma 13.5. Let ℓ and t be as in (13.2), and consider a set S ⊆ V .

(I) If |S| ⩽ ℓ, then

Pr
G∼µNo

[CS(G) = Yes] ⩾
1

2
.

(II) If |S| ⩾ ℓ, then
Pr

G∼µYes

[CS(G) = Yes] ⩽ t−22−2ℓ.

Proof. First consider |S| ⩽ ℓ. Let c : V → {1, . . . , k − 1} be chosen uniformly at random. For distinct i, j ∈ S, the

probability that c(i) = c(j) is 1
k−1 . Applying the union bound over all

(|S|
2

)
pairs, the probability that there exist

distinct i, j ∈ S with c(i) = c(j) is at most(
|S|
2

)
1

k − 1
=

(
ℓ

2

)
1

k − 1
< 0.5.

Hence with probability at least 1
2 , the set S is a clique in G.

Next, consider |S| ⩾ ℓ, and let G be drawn from µYes by picking a random set K ⊆ V of size k and planting a
clique on K. In this case, CS(G) = 1 if and only if S ⊆ K. Thus using n− ℓ+ 1 ⩾ n/2, and 4k5 < n,

Pr[CS(G) = 1] =

(
n−ℓ
k−ℓ
)(

n
k

) =
k(k − 1) . . . (k − ℓ+ 1)

n(n− 1) . . . (n− ℓ+ 1)
⩽

(
2k

n

)ℓ
⩽ t−22−ℓ.

□

The next lemma shows that replacing a sunflower with its core never damages the circuit on Yes instances, and it
is very unlikely to damage the output of the circuit on a G drawn from µNo.

Remark 13.6. One convenient point to keep in mind throughout the proof is that since the function, the initial
circuit, and our approximating circuit are all monotone, for µYes it is fine if our approximation turns the output of a
gate from 0 to 1, and similarly for µNo it is fine if our approximation turns the output of a gate from 1 to 0. These
cannot change the output of the circuit erroneously.

Lemma 13.7. Let Z1, . . . , Zp be a sunflower with core R and sets of sizes at most ℓ. Then
∨p
i=1 CZi(G) ⩽ CR(G) for

all G, and furthermore for G ∼ µNo,

Pr
G∼µNo

[
p∨
i=1

CZi(G) ̸= CR(G)

]
⩽ 2−p.

Proof. It is obvious that
∨p
i=1 CZi ⩽ CR, and the inequality is strict only if CR detects a clique on R, while all

Z1, . . . , Zp have missing edges. We will show that this happens with a small probability if G ∼ µNo. We want to
bound

Pr
G∼µNo

[CR(G) = 1 and ∨pi=1CZi(G) = 0] = Pr
µNo

[CR(G) = 1]Pr
µNo

[∨pi=1CZi(G) = 0|CR(G) = 1].

We have

Pr
µNo

[∨pi=1CZi(G) = 0|CR(G) = 1] =

p∏
i=1

Pr
µNo

[CZi(G) = 0|CR(G) = 1] ⩽
p∏
i=1

Pr
µNo

[CZi(G) = 0] ⩽

(
1

2

)p
,

where the first equality uses the sunflower structure: once we fix the core R, the events CZi(G) = 0 become independent
as Zi \R are all disjoint and CZi(G) = 0 only depends on the random colours assigned to the vertices in Zi \R. The
second inequality uses the fact that conditioning on CR(G) = 1 can only decrease the probability that CZi(G) = 0.
Finally, in the last inequality, we used Lemma 13.5. □
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Approximation by a small number of cliques

Lemma 13.8. Consider the parameters in (13.2). Let C be a monotone circuit of size M . There exists a collection
T of at most t subsets of V , each of size at most ℓ, such that C̃(G) =

∨
S∈T CS(G) satisfies

Pr
G∼µYes

[C̃(G) = No] ⩽
M2−

√
k

4
and Pr

G∼µNo

[C̃(G) = Yes] ⩽
M2−

√
k

4
.

We will prove the lemma by induction, traversing the circuit from the bottom to the top and replacing each gate by
OR’s of CS . We start by replacing input wires xij by indicators for 2-cliques and working our way up, finally replacing
the output gate. Throughout this process, we will always use sets S of size at most ℓ, and we will ensure that the

replaced gate approximates the original gate with an error probability of at most 2−
√
k−2 on both of the distributions

µYes and µNo. This latter condition will allow us to apply the union bound over all the gates to conclude that the

probability that our approximation fails on either of these distributions is bounded by M2−
√
k−2.

Handling the OR gates: Consider f ∨ g where f =
∨
S∈T1

CS and g =
∨
S∈T2

CS with |T1|, |T2| ⩽ t. Obviously
f ∨ g =

∨
S∈T CS where T = T1 ∪ T2, which already gives us a set T . However, it might no longer be true that the

size of T is bounded by t. We cannot afford to double the size of T at each gate. Fortunately, the sunflower lemma
can save the day: If |T | > t, the collection T contains a sunflower Z1, . . . , Zp with some core R. Using Lemma 13.7
we can replace the sunflower with its core creating an error of at most 2−p for µNo, and no error for µYes. Since
|T | ⩽ |T1|+ |T2| ⩽ 2t, repeating this process at most t times will reduce the size to the desired t, and create an error
probability of at most

t2−p ⩽ 2−2ℓ ⩽ 2−
√
k−2,

for either of the distributions.

Handling the AND gates: Note that for every G we have

CS1(G) ∧ CS2(G) ⩾ CS1∪S2(G),

and for G ∼ µYes, since G is a clique, we have

CS1
(G) ∧ CS2

(G) = CS1∪S2
(G).

Consider f ∧ g where f =
∨
S∈T1

CS and g =
∨
S∈T2

CS . In this case we initially replace f ∧ g with
∨
S∈T CS(G),

where
T = {S1 ∪ S2 : S1 ∈ T1, S2 ∈ T2}.

By the above observations, this cannot create any error in the case of G ∼ µYes nor in the case of G ∼ µNo. However,
this can cause two different issues:

• As in the case of OR gates, this can lead to |T | > t: We can handle this case using the sunflower lemma. Since
|T | ⩽ |T1||T2| ⩽ t2, we need to apply Lemma 13.7 at most t2 − t times, replacing the sunflowers with their cores.
This will create an error probability of at most

t22−p ⩽ 2−2ℓ.

• A new issue that is specific to the AND gates is that we could have |S1∪S2| > ℓ. In this case, we drop those sets
S of size larger than ℓ from T . This will not create any errors for the µNo, and for the µYes, by Lemma 13.5 (II),
this creates an error with probability of at most

|T |t−22−2ℓ ⩽ 2−2ℓ.

Adding these two cases, we see that the probability of error is at most

2−2ℓ + 2−2ℓ = 2−2ℓ+1 ⩽ 2−
√
k−2.

Proof Theorem 13.2: Note that n1/12 =
√
k. If there is a monotone circuit of size M ⩽ 2n

1/12

that computes
Cliquek, then by Lemma 13.8 there exists a collection T of at most t subsets of V , each of size at most ℓ, such that
C̃(G) =

∨
S∈T CS(G) satisfies

Pr
G∼µYes

[C̃(G) = No] ⩽
1

4
and Pr

G∼µNo

[C̃(G) = Yes] ⩽
1

4
.

By Lemma 13.5 (I), the set T cannot contain any sets of size at most ℓ and thus must be empty. This is a contradiction.
□
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Concluding remarks

Are monotone circuits the most suited circuits for computing monotone functions? In particular, if a monotone
function is in P, can it be computed by a polynomial-size monotone circuit? The answer turns out to be negative.
Razborov [Raz85b] used the approximation method to prove an nΩ(logn) lower bound for the size of a monotone circuit
computing the perfect matching problem—which is monotone and is in P. While this is a super-polynomial lower bound,
interestingly, to this day, no exponential lower bound is known for monotone circuits for the perfect matching problem.
However, Tardos [Tar88] looked at a different problem in P and proved an exponential gap between monotone and
non-monotone circuits for the problem of computing the (monotone, threshold version of the) Lovász’ Theta function.
This problem is in P via semidefinite programming.

Exercises

Exercise 13.1. Consider a circuit of the form C(G) = ∨S∈T CS(G) for solving the k-clique problem. Let µYes and
µNo be defined as in the lecture. Prove that if

Pr
G∼µYes

[C(G) = No] ⩽
1

4
and Pr

G∼µNo

[C(G) = Yes] ⩽
1

4
,

then |T | ⩾ Ω

((
n
2k

)√k)
.

Exercise 13.2. Optimize the parameters in the proof of Theorem 13.2 to show that as long as k ⩽ n
1
3−ε for some

ε > 0, and k is sufficiently large, then Cliquek requires monotone circuit size of at least 2Ω(
√
k).

Exercise 13.3. Let ε > 0 be a parameter, and ϕ be a DNF with s clauses. Prove that there exists a DNF ψ with
width at most O(log(s/ε)) such that

Pr
x
[ϕ(x) ̸= ψ(x)] ⩽ ε.

Exercise 13.4. Use the sunflower theorem to prove the following statement: For every monotone DNF ϕ with width
w and size m, every ε > 0, there exists a DNF formula ψ with width w and size at most (w log(m/ε))O(w) such that
ψ(x) ⩾ ϕ(x) for all x, and

Pr
x
[ϕ(x) ̸= ψ(x)] ⩽ ε.

Exercise 13.5. Obviously, Maj ∈ P and thus has a polynomial-size circuit. In this exercise, we will prove that Maj
has a polynomial-size monotone circuit.

1. First, establish that the majority of three copies of a random bit amplifies its bias. More precisely, let B1, B2, B3

be independent identically distributed Bernoulli random variables with Pr[Bi = 1] = p = 1
2+δ for δ ∈ [−0.5, 0.5].

Prove that

Pr[Maj3(B1, B2, B3) = 1] = p+
1

2
(1− 4δ2)δ.

Note 1− 4δ2 ⩾ 0, and thus the bias is amplified slightly.

2. Note that for x ∈ {0, 1}n, if we set B = xi for a random i ∈ {1, . . . , n}, then Pr[B = 1] ⩾ 1
2 if Maj(x) = 1, and

otherwise Pr[B = 1] ⩽ 1
2 − 1

n . Construct a random polynomial-size O(log(n))-depth circuit C, using only Maj3
gates such that for all x,

Pr
C
[Maj(x) = C(x)] > 1− 1

2n
.

3. Conclude that there is a polynomial size monotone circuit C of depth O(log(n)) such that for all x, we have
Maj(x) = C(x).
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Chapter 14

Razborov-Rudich: Natural Proof Barrier

We have already seen that relativization is a barrier to answering the question of P ̸= NP. It overrules several potential
proof approaches. The proofs that are not specific to the computation of Turing Machines relativize and thus cannot
answer questions that do not relativize. In particular, they cannot separate complexity classes P and NP, as there are
oracles A and B such that PA = NPA and PB ̸= NPB .

The non-uniform approach to circuit complexity overcomes this barrier. Polynomial-time algorithms can be con-
verted to polynomial size (¬,∨,∧)-circuits, which is not true for general polynomial-time oracle Turing Machines.
Furthermore, the simple structure of circuits makes them amenable to the application of tools from other areas of
mathematics. The 1980s saw a flurry of new techniques for proving circuit lower bounds on natural, restricted circuit
classes. Clever proof techniques such as the random restriction and the switching lemma method of Furst, Saxe,
Sipser [FSS84], Ajtai [Ajt83], and Hastad [Has86], the polynomial approximation of Razborov [Raz87] and Smolen-
sky [Smo87], or Razborov’s monotone circuit lower-bound [Raz85a] were all discovered during this period. However,
despite the initial excitement of this rapid progress, curiously, they, and all subsequent results, fell short of obtaining
any nontrivial lower bounds for general circuits, particularly proving that P ̸= NP.

Is there a fundamental reason for this failure? The same may be asked about any longstanding mathematical
problem, for example, the Riemann Hypothesis. One explanation, albeit vague, could be that perhaps the current
arsenal of tools and ideas does not suffice. Remarkably, in 1997 Razborov and Rudich [RR97] turned this vague
statement into a formal theorem, thus giving us an excuse for our failure so far: they classified a general set of ideas
and tools, which are responsible for virtually all restricted circuit lower bounds known, yet must necessarily fail for
proving P ̸= NP. They dubbed such proofs as natural proofs. Loosely speaking, a lower-bound proof is natural if
applied to a large, easily recognizable set of functions.

In this chapter, we will study their paradigm and prove that there are no natural proofs for P ̸= NP under reasonable
complexity-theoretic assumptions.

What are natural proofs?

Almost all known circuit lower bounds follow the following approach:

• We come up with a simple-to-analyze property P (e.g., having large total influence, not approximable by a
low-degree polynomial, not simplifying under random restrictions, etc.), which we interpret as a notion of being
complex.

• We show that our function of choice, say SAT, satisfies this property and thus is complex.

• We show that functions computable by circuits in the class C are not complex (i.e., do not satisfy P) and thus
cannot include our function.

Here a property P just means a subset of all Boolean functions f : {0, 1}n → {0, 1}, and when we say f satisfies
P, we mean f ∈ P. Obviously, for the above approach to be sensible, P must be simpler and easier to understand
than the property of not being computable by a circuit in C. Razborov and Rudich require two characteristics from
the property:

1. Constructivity: Given the truth table of any function f : {0, 1}n → {0, 1}, whether f satisfies P or not can
be decided in polynomial time. Note that since the input is a truth table, it is of size N = O(2n), and thus
polynomial-time means NO(1) = 2O(n).
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2. Largeness: A random function has a non-negligible chance of being complex: Formally, there exists a constant
c > 0 such that for every sufficiently large n, a randomly selected function f : {0, 1}n → {0, 1} satisfies

Pr[f ∈ P] ⩾ c.

Every property that satisfies the above conditions is called a natural property. A proof that shows h ̸∈ C by
establishing that h ∈ P and that no function in C satisfies P is called a natural proof.

Example 14.1. If P := {f : If ⩾ n/4}, then P is constructive because we can compute If in 2O(n), and P is large
because Ef [If ] = n/2, and thus Prf [If ⩾ n/4] ⩾ 1

2 .

As we have seen earlier in Theorem 11.22, every function that can be computed with an AC circuit of size nO(1)

and depth O(1) satisfies If = logO(1)(n), and thus for sufficiently large n, no such f belongs to P. On the other hand,
Parityn ∈ P, and thus does not belong to the set of functions that have AC circuits of size nO(1) and depth O(1).

The above proof is a natural proof for the Parity ̸∈ AC0. □

The Razborov-Rudich Theorem

In [RR97] Razborov and Rudich state:

Consider a commonly envisioned proof strategy for proving P ̸= NP:

• Formulate some mathematical notion of “discrepancy” or “scatter” or “variation” of the values of a
Boolean function or of an associated polytope or other structure.

• Show by an inductive argument that polynomial-sized circuits can only compute functions of “low”
discrepancy. [. . . ]

• Then show that SAT, or some other function in NP, has “high” discrepancy.

Such proof is likely to be natural. If cryptography is correct, such proofs cannot work for P ̸= NP.

Razborov and Rudich first show that their natural proof framework essentially encapsulates all known circuit lower
bounds. Then they prove that natural proofs of general circuit lower bounds are unlikely in the following sense. Any
natural proof of a general circuit lower-bound implies a subexponential algorithm for inverting every candidate one-way
function. Specifically, a natural-proof lower bound would imply subexponential algorithms for such functions as integer
factoring and discrete logarithm, generally believed to be exponentially difficult—to the extent that all cryptography
relies on such assumptions.

Before giving the formal statement and its proof, we need first to discuss the one-way functions, which originate
from cryptography. Intuitively, a one-way function is a function that is easy to compute but computationally hard to
invert, i.e., hard to find the preimage given the image. Moreover, it is even computationally hard to guess the inverse
correctly with reasonable probability.

Definition 14.2. A function f : {0, 1}n → {0, 1}m is a one-way function if

• Given x, f(x) can be computed in poly(|x|) time.

• For all probabilistic polynomial time algorithms MR, we have

Pr
x∈{0,1}n

R

[MR(f(x)) ∈ f−1(f(x))] ⩽
1

nω(1)
.

Cryptography is based on the assumption that functions such as integer factorization are one-way functions. Recall
that size(nk) denotes the set of functions that can be computed by a circuit of size nk.

Theorem 14.3 (Razborov-Rudich [RR97]). Assuming that one-way functions exist, no natural proof can show

NP ̸⊆ size(nk),

for all k ∈ N.
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Preparing for the proof: Pseudo-random Generators

An important element in the proof is the notion of a pseudorandom generator. Consider a probabilistic algorithm
that uses a random string R of at most m bits as its source of randomness. We can derandomize the algorithm by
trying all the 2m possible strings R ∈ {0, 1}m instead of picking one at random and see if the majority of them lead
to accept or to reject. We are paying in running time as this multiplies the running time by 2m. This is not an issue
if m = O(log(n)) because, in that case, the increase in the running time is only a polynomial factor. However, when
m is large, say linear in the input size n, the increase in the running time can turn a polynomial-time algorithm into
an exponential algorithm.

Now suppose that for some ℓ that is much smaller than m, we are given a function G : {0, 1}ℓ → {0, 1}m such that
the algorithm MR cannot distinguish a truly random string R ∈ {0, 1}m from a random string R′ = G(y) where y is
randomly selected from {0, 1}ℓ. Indistinguishability here means that

Pr
R∈{0,1}m

[MR(x) = Accept] ≈ Pr
y∈{0,1}ℓ

[MG(y)(x) = Accept].

On the left-hand side, we are using a truly random R, whereas on the right-hand side, we are using an artificially
produced random string G(y) that is constructed from a smaller seed of random bits. Such a G essentially decreases
the required number of random bits from m to ℓ. Hence, for example, we can proceed with the above derandomization
process and turn our probabilistic algorithm into a deterministic algorithm, paying now only a factor of 2ℓ rather than
2m in the running time.

To summarize, a pseudorandom generator G for a complexity class C takes a truly random seed y of length ℓ, and
from it constructs a much longer string G(y) of length m that is indistinguishable from a truly random string of length
m by functions in C.

Definition 14.4 (Pseudo-Random Generator). A function G : {0, 1}ℓ → {0, 1}m is an ε-PRG against a class C if for
every T ∈ C, ∣∣∣∣ Pr

y∈{0,1}ℓ
[T (G(y)) = 1]]− Pr

R∈{0,1}m
[T (R) = 1]

∣∣∣∣ ⩽ ε.

We say G is efficient if G(y) runs in polynomial time in the output length m.

Blum and Micali [BM82] gave an elegant construction that shows how to construct a pseudorandom generator
based on the assumption that the discrete logarithm problem is a one-way function. Much later, Hastad, Impagliazzo,
Levin, and Luby [HsILL99] showed that the existence of any one-way function suffices to guarantee the existence of
wonderfully strong pseudo-random generators that double the length of the seed and can fool polynomial-size circuits.

Theorem 14.5 ([HsILL99]). If one-way functions exist, there is a sequence of pseudo-random generators Gk :
{0, 1}k → {0, 1}2k, computable in polynomial time in k such that for all c > 0, all circuits T of polynomial size
S = kc satisfy ∣∣∣∣ Pr

y∈{0,1}k
[T (G(y)) = 1]]− Pr

R∈{0,1}2k
[T (R) = 1]

∣∣∣∣ ⩽ 1

S
,

provided that k is sufficiently large.

We will not directly apply this theorem but rather use a consequence of this theorem due to Goldreich, Goldwasser,
and Micali [GGM85]. They showed that one can use the above pseudo-random generators to construct functions that
“look random” to sub-exponential algorithms.

Consider a probabilistic algorithm A with running time 2O(mε) that, in addition to its usual randomness, also has
oracle access to a random string R : {0, 1}m → {0, 1}. Here, we interpret R : {0, 1}m → {0, 1} as an additional
(randomness) string of length 2m. Instead of providing R to the algorithm on a tape, we allow the algorithm to
have oracle access to R and query any coordinate of R without having to traverse the randomness tape. During
its computation, A can query the values of R(x) for different points x ∈ {0, 1}m. We want to construct a small
set of functions Rs such that A cannot distinguish between a completely random string R : {0, 1}m → {0, 1} and
a string selected randomly from our much smaller set of strings Rs : {0, 1}m → {0, 1}. Goldreich, Goldwasser, and
Micali [GGM85] show that this is possible.

Theorem 14.6 (Goldreich, Goldwasser, Micali [GGM85]). If one-way functions exist, there exists a collection of
functions Rs : {0, 1}m → {0, 1} for s ∈ {0, 1}m such that

• Given s, x ∈ {0, 1}m, we can compute Rs(x) in poly(m) time.
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• For any 2O(mε)-time probabilistic algorithm A, where ε > 0 is an absolute constant, we have∣∣∣∣ Pr
s∈{0,1}m

[
ARs = Accept]

]
− Pr
R:{0,1}m→{0,1}

[
AR = Accept

]∣∣∣∣ = o(1),

where the probabilities are also over the randomness in A.

Note that in Theorem 14.6, on the left-hand side, we randomly choose a string from only 2m strings Rs, while on
the right-hand side, we are choosing R out of all the 22

m

possible R : {0, 1}m → {0, 1}.

The proof of Razborov-Rudich Theorem

Finally, we are ready to prove Theorem 14.3. Consider a natural property P that is useful for proving that some
function, such as SAT, does not belong to the circuit classes size(nk) for all k ∈ N. We have

• Constructivity: It can be decided in time 2O(n) whether f : {0, 1}n → {0, 1} has the property.

• Largeness:

Pr
f
[f ∈ P] ⩾ δ.

• Usefulness: For every k, for sufficiently large n,

P ∩ size(nk) = ∅.

Let n = mε/2 < m, where ε is as in Theorem 14.6, and consider the functions Rs : {0, 1}m → {0, 1} provided by
the theorem. For s ∈ {0, 1}m, define

gs : {0, 1}n → {0, 1} as gs(x) = Rs(x0
m−n).

Note that given s ∈ {0, 1}m and x ∈ {0, 1}n, by the first part of Theorem 14.6 the value of gs(x) = Rs(x0
m−n)

can be computed in time mO(1) = nO(1). Consequently, there is a size(nO(1)) circuit that given x, s computes gs(x).
Hence, we have the following by the usefulness of P.

gs ̸∈ P for every s ∈ {0, 1}m, (14.1)

while by the largeness property

Pr
g
[g ∈ P] ⩾ δ where g : {0, 1}n → {0, 1} is chosen randomly. (14.2)

This suggests a probabilistic algorithm for distinguishing a randomly selected Rs : {0, 1}m → {0, 1} from a randomly
selected function from all the functions R : {0, 1}m → {0, 1}, and thus contradicting the assertion of Theorem 14.3.

Namely, given a function R : {0, 1}m → {0, 1} from an unknown distribution which is either uniform over the
set of all Rs or uniform over the set of all {0, 1}m → {0, 1}, we look at the function g : {0, 1}n → {0, 1} defined as

g(x) = R(x0m−n). By the constructivity of P, we can decide in time 2O(n) = 2O(mε/2) whether g ∈ P. We accept if
this is the case. Let us call this algorithm A. If R was selected from the set {Rs : s ∈ {0, 1}m}, then by (14.1)

Pr[AR = Accept] = 0.

On the other hand, if R was selected from all of the functions {0, 1}m → {0, 1}, then note that g : {0, 1}n → {0, 1} is
also a completely random function, and thus by (14.2), we have

Pr[AR = Accept] ⩾ δ.

In other words, we have algorithm A that runs in time 2O(mε/2) such that∣∣∣∣ Pr
s∈{0,1}m

[
ARs = Accept]

]
− Pr
R:{0,1}m→{0,1}

[
AR = Accept

]∣∣∣∣ ⩾ δ,

contradicting Theorem 14.6.
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Concluding Remarks

The natural proof framework was extended in several directions. See [Wig93] for a survey. Recently, [CIKK16] showed
that a natural proof of a circuit lower bound against any sufficiently powerful circuit class yields a learning algorithm
for the same circuit class.

Even today, decades later, after the discovery of the relativization and natural proof barriers, most complexity
results either relativize or fall into the framework of natural proofs. One way to overcome these barriers is through the
arithmetization technique on interactive proofs. This technique is used to prove some lower bounds on interactive proof
classes, for example, Santhanam [San09] and Vindochandran [Vin04]. To curb the power of this technique, Aaronson
and Wigderson [AW08] defined the algebrization barrier, a generalization of relativization that incorporates proofs
that use arithmetization. They show that proofs that algebrize are still too weak to resolve the P ̸= NP question and
other complexity challenges.

The only circuit lower bound technique that avoids all known barriers originates with Williams [Wil14]. It uses a
brilliant combination of diagonalization and simulation on the one hand and circuit complexity techniques. Unfortu-
nately, this line of work has delivered relatively few lower bounds for rather weak circuit classes.

Exercises

Exercise 14.1. Prove that the Razborov-Smolensky proof for Maj ̸∈ AC0[⊕] is a natural proof.
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Chapter 15

Fourier analysis and Polynomial
Representations

Consider a Boolean function

f : {False,True}n → {False,True}.

Identifying {False,True} with each of {0, 1}, the field F2, or {−1, 1} leads to a different representation of f . Each
of these representation places us in the domain of a different field of mathematics, and allows us to benefit from the
rich collection of all the tools, theorems, methods, and the machinery that have been developed in that area.

(I) f : Fn2 → F2. Here we can consider f as an element of the vector space of functions Fn2 → F2 over the field F2.
This allows us to consider the polynomial representation of f as

f(x) =
∑

S⊆{1,...,n}

aS
∏
i∈S

xi

with coefficients aS ∈ F2, and appeal to linear algebraic tools, and the finite field theory.

(II) f : {0, 1}n → R. This will allow us to consider the polynomial representation of f as

f(x) =
∑

S⊆{1,...,n}

aS
∏
i∈S

xi

with the coefficients aS ∈ R.

(III) f : {−1, 1}n → R. This will allow us to consider the polynomial representation of f as

f(x) =
∑

S⊆{1,...,n}

bS
∏
i∈S

xi

with the coefficients bS ∈ R. The coefficients bS are different from the coefficients as in (II). Using the {−1, 1}-
valued variables makes the monomials satisfy certain orthogonality properties, allowing us to use geometric
tools.

(IV) f : Zn2 → R, where Z2 is the Ableian group {0, 1} with addition defined modulus 2. This is closely related
to (III) and allows us to consider the Fourier transform of f over the Abelian group Zn2 . Indeed as we shall
see the coefficient bS are exactly the Fourier coefficients of f as a function on the Abelian group Zn2 . This not
only allows us to use the large repository of tools and ideas from Fourier analysis, but it also suggests certain
generalizations of the proofs. Some results about Boolean functions can be generalized to other Abelian groups,
or even non-Abelian groups such as the group of all the permutations, called the symmetric group. In the setting
of non-Abelian groups, representation theory replaces Fourier analysis.

In the previous chapters, in particular in the proof of the Razborov-Smolensky’s theorem, we have already seen
how (I) and (II) can be useful. In this chapter we will focus on (III) and (IV).
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Polynomial representations of f : {−1, 1}n → R
As it is mentioned in the introduction to this chapter, it is sometimes useful to represent Boolean functions as
f : {−1, 1}n → R rather than f : {0, 1}n → R. Consider the vector space of all functions f : {−1, 1}n → C endowed
with the inner product

⟨f, g⟩ := E
[
f(x)g(x)

]
.

For every S ⊆ {1, . . . , n}, consider the monomial xS =
∏
i∈S xi, which is a function from {−1, 1}n to {−1, 1}. We

define x∅ ≡ 1 as the constant monomial. Note that

E[xS ] =
{

1 S = ∅
0 S ̸= ∅ .

This implies the orthonormality of these monomials with respect to the inner product defined above:

⟨xS , xT ⟩ = E
[
xSxT

]
= E

[
xS∆T

]
=

{
1 S = T
0 S ̸= T

,

where S∆T = (S \T )∪ (T \S) denotes the symmetric difference between S and T . Since there are 2n such monomials,
which matches the dimension, we conclude that the monomials xS form an orthonormal basis for the vector space of all
functions f : {−1, 1}n → R. Hence in this case, not only we have the linear independence of the monomials as in the
case of the functions f : {0, 1}n → R, but we have the additional geometric structure coming from the orthonormality.
It follows from the orthonormality that every function f : {−1, 1}n → R. has a unique polynomial representation

f(x) =
∑

S⊆{1,...,n}

f̂(S)xS ,

where the coefficients f̂(S) ∈ R are given by

f̂(S) = ⟨f, xS⟩ = E[f(x)xS ].

Note that this representation, and the coefficients are different from that of the polynomial representation when f is
considered as a function {0, 1}n → R. Indeed the change of variable yi =

xi+1
2 converts a {−1, 1}-valued variable xi

to a {0, 1}-valued variable yi, and thus

∑
S⊆{1,...,n}

f̂(S)xS =
∑

S⊆{1,...,n}

f̂(S)
∏
i∈S

(2yi − 1) =
∑

S⊆{1,...,n}

∑
T⊇S

2|S|(−1)|T\S|f̂(T )

 yS ,

and conversely ∑
S⊆{1,...,n}

aSy
S =

∑
S⊆{1,...,n}

aS
∏
i∈S

xi + 1

2
=

∑
S⊆{1,...,n}

∑
T⊇S

2−|T |aT

xS ,

gives the relations between the coefficients in these two different representations. One important fact about these
representations is that, whether we choose f : {−1, 1}n → R or f : {0, 1}n → R, the degree of the polynomial remains

the same: The largest S such that aS ̸= 0 also satisfies f̂(S) ̸= 0 and vice versa. We call this quantity simply the
degree of the Boolean function f and denote it by deg(f).

Of course depending on the application, sometimes it might be convenient to work with the polynomial represen-
tation over {0, 1}n, but when the choice {−1, 1}n is appropriate, the orthogonality of the monomials can be extremely
useful. For example, we have the Parseval identity:

⟨f, g⟩ :=
∑
S

f̂(S)ĝ(S).

Note that
E[f ] = f̂(∅),

and by the Parseval identity

Var[f ] = E[f2]− E[f ]2 = ⟨f, f⟩ − f̂(∅)2 =
∑
S ̸=∅

f̂(S)2,
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showing that both the expected value and the variance can be easily expressed in terms of the coefficients. Let us add
to these the influences: for f : {−1, 1}n → {0, 1}, we have

Ii(f) = Pr[f(x) ̸= f(x⊕ ei)] = E |f(x)− f(x⊕ ei)|2 = E

(∑
S:i∈S

2f̂(S)xS

)2

=
∑
S:i∈S

4f̂(S)2,

where again we used the Parseval’s identity (Here by an abuse of notation we used x⊕ ei to denote the vector that is
obtained from x by changing the sign of the i-th coordinate). This also gives us a formula for the total influences of f

I(f) =
∑
S

4|S||f̂(S)|2.

Finally as we will see in the next section, this polynomial representation of a Boolean function coincides with the
Fourier expansion of f when it is considered as a function from the Abelian group Zn2 to R.
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Fourier analysis of Finite Abelian Groups

In this section we develop the basic Fourier analysis of finite Abelian groups. Recall that the cyclic group ZN is the
Abelian group with elements {0, 1, . . . , N − 1}, where the group product is defined as a+ b := a+ b (mod N). Finite
Abelian groups can be characterized as the products of cyclic groups:

Theorem 15.1. Every finite Abelian group G is isomorphic to the group ZN1
× . . .× ZNk for some positive integers

N1, . . . , Nk.

We will be mostly interested in the group Zn2 as it can be identified with the set {False,True}n. Hence Boolean
functions f : {False,True}n → {0, 1} can be identified with functions f : Zn2 → {0, 1}, and this shall allow us to use
the Fourier analysis of Zn2 to study Boolean functions. The reason we use the notation Z2 instead of F2 is that here
we only care about the group structure of the set (with +).

Basic Fourier Theory

Let G be a finite Abelian group. A function χ : G→ C \ {0} mapping the group to the non-zero complex numbers is
called a character of G if it is a group homomorphism. That is, χ(a + b) = χ(a)χ(b) for all a, b ∈ G, and χ(0) = 1,
where 0 is the identity of G. Note that the constant function 1 is always a character and it is called the principal
character of G.

Let χ be a character of G, and consider an element a ∈ G. Since G is a finite group, a is of some finite order n
(that is na = 0 where na refers to adding a to itself n times). Hence 1 = χ(0) = χ(na) = χ(a)n which shows that χ(a)
is an n-th root of unity. In particular, every character χ of G satisfies

χ : G→ T, (15.1)

where T is the unit complex circle.

Theorem 15.2. If G is a finite Abelian group, then the characters of G together with the usual point-wise product of
complex valued functions form a group Ĝ.

Proof. The principal character 1 is the identity of Ĝ. Note that if χ and ξ are characters of G, then χξ is also a
character. Indeed χ(ab)ξ(ab) = χ(a)ξ(a)χ(b)ξ(b), and χ(0)ξ(0) = 1 × 1 = 1. To check the existence of the inverse
elements, note that if χ is a character, then χ−1 := 1

χ = χ is also a character. □

The group Ĝ is called the Pontryagin dual of G. Fourier analysis is based on expressing functions f : G → C
as linear combinations of characters. It will be convenient to treat the set of these functions as a Hilbert space: Let
L2(G) denote the set of functions f : G→ C, where here G is endowed with the uniform probability measure. Recall
(see Section A) that L2(G) is a Hilbert space with the inner product

⟨f, g⟩ = Ex∈Gf(x)g(x) =
1

|G|
∑
x∈G

f(x)g(x).

In the sequel, we will often consider G as a probability space, and Ex∈G shall always mean that x is a random variable
that takes values in G uniformly at random. To simplify the notation we usually abbreviate Ex∈G to simply E. For a
function f : G→ C, the notation E[f ] means Ex∈G[f(x)] (which is equal to 1

|G|
∑
x∈G f(x)).

Example 15.3. Consider the group Zn2 . For every a = (a1, . . . , an) ∈ Zn2 , one can construct a corresponding character

χa that maps x to
∏
i:ai=1(−1)xi = (−1)

∑
i:ai=1 xi . The principal character is χ0 ≡ 1 where the 0 in the index refers

to (0, . . . , 0), the identity element of the group. It is easy to verify that these are indeed all the characters of Zn2 . Note
that in this case the characters are actually real-valued (they only take values 1 and −1), but as we shall see below
for all other Abelian groups there are characters that take non-real values.

Since the coordinates of a ∈ Zn2 are 0 or 1, we will sometimes identify a with the set S = {i : ai = 1} ⊆ {1, . . . , n},
and denote the characters as χS for S ⊆ {1, . . . , n}. This notation is sometimes more intuitive as

χS(x) = (−1)
∑
i∈S xi ,

and this is consistent with the polynomial representation considered earlier.

Our next goal will be to prove that the characters form an orthonormal basis for L2(G). First let us prove a simple
lemma.
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Lemma 15.4. Let G be a finite Abelian group, and χ be a non-principal character of G. Then
∑
x∈G χ(x) = 0.

Proof. Suppose to the contrary that
∑
x∈G χ(x) ̸= 0. Consider an arbitrary y ∈ G, and note

χ(y)
∑
x∈G

χ(x) =
∑
x∈G

χ(y + x) =
∑
x∈G

χ(x)

which shows that χ(y) = 1. Since y was arbitrary, we conclude that χ must be the principal character which is a
contradiction. □

Now we can prove the orthogonality of the characters.

Lemma 15.5. The characters of a finite Abelian group G are orthonormal functions in L2(G).

Proof. It follows from (15.1) that every χ ∈ Ĝ satisfies

∥χ∥22 = E
[
|χ(x)|2

]
= E[1] = 1.

So characters are unit vectors in L2(G). It remains to verify the orthogonality. Let χ ̸= ξ be two different characters.
Then χξ = χξ−1 is a non-principal character of G (why?). Hence by Lemma 15.4, we have

⟨χ, ξ⟩ = E
[
χ(x)ξ(x)

]
= E

[
χξ(x)

]
= 0.

□

So far we have discussed the Pontryagin dual of G in an abstract manner. Since finite Abelian groups have simple
structures (Theorem 15.1), it is quite easy to describe the characters of G. We start with the basic case of G = ZN .
For every a ∈ ZN , define χa ∈ L2(G) as

χa : x 7→ e
2πi
N ax.

Let us verify that χa is actually a character. Indeed χa(0) = e
2πi
N 0 = e0 = 1, and since e2πi = 1, we have

χa(x)χa(y) = e
2πi
N axe

2πi
N ay = e

2πi
N a(x+y (mod N)) = χa(x+ y).

Note that L2(G) is |G|-dimensional, and hence by Lemma 15.5, G has at most |G| characters. It follows that
{χa : a ∈ G} are all the characters of G. The principal character is χ0 ≡ 1. Also χaχb = χa+b which shows that the

dual group Ĝ is isomorphic to G. As we shall see below this is in general true for all finite Abelian groups.
Now let us consider the general case of G = ZN1 × . . . × ZNk for some positive integers N1, . . . , Nk. For every

a = (a1, . . . , ak) ∈ G, define χa ∈ L2(G) as the product of the characters χa1 , . . . , χak of the groups ZN1
, . . . ,ZNk

applied to the coordinates of x ∈ G respectively. More precisely

χa : x 7→
k∏
j=1

e
2πi
Nj

ajxj
.

As in the case of ZN , it is straightforward to verify that χa is a character by showing that χa(0) = 1, and
χa(x + y) = χa(x)χa(y). Again Lemma 15.5 shows that {χa : a ∈ G} are all the characters of G. We also have the
identify χaχb = χa+b which implies the following theorem.

Theorem 15.6. If G is a finite Abelian group, then the characters of G form an orthonormal basis for L2(G).

Furthermore we have Ĝ ∼= G.

Theorem 15.6 shows that G is isomorphic to its dual Ĝ, and so it shall be convenient to identify the two groups in
the sequel, and denote the characters by χa where a ∈ G. Since the characters form an orthonormal basis for L2(G),

every function f : G→ C can be expressed in a unique way as a linear combination of the characters f =
∑
a∈G f̂(a)χa.

The corresponding coefficients f̂(a) ∈ G are referred to as the Fourier coefficients. This leads to the definition of the
Fourier transform.

Definition 15.7. The Fourier transform of a function f : G→ C is the unique function f̂ : Ĝ→ C defined as

f̂(χ) = ⟨f, χ⟩ = Ef(x)χ(x).

We will often use the notation f̂(a) to denote f̂(χa).
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Let us state a simple example of the Fourier transform of a function on Zn2 .

Example 15.8. Let f : Zn2 → C be the parity function f : x 7→
∑n
i=1 xi(mod 2). Then

f̂(0) = Ef(x)χ0 = Ef(x) =
1

2
.

We also have

f̂(1, . . . , 1) = Ef(x)(−1)
∑n
j=1 xj = −1

2
,

as f(x) = 1 if and only if
∑n
j=1 xj = 1(mod 2). Next consider a ∈ Zn2 with a ̸= (1, . . . , 1) and a ̸= 0. Let j0, j1 be such

that aj0 = 0 and aj1 = 1. We have (why?)

f̂(a) = Ef(x)χa(x) =
1

2
E [f(x)χa(x) + f(x+ ej0 + ej1)χa(x+ ej0 + ej1)] ,

where ej denotes the vector in Zn2 which has 1 at its jth coordinate and 0 everywhere else. Note that f(x) =

f(x+ ej0 + ej1) and furthermore χa(x) = −χa(x+ ej0 + ej1). We conclude that f̂(a) = 0 for every a ∈ Zn2 satisfying
a ̸= (1, . . . , 1) and a ̸= 0.

The Fourier transform is a linear operator: λ̂f + g = λf̂ + ĝ, and we have the following easy observation.

Lemma 15.9. The Fourier transform considered as an operator from L1(G) to L∞(Ĝ) is norm decreasing:

∥f̂∥∞ ⩽ ∥f∥1.

Proof. By (15.1) for every a ∈ G, we have

|f̂(a)| =
∣∣∣Ef(x)χa(x)∣∣∣ ⩽ E|f(x)||χa(x)| = E|f(x)| = ∥f∥1.

□

The Fourier coefficient f̂(0) is of particular importance as

f̂(0) = E[f(x)].

So if 1A is the indicator function of a subset A ⊆ G, then 1̂A(0) =
|A|
|G| corresponds to the density of A.

It follows from the fact that the characters from an orthonormal basis for L2(G) that

f =
∑
a∈G

f̂(a)χa,

and that this expansion of f as a linear combination of characters is unique. This formula is called the Fourier inversion
formula as it shows how the functions f can be reconstructed from its Fourier transform.

If A ⊆ G, then the orthogonal complement of A is defined as

A⊥ = {a ∈ G : χa(x) = 1 ∀x ∈ A}.

It follows from the identities χ0 = 1 and χaχb = χa+b that S⊥ is a subgroup of G. The Fourier transform of the
indicator function of a subgroup of G has a simple form:

Lemma 15.10. If H is a subgroup of G, then for every a ∈ G, we have

1̂H(a) =

{
|H|/|G| a ∈ H⊥

0 a ̸∈ H⊥

Proof. If a ∈ H⊥, then
1̂H(a) = ⟨1H , χa⟩ = E1H(x)χa(x) = E1H(x) = |H|/|G|.

On the other hand if a ̸∈ H⊥, then there exists y ∈ H such that χa(y) ̸= 1. Then∑
z∈H

χa(z) = χa(y)
∑
z∈H

χa(z − y) = χa(y)
∑
z∈H

χa(z),

which shows that
∑
z∈H χa(z) = 0. Hence

1̂H(a) = E1H(x)χa(x) =
1

|G|
∑
z∈H

E1H(z) = 0.

□
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Remark 15.11. It follows from Lemma 15.10 that if A = y +H is a coset of H in G (i.e. H is a subgroup of G and
y ∈ G), then for every a ∈ G,

1̂A(a) = E1A(x)χa(x) = E1H(x− y)χa(x) = E1H(x)χa(x+ y) = χ(y)1̂H(a)

=

{
χ(y)|H|/|G| a ∈ H⊥

0 a ̸∈ H⊥

Example 15.12. Let us revisit Example 15.8 in light of Remark 15.11. Note thatH = {x ∈ Zn2 :
∑n
i=1 xi = 0 (mod 2)}

is a subgroup of Zn2 . Now the function f defined in Example 15.8 is the indicator function of A = e1 +H. Note that

H⊥ = {a : (−1)
∑n
i=1 xiai = 1 ∀x ∈ H} = {(0, . . . , 0), (1, . . . , 1)}.

Hence

f̂(a) = 1̂A(a) =

{
χa(e1)|H|/|G| a ∈ H⊥

0 a ̸∈ H⊥

We conclude that f̂(0) = 1/2 and f̂(1, . . . , 1) = −1/2, and f̂(a) = 0 for every a ∈ Zn2 satisfying a ̸= (1, . . . , 1) and
a ̸= 0.

Next we prove the Parseval’s identity, a very simple but extremely useful fact in Fourier analysis.

Theorem 15.13 (Parseval). For every f ∈ L2(G),

∥f∥22 =
∑
a∈G

|f̂(a)|2.

Proof. We have

∥f∥22 = ⟨f, f⟩ =

〈∑
a∈G

f̂(a)χa,
∑
b∈G

f̂(b)χb

〉
=
∑
a,b∈G

f̂(a)f̂(b)⟨χa, χb⟩.

The identify now follows from orthonormality of characters:

⟨χa, χb⟩ =
{

0 a ̸= b;
1 a = b.

□

The proof of the Parseval identity, when applied to two different functions f, g ∈ L2(G), implies the Plancherel
theorem:

⟨f, g⟩ =
∑
a∈G

f̂(a)ĝ(a).

As the first example of an application of the Parseval identity, let us show that for every subgroup H of G, we have

|H||H⊥| = |G|. (15.2)

Indeed by Lemma 15.10, we have

|H|
|G|

= E1H = E12
H = ⟨1H ,1H⟩ = ∥1H∥22 =

∑
a∈G

|1̂H(a)|2 =
∑
a∈H⊥

(|H|/|G|)2 =
|H|2|H⊥|

|G|2

which simplifies to (15.2).
Next we introduce the important notion of convolution.

Definition 15.14. Let G be a finite Abelian group. For two functions f, g : G → C, we define their convolution
f ∗ g : G→ C as

f ∗ g(x) = Ey∈G[f(x− y)g(y)].

Note that f ∗ g(x) is the average of f(a)f(b) over all pairs a, b with a + b = x. This gives a combinatorial nature
to convolution which makes it very useful in dealing with certain discrete problems. Consider a set A ⊆ G. Then
f ∗ 1A(x) is the average of f over the set x− A := {x− y : y ∈ A}. For example if A is the Hamming ball1 of radius
r around 0 in Zn2 , then f ∗ 1A(x) is the average of f over the Hamming ball of radius r around x. These types of
averaging operators usually “smooth” f , and makes it more similar to a constant functions. This smoothing property
of the convolution is one of the main tools in harmonic analysis and this course.

Next let us list some basic facts about the convolution. We define the support of f : G → C, denoted by supp(f),
to be the set of the points x ∈ G with f(x) ̸= 0.

1The Hamming ball of radius r around 0 is defined as {x ∈ Zn
2 :

∑n
i=1 xi ⩽ r} ⊆ Zn

2 .
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Lemma 15.15. Consider three functions f, g, h : G→ C.

(a) We have

f ∗ g = g ∗ f.

(b) We have

(f ∗ g) ∗ h = f ∗ (g ∗ h).

(c) We have

f ∗ (λh+ g) = λf ∗ h+ f ∗ g.

(d) We have

supp(f ∗ g) ⊆ supp(f) + supp(g).

(e) We have

∥f ∗ g∥∞ ⩽ ∥f∥1∥g∥∞.

(f) More generally, if p and q are conjugate exponents, then

∥f ∗ g∥∞ ⩽ ∥f∥p∥g∥q.

(g) We have

∥f ∗ g∥1 ⩽ ∥f∥1∥g∥1.

Proof. (a) For every x ∈ G, we have

f ∗ g(x) = Ey[f(x− y)g(y)] = Ey[f(x− y)g(x− (x− y))] = Ez[f(z)g(x− z)] = g ∗ f(x).

(b) By Part (a),

(f ∗ g) ∗ h(x) = (g ∗ f) ∗ h(x) = EzEy[g(x− z − y)f(y)]h(z) =

= Ey,zg(x− z − y)f(y)h(z) = (h ∗ g) ∗ f(x) = f ∗ (g ∗ h)(x).

(c) is trivial.
(d) follows from the fact that f(x) is the average of f(a)g(b) over all pairs of points a, b ∈ G with a+ b = x.
(e) is a special case of (f).
(f) Note that for every x ∈ G, by Hölder’s inequality we have

|f ∗ g(x)| ⩽ Ey∈G|f(x− y)||g(y)| ⩽ (E|f(x− y)|p)1/p (E|g(y)|q)1/q = (E|f(y)|p)1/p ∥g∥q = ∥f∥p∥g∥q.

(g) We have

∥f ∗ g∥1 = Ex |f ∗ g(x)| ⩽ Ex,y|f(x− y)||g(y)| = Ez,y|f(z)||g(y)| = Ez|f(z)|Ey|g(y)| = ∥f∥1∥g∥1.

□

The relevance of the Fourier transform to convolution lies in the following lemma.

Lemma 15.16. If f, g : G→ C, then
f̂ ∗ g = f̂ · ĝ.

Proof. We have

f̂ ∗ g(a) = Exf ∗ g(x)χa(x) = Ex (Eyf(x− y)g(y))χa(x) = Ex,yf(x− y)g(y)χa(x− y)χa(y)

= Ez,yf(z)g(y)χa(z)χa(y) = Ezf(z)χa(z)Eyg(y)χa(y) = f̂(a) · ĝ(a).

□
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Note that Lemma 15.16 in particular shows that

Ef(x)Eg(x) = f̂(0)ĝ(0) = f̂ ∗ g(0) = Ef ∗ g(x).

We also have the dual version of Lemma 15.16,

f̂ · g(x) =
∑
y∈G

f̂(x− y)ĝ(y), (15.3)

which converts point-wise product back to convolution.

For a function h : G→ C, define h̃ : G→ C as h : x 7→ h(−x). Note that h̃ =
∑
a∈G ĥ(a)χa. Hence it follows from

the Parseval identity and Lemma 15.16 that for f, g, h : G→ C, we have

⟨f ∗ h, g⟩ = ⟨f, g ∗ h̃⟩ =
∑
a∈G

f̂(a)ĥ(a)ĝ(a).
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Infinite Ableian groups and beyond

Some readers might be familiar with the Fourier analysis over reals. Note that R is a topological group: It is a group
with a topology on it such that both the group’s binary operation (x, y) 7→ x + y, and the function mapping group
elements to their respective inverses (x 7→ −x) are continuous functions with respect to the topology. Furthermore R
is locally compact. Every element has a compact neighbourhood. For example for every x ∈ R, the neighbourhood
[x− 1, x+ 1] is compact.

It turns out that for every locally compact group G, there is a unique (Borel) measure on G that is invariant under
group action. That is µ(Sa) = µ(S) = µ(aS) for every a ∈ G and measurable S ⊆ G. As an interesting side note, the
proof of the existence of this measure uses the Hall’s marriage theorem about perfect matching.

For example, the counting measure on Z, the uniform probability measure on a finite group, or the usual Borel
measure on R are all Haar measures of those groups. Now with this measure µG one can define the inner product of
f, g : G→ C as

⟨f, g⟩ =
∫
f(x)g(x)dµG(x).

For example, for functions f, g : R → C, we have

⟨f, g⟩ =
∫
f(x)g(x)dx.

We can also define the characters of the locally compact abelian group G as the set of continuous group homo-
morphisms χ : G → T, where T is the unit complex circle. As in the finite case, it turns that characters of G from a
(locally compact) Abelian group Ĝ that is called the Pontryagin dual of G.

In the case of R, the characters are
χr : x 7→ e−2πrx,

for r ∈ R. Note that χ0 is the principal character, and χtχt = χr+t, and as a result R̂ ∼= R. Other examples are Ẑ ∼= T,
and T̂ ∼= Z. So unlike the finite case, in the infinite case it is not necessarily true that the dual group is isomorphic to
G.

Now consider f ∈ L1(G). That is f : G→ C and ∥f∥1 =
∫
|f |dµG <∞. Then for every character χ of the group,

we can define a corresponding Fourier coefficient:

f̂(χ) =

∫
f(x)χ(x)dµG(x).

Note that this integral is well-defined precisely because∫
f(x)χ(x)dµG(x) ⩽

∫
|f(x)||χ(x)|dµG =

∫
|f(x)|dµG <∞.

So it is important that f ∈ L1(G). This gives us the Fourier transform

F : L1(G) → L1(Ĝ),

that maps the function f to its Fourier coefficients:

F : f 7→ f̂ .

For example in the case of R, we get the familiar formula

f̂(r) =

∫ ∞

−∞
f(x)e−2πrxdx.

The Fourier inversion theorem says that we have

f =

∫ ∞

−∞
f̂(χ)χ(x)dνĜ(χ),

where νĜ is the Haar measure of the dual group Ĝ. For example, for R, we get the familar Fourier inversion formula

f(x) =

∫ ∞

−∞
f̂(r)e−2πrxdr,

that holds for every f ∈ L1(R).
Finally let us remark that one cannot apply Fourier analyses to non-Abelian groups simply because the characters

are defined as homomorphisms into the Abelian group T, and for a non-Abelian group G there might not be any such
non-trivial homomorphisms. In those cases the Fourier analysis is replaced with the representation theory where one
considers the homorphisms from G to the non-Abelian group of linear transformations of a vector space.
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Concluding remarks:

We finish this chapter by remarking that the Fourier expansion on Zn2 and the polynomial representation of functions
f : {−1, 1}n → R are essentially identical.

As we saw above the characters of the group Zn2 are of the form χS(x) = (−1)
∑
i∈S xi for all S ⊆ [n]. Note that

changing the domain from Zn2 to {−1, 1}n, will convert the character χS to the monomial xS :=
∏
i∈S xi. Hence the

Fourier expansion turns into the polynomial representation

f(x) :=
∑
S⊆[n]

f̂(S)xS .

Exercises

Exercise 15.1. Prove the Identity (15.3).

Exercise 15.2. Suppose that for f : Zn2 → {0, 1} we have f̂(S) = 0 for all |S| ⩾ 2 (that is deg(f) ⩽ 1). Show that
either f ≡ 0, f ≡ 1, f(x) = xi, or f(x) = 1− xi for some i ∈ [n].

Exercise 15.3. Let G be a finite Abelian group, and H be a subgroup of G. Prove that(
H⊥)⊥ = H.

Exercise 15.4. Given two subsets A,B ⊆ 2[n]. For S ⊆ [n], let

parityS(A) := {A ∈ A | |A ∩ S| ≡ 0 mod 2},

and
parityS(B) := {B ∈ B | |B ∩ S| ≡ 0 mod 2}.

• Prove that if parityS(A) = parityS(A) for every S, then A = B.

• Suppose |parityS(A)− parityS(A)| ⩽ δ for every S. Bound | (A \ B) ∪ (B \ A) | in terms of δ.

Exercise 15.5. Let G be a finite Abelian group, and H be a subgroup of G. Prove that for every f : G→ C, we have

Ex∈Hf(x) =
∑
a∈H⊥

f̂(χa).

Exercise 15.6. Let G be a finite Abelian group and f, g : G→ C. Show that for every positive integer m,

∥f ∗ g∥m ⩽ ∥f∥1∥g∥m.

Exercise 15.7. Consider a function f : Zn2 → {0, 1} and its Fourier expansion f =
∑
S⊆[n] f̂(S)χS . Define the discrete

derivative of f in direction i ∈ {1, . . . , n} as ∆if : x 7→ f(x+ ei)− f(x). Write the Fourier expansion of ∆if in terms
of the Fourier coefficients of f .

Exercise 15.8. Suppose that for f : Zn2 → {0, 1} we have f̂(S) = 0 for all |S| > k (that is deg(f) ⩽ k). Show that all
the Fourier coefficients of f are of the form r

2k
where r ∈ {0,±1, . . . ,±2k}. Conclude that every such function depends

on at most k22k coordinates.
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Chapter 16

Learning and AC0 circuits

As we saw in Chapter 15, every function f : {−1, 1}n → R has a unique representation as a polynomial in variables
x1, . . . , xn. That is

f(x) =
∑
S⊆[n]

f̂(S)xS ,

where xS =
∏
i∈S xi, and f̂(S) are real numbers. Furthermore, this representation is sometimes referred to as the

Fourier expansion of f , related to the Fourier analysis of the group Zn2 , as explained in Chapter 15. In this chapter
we will study the Fourier expansion of the functions in AC0, and see an application of this to the area of theoretical
machine learning.

PAC learning from uniform samples

Consider a class C of Boolean functions f : {−1, 1}n → {0, 1}. For example C could be the set of all such f with
dt(f) ⩽ k, where dt(f) refers to the smallest height of a decision-tree computing f . Now suppose that we are facing the
task of learning a function f ∈ C that is unknown to us by observing uniformly sampled points x. In other words, we
will be given a certain number of observations of the form (x, f(x)) where x are sampled independently and uniformly
at random from {−1, 1}n, and from these samples, we want to guess f(y) every value of y. In other words, we will
produce a hypothesis h that is not necessarily in C but nevertheless it is a good approximation of f . That is

Pr
y
[h(y) ̸= f(y)] ⩽ ε.

Let us see what kind of information about f can be learned from uniform samples. Consider a fixed S ⊆ {1, . . . , n},
and recall that

f̂(S) = ⟨f, xS⟩ = Ex[f(x)xS ].

Note that |f(x)xS | ⩽ 1, and thus by Chernoff bound, with high probability, a few samples would suffice to give us
a good approximation of this expected value. More precisely, if x1, . . . , xm ∈ {−1, 1}n are sampled uniformly and
independently, then with high probability the empirical estimate

f̃(S) =
1

m

m∑
i=1

f(xi)x
S
i ,

will be very close to the actual expected value f̂(S) = Ex[f(x)xS ].

Lemma 16.1. Given access to random samples from f : {−1, 1}n → {0, 1}, there is a randomized algorithm which

takes as input S ⊆ {1, . . . , n} and 0 ⩽ δ, ε ⩽ 1
2 , and using at most O(log(1/δ)ε−2) samples, outputs an estimate f̃(S)

for f̂(S) such that

Pr[|f̃(S)− f̂(S)| > ε] ⩽ δ.

Lemma 16.1 shows that each individual coefficient can be estimated very well from few samples. However since
there are 2n coefficients S, estimating all of them will not be computationally efficient and moreover the errors in
these estimates can accumulate to a large error. Indeed one should not expect to learn a generic function from a few
random samples unless the function f is restricted to have some structure.
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Now suppose that we know something about the Fourier expansion of the functions in the class C. Namely, there
is a small set S ⊆ P({1, . . . , n}) such that most of the mass of the Fourier coefficients is concentrated in S:∑

S ̸∈S

|f̂(S)|2 ⩽ ε.

Compare this to ∑
S

|f̂(S)|2 = E[|f(y)|2] = Ef.

If this is the case, then we can focus on estimating only those f̂(S) for S ∈ S, and obtain a good estimate of f as∑
S∈S

f̃(S)xS ≈ f.

Theorem 16.2. Suppose that there there is a subset S ⊆ P({1, . . . , n}) such that for every f ∈ C, we have∑
S ̸∈S

|f̂(S)|2 ⩽ ε.

There is a randomized algorithm that uses at most O(|S| log(|S|)ε−1) samples from an unknown f ∈ C, and outputs a
Boolean function h : {0, 1}n → {0, 1} such that with probability at least 1− δ,

Pr
x
[f(x) ̸= h(x)] ⩽ 8ε.

Proof. Let K = |S|. We use O

(
log(K/δ)

(√
K√
ε

)2)
= O

(
log(K/δ)Kε−1

)
samples, to estimate f̂(S) ≈ f̃(S) for each

S ∈ S. Then for every S, we have

Pr

[
|f̂(S)− f̃(S)| >

√
ε√
K

]
⩽

δ

K
.

Hence, by the union bound,

Pr

[
|f̂(S)− f̃(S)| >

√
ε√
K

for some S ∈ S
]
⩽ δ.

Let
g =

∑
S∈S

f̃(S)xS ,

and note that if our estimates are successful, which happens with probability at least 1− δ, then g is a good estimate
of f . Indeed, by the Parseval identity, we have

Ex[|f(x)− g(x)|2] =
∑
S∈S

|f̂(S)− f̃(S)|2 +
∑
S ̸∈S

|f̂(S)|2 ⩽ K

( √
ε√
K

)2

+ ε ⩽ 2ε.

There is only one issue left to resolve, and that is g is not a Boolean function. However, this can be easily fixed. Let h
be the Boolean rounding of g defined as h(x) = 0 if g(x) < 1/2 and otherwise h(x) = 1. Note that since f is Boolean,
we always have |f(x)− h(x)| ⩽ 2|f(x)− g(x)|. Hence

Pr
x
[f(x) ̸= h(x)] = Ex|f(x)− h(x)|2 ⩽ 4Ex|f(x)− g(x)|2 ⩽ 8ε.

□

Decision Trees

Let C be the class of Boolean functions f : {−1, 1}n → {0, 1} computable by a decision tree of depth at most d. It is
easy to see that the degree of every such f as a polynomial is at most d. Indeed if L0 and L1 are respectively the sets
of the 0-leaves and 1-leaves of the decision tree, then

f =
∑
ℓ∈L1

cℓ(x),

where cℓ(x) = 1 if and only if x follows the path to ℓ in the decision tree. Note that cℓ only depends on the values of
at most d variables in x, and thus is of degree at most d.

Therefore, for this class C, we can take S = {S | |S| ⩽ d}, which is a set of size at most nd. We conclude that this
class can be learned in the sense of Theorem 16.2 from at most O(nd log nd) samples.
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Linial-Mansour-Nisan

The switching lemma shows that under random restriction, a function computable by an AC0 circuit is likely to simplify
to a function with small decision tree complexity. The small decision tree, in particular, implies a small degree as a
polynomial. This observation suggests that the functions in AC0 must not have a large weight on the coefficients of
the monomials of large degrees. Linial, Mansour, and Nisan [LMN93] made this speculation a theorem.

For a positive integer k, and a function f : {−1, 1}n → R, we define

f=k :=
∑

S:|S|=k

f̂(S)xS ,

and f⩽k, f⩾k, f<k and f>k are defined similarly. Note that by the Parseval identity,

∥f∥22 =

n∑
k=0

∥f=k∥22.

Since the degree of a decision tree is bounded by its depth, we have the following corollary to the Switching Lemma.

Corollary 16.3. Let f be a Boolean function computed by an AC circuit of size M and depth d. Choose a random
restriction ρ by setting every variable independently to ∗ with probability p = 1

10dsd−1 , and to 0 and 1 each with

probability 1−p
2 . Then

Pr[deg(fρ) > s] ⩽M2−s.

Finally, we prove the main theorem of this section.

Theorem 16.4 (Linial, Mansour, Nisan [LMN93]). Let f be a Boolean function computed by an AC circuit of depth
d and size M , and let t be any integer. Then∑

|S|>t

|f̂(S)|2 ⩽ 2M2−t
1/d/20.

In particular for t = (40 log(M/ε))d, we have ∑
|S|>t

|f̂(S)|2 ⩽ ε.

Proof. Consider a random restriction ρ ∈ {−1, 1, ∗}n with Pr[∗] = p ⩽ 1
10dkd−1 for a value of k to be determined

later. We sample ρ in two steps. First, we pick T ⊆ [n] corresponding to the positions that are not assigned a ∗.
Then we pick xT ∈ {−1, 1}T uniformly at random, and ρ is defined as ρ := (xT ,∗). Set fxT := fρ = f(xT , ·). Since
xS =

∏
i∈S xi, we can decompose it as

xS = (xT )
S∩T (xT )

S\T .

Note that fxT : {−1, 1}T → {0, 1} and since

f(x) =
∑
S⊆[n]

f̂(S)xS =
∑
S⊆[n]

f̂(S)(xT )
S∩T (xT )

S\T =
∑
A⊆T

∑
B⊆T

f̂(A ∪B)xBT

xA
T
,

we have
f̂xT (A) =

∑
B⊆T

f̂(A ∪B)xBT ,

for every A ⊆ T . Hence, by the Parseval identity, we have

ExT
∣∣∣f̂xT (A)∣∣∣2 =

∑
B⊆T

|f̂(A ∪B)|2,

which shows that

ExT
∥∥f>kxT ∥∥22 = ExT

∑
A⊆T
|A|>k

∣∣∣f̂xT (A)∣∣∣2 =
∑
A⊆T
|A|>k

∑
B⊆T

|f̂(A ∪B)|2 =
∑

S:|S∩T |>k

|f̂(S)|2.
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Now we use the randomness in T . Since f>kxT = 0 if deg(fρ) ⩽ k, and that always ∥f>kxT ∥22 ⩽ ∥fxT ∥22 ⩽ 1, we have

ET

 ∑
S:|S∩T |>k

|f̂(S)|2
 = ETExT

∥∥f>kxT ∥∥22 = Eρ
∥∥f>kρ ∥∥2

2
⩽ Pr[deg(fρ) > k] ⩽M2−k, (16.1)

where the last inequality follows from Corollary 16.3 as we chose Pr[∗] = p ⩽ 1
10dkd−1 . Also we can bound the left-hand

size of (16.1) from below:

L.H.S. of (16.1) =
∑
S⊆[n]

Pr[|S ∩ T | > k]|f̂(S)|2 ⩾
∑
|S|>t

Pr[|S ∩ T | > k]|f̂(S)|2.

Taking p = 1
10t(d−1)/d and k = t1/d/20, satisfies p ⩽ 1

10dkd−1 , and by the Chernoff bound for |S| > t, the probability of

|S ∩ T | > k = pt/2 is at least 1− 2e
−pt
12 ⩾ 1

2 . Hence by (16.1), we have∑
S:|S|>t

1

2
|f̂(S)|2 ⩽M2−t

1/d/20.

□

Mansour-Nisan conjecture

Theorem 16.4 shows that the Fourier coefficients of every function computable by an AC circuit of polynomial size and
constant depth are highly concentrated on the first t = logO(1)(n) levels. There are roughly

(
n
⩽t

)
⩽ nt such coefficients.

While this is not an exponential number, it is still super-polynomial. The following tantalizing conjecture due to
Mansour speculates that for DNF’s one can pinpoint the significant coefficients to a polynomial size set.

Conjecture 16.5 (Mansour [Man95]). Let f be computable by a DNF with at most t terms. For every ε, there exists
a subset S ⊆ P({1, . . . , n}) of size tO(log 1/ε) such that∑

S ̸∈S

|f̂(S)|2 ⩽ ε.

Exercises

Exercise 16.1. Prove that s every f computable by a decision tree with L leaves, we have∑
S

|f̂(S)| ⩽ L.

Exercise 16.2. Let f : {−1, 1}n → {0, 1} be a Boolean function such that∑
S

|f̂(S)| ⩽ K.

Prove that there exists a set S of size at most K2/ε such that∑
S ̸∈S

f̂(S)2 ⩽ ε.

Exercise 16.3. Prove that for every monotone f we have∑
S:|S|⩾If/ε

f̂(S)2 ⩽ ε.

Exercise 16.4. Prove that for every monotone f we have

• 2f̂({i}) = Ii(f) for every i.

• We have If ⩽ 2
√
n.
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Chapter 17

Communication complexity

The field of communication complexity, which is formally defined in 1979 in a paper by Yao [?], studies the amount
of communication required to solve a problem of computing discrete functions when the input is split between two
parties. Every Boolean function f : X × Y → {0, 1} defines a communication problem. An input x ∈ X is given to
Alice, and an input y ∈ Y is given to Bob. Together, they should both compute the entry f(x, y) by exchanging bits
of information in turn, according to a previously agreed-on protocol. There is no restriction on their computational
power; the only measure we care to minimize is the number of exchanged bits.

A deterministic protocol π specifies, for each of the two players, the bit to send next as a function of their input
and the history of the communication so far. A protocol naturally corresponds to a binary tree as follows. Every
internal node is associated with either Alice or Bob. If an internal node v is associated with Alice, it is labelled with
a function av : X → {0, 1}, which prescribes the bit sent by Alice at this node as a function of her input. Similarly,
Bob’s nodes are labelled with Boolean functions on Y. Each leaf is labelled by 0 or 1, which corresponds to the output
of the protocol. We denote the number of bits exchanged on the input (x, y) by Costπ(x, y). This is exactly the path
length from the root to the corresponding leaf. The communication cost of the protocol is simply the depth of the
protocol tree, which is the maximum of Costπ(x, y) over all inputs (x, y).

CC(π) := max
x,y

Costπ(x, y).

Every such protocol π computes a function X × Y → {0, 1}, which we also denote by π. Namely, π(x, y) is the
label of the leaf reached by the path corresponding to the players’ communication on the input (x, y). We say that π
computes f if π(x, y) = f(x, y) for all x, y. The deterministic communication complexity of f , denoted by D(f), is the
smallest communication cost of a protocol that computes f .

Example 17.1 (Equality Function, Identity Matrix). Consider the function EQ : {0, 1}n × {0, 1}n → {0, 1} defined
as EQ(x, y) = 1 if and only if x = y. Note that this function corresponds to the 2n× 2n identity matrix. We obviously
have D(EQ) ⩽ n+1 as Alice can send x to Bob by transmitting n bits, and then Bob knowing both x and y, can send
EQ(x, y) to Alice. In the next section, we will prove that D(EQ) = n+ 1.

Note that the protocol described above works for every function. We have the following observation.

Proposition 17.2. For every function f : {0, 1}n × {0, 1}n → {0, 1}, we have

D(f) ⩽ n+ 1.

Example 17.3 (Parity function). Consider the function Parity : {0, 1}n × {0, 1}n → {0, 1} defined as

Parity(x, y) =

n∑
i=1

xi +

n∑
i=1

yi mod 2.

We have D(Parity) = 2 as Alice can send the one bit Parity(x) to Bob, and then Bob can compute Parity(x, y),
and send it to Alice.

Monochromatic rectangles, and Fooling sets

Consider a deterministic communication protocol for computing a function f : X × Y → {0, 1}. A useful insight into
communication complexity is that a bit sent by Alice at a node v corresponds to a partition of the rows into two parts
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a−1
v (0) and a−1

v (1), and every bit sent by Bob corresponds to a partition of the columns. Every time Alice sends a
bit, we restrict it to a subset of the rows and proceed with the created submatrix. Similarly, Bob’s communicated bits
restrict the columns. As this process continues, we see that every leaf ℓ of the protocol corresponds to a submatrix
Xℓ × Yℓ of f . In the context of communication complexity, submatrices are often called combinatorial rectangles or
simply rectangles. Note that if the protocol computes f correctly, then the value of f on all the points in Xℓ × Yℓ
must match the output of the protocol. In particular, f can take only one value on the rectangle. Such rectangles are
called monochromatic rectangles. We conclude that the leaves of the protocol partition X × Y into monochromatic
rectangles.

Proposition 17.4. Every deterministic protocol with m leaves that computes f : X × Y → {0, 1}, partitions X × Y
into m monochromatic rectangles. Consequently, a c-bit protocol induces a partition of the matrix f to at most 2c

monochromatic rectangles.

Almost all lower bounds in communication rely on the existence of these monochromatic rectangles. Let us start
with the fooling set technique for proving lower bounds on D(f).

Definition 17.5 (Fooling sets). Let b ∈ {0, 1}. A b-fooling set for a function f : X × Y → {0, 1} is a set S ⊆ X × Y
such that

• f is equal to b on all points in S.

• For every distinct (x1, y1), (x2, y2) ∈ S, either f(x1, y2) ̸= b or f(x2, y1) ̸= b.

The motivation behind the definition of fooling sets is that no two elements in S can belong to the same monochro-
matic rectangle. This follows from the fact that if (x1, y1), (x2, y2) ∈ R for a rectangle R, then (x1, y2), (x2, y1) ∈ R,
and thus R cannot be monochromatic. We conclude the following proposition.

Theorem 17.6 (Fooling Set Lower-bound). If S is a b-fooling set f : X × Y → {0, 1}, then every deterministic
protocol for f must have at least |S| leaves that are labeled with b.

Now we are ready to prove that the deterministic communication complexity of EQ is n+ 1.

Corollary 17.7. We have D(EQ) = n+ 1 for the equality function EQ : {0, 1}n × {0, 1}n → {0, 1}.
Proof. Note that the diagonal {(x, x) : x ∈ {0, 1}n} is a 1-fooling set of size 2n for EQ. Adding any non-empty
0-fooling set to this shows that every deterministic protocol for EQ must have at least 2n + 1 leaves, and thus
D(EQ) ⩾ ⌈log 2n + 1⌉ = n+ 1. □

Rectangle Size Bounds

This is another technique for proving lower bounds on communication complexity. In fact, the fooling set technique is
a special case of the rectangle-bound technique. Our basic strategy is to prove that the size of every monochromatic
rectangle is small, and, thus that many monochromatic rectangles are needed to partition X × Y.

Let f : X × Y → {0, 1}. We define a probability distribution µ on f−1(1), and argue that µ(R) is small for any
rectangle R consisting of only 1’s. Alternatively, we can make the same proof by using rectangles consisting only of
0’s.

Theorem 17.8 (Rectangle Size Bound). Let f : X × Y → {0, 1}, and let µ be a probability measure on X × Y such
that every 1-monochromatic rectangle has measure at most δ. Every deterministic protocol for f has at least 1/δ leaves
labelled with 1.

Example 17.9. Consider the inner product function IP : {0, 1}n × {0, 1}n → {0, 1} defined as

IP(x, y) :=

n∑
i=1

xiyi mod 2.

Let µ be the uniform probability distribution on IP−1(0). Note that µ is supported on 4n/2 = 22n−1 points. Let
R = S×T be any 0-monochromatic rectangle. Identify {0, 1} with F2, and analogously {0, 1}n with the n-dimensional
vector space Fn2 . Then

IP(x, y) = ⟨x, y⟩,
where the inner product is defined through Fn2 . Let S′ and T ′ be the linear spans of S and T over F2. Note that
since ⟨x, y⟩ = 0 for every (x, y) ∈ S × T , we also have that ⟨x, y⟩ = 0 for every (x, y) ∈ S′ × T ′. Consequently
dim(S′) + dim(T ′) ⩽ n, which shows that |R| ⩽ |S′||T ′| ⩽ 2n, and thus µ(R) ⩽ 2n

22n−1 = 21−n. We conclude that

D(IP) ⩾ log 2n−1 = n− 1.
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Rank Lower-Bound

Note that every monochromatic rectangle corresponds to a rank-1 matrix. In particular if L1 are all the 1-leafs of a
protocol that computes a function f : X × Y → {0, 1}, then

f =
∑
ℓ∈L1

1Rℓ ,

where Rℓ is the 1-monochormatic rectangle corresponding to ℓ. It follows that rk(f) ⩽ |L1|. We conclude the following
theorem.

Theorem 17.10. For every function f : X × Y → {0, 1}, we have

D(f) ⩾ log rk(f).

On the other hand, it is not difficult to show that D(f) ⩽ rk(f) + 1. A major open problem in communication
complexity is whether D(f) and log rk(f) are polynomially related.

Conjecture 17.11 (Long-rank Conjecture). Is there a constant c such that

D(f) ⩽ O(rk(f)c)?

Non-deterministic Communication complexity

Exercises

Exercise 17.1. Prove that the fooling set technique is a special case of the rectangle-bound technique. More precisely,
given a 1-fooling set S, introduce an appropriate measure µ such that Theorem 17.8 would imply that the number of
1-leaves is at least |S|.

Exercise 17.2. Prove that D(f) ⩽ rk(f) + 1.
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Chapter 18

Randomized Communication complexity

There are two different natural models to define a probabilistic communication protocol. In the private coin model,
each party has its private random coin to flip. Alice cannot see Bob’s coin flips, and vice versa. Formally, Alice has
access to a random string RA of arbitrary length, and similarly, Bob has access to a random string RB . The two
strings are chosen independently, according to some probability distribution. In the protocol tree, Alice’s nodes are
labelled by functions of RA and x, and Bob’s nodes are labelled by functions of RB and y.

In the public coin model, however, there is one common random string R that is given to both Alice and Bob.
We will mainly focus on this model and note that in the public coin model, a probabilistic protocol πR is simply
a distribution over deterministic protocols. In this notation, R is a random variable, and every fixation of R to a
particular value r leads to a deterministic protocol πr. We define the communication cost of a probabilistic protocol
πR as the maximum cost of any protocol πr in support of this distribution:

CC(πR) = max
r

CC(πr) = max
r

max
x,y

Costπr (x, y).

In the probabilistic models of computation, three types of error are often considered.

• Two-sided error (as in BPP): This is the most important notion of randomized communication complexity.
For every x, y, we require

Pr
R
[πR(x, y) ̸= f(x, y)] ⩽ ε,

where ε is a fixed constant that is strictly less than 1/2. Note that ε = 1/2 is achievable by outputting a random
bit; hence ε in the definition must be strictly less than 1/2. It is common to take ε = 1

3 . Indeed, the choice of ε
is not important so long as ε ∈ (0, 1/2) since the probability of error can be reduced to any constant ε′ > 0 by
repeating the same protocol independently for some O(1) times, and outputting the most frequent output.

The two-sided error communication complexity is simply called the randomized communication complexity. It
is denoted by Rε(f) and is defined as the smallest communication cost CC(πR) of a public-coin probabilistic
protocol that computes f with two-sided error at most ε. We set ε = 1/3 as the standard error and denote

R(f) = R 1
3
(f).

• One-sided error (as in RP): In this setting, the protocol is only allowed to make an error if f(x, y) = 1. In
other words, for every x, y with f(x, y) = 0, we have

Pr
R
[πR(x, y) = 0] = 1,

and for every x, y with with f(x, y) = 1, we have

Pr
R
[πR(x, y) ̸= f(x, y)] ⩽ ε.

Again the choice of ε is not important so long as ε ∈ (0, 1) because the probability of error can be reduced from
ε to εk by repeating the same protocol independently k times and outputting 1 only when at least one of the
repetitions outputs 1. We denote by R1

ε(f) the smallest CC(πR) over all public-coin protocols πR with one-sided
error of at most ε. We set ε = 1/3 as the standard error and denote

R1(f) = R1
1
3
(f).
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• Zero error: In this case, the protocol is not allowed to make any errors. However, it can output ⊥, indicating
that the communication was inconclusive. For every x, y, we must have PrR[πR(x, y) =⊥] ⩽ 1

3 . We denote

R0(f) = inf CCavg(πR),

where the infimum is over every such protocol.

Note that one can convert a zero-error protocol π to a one-sided error protocol by outputting, say, 1 instead of ⊥.
We conclude

R(f) ⩽ R1(f) ⩽ R0(f) ⩽ D(f).

Example 18.1 (Equality Function, Identity Matrix). Consider the equality function EQ : {0, 1}n × {0, 1}n → {0, 1}.
Suppose that Alice and Bob use their common randomness to select a subset S ⊆ {0, 1}n uniformly at random and
communicate to each other whether their inputs belong to S. If x, y ∈ S or x, y ̸∈ S, then they declare x = y, and
otherwise declare x ̸= y. Note that if x = y, they will always be correct, and if x ̸= y, they will be correct with
probability 1/2. The error probability can be reduced to below 1

3 by repeating this procedure twice. We conclude

R(EQ) = O(1) and R1(EQ) = O(1),

where EQ = 1− EQ.

Yao’s Min-Max Theorem

Let µ be a probability distribution over X × Y. The distributional communication complexity of f : X × Y → {0, 1}
is the cost of the best deterministic protocol that gives the correct answer for f on at least a (1 − ε) fraction of all
inputs in X × Y, weighted by µ. More formally, Dµε (f) is the smallest cost of a deterministic protocol π such that

Pr
(x,y)∼µ

[π(x, y) ̸= f(x, y)] ⩽ ε.

Note that in contrast to the previous notions of communication complexity, here we care about the average error,
as the probability of error is measured for an input that is chosen randomly. Let us start with the following easy
observation.

Proposition 18.2. For every µ, we have
Dµε (f) ⩽ Rε(f).

Proof. Consider a randomized protocol πR of cost c. Then for every (x, y), we have

Pr
R
[πR(x, y) ̸= f(x, y)] ⩽ ε.

Since this holds for every (x, y), we can average it with µ weights.

Pr
(x,y)∼µ

R

[πR(x, y) ̸= f(x, y)] ⩽ ε.

Now there must exist an r in the support of R such that the deterministic protocol πr satisfies

Pr
(x,y)∼µ

[πr(x, y) ̸= f(x, y)] ⩽ ε.

Therefore, Dµε (f) ⩽ c. □

Proposition 18.2 suggests that to prove a lower-bound for Rε(f), one could come up with a distribution µ that is
difficult for deterministic communication complexity, in the sense that every deterministic protocol of low cost will fail
on ε fraction (according to µ weights) of the inputs.

A natural question arises! What is the best that one can achieve with such lower bounds? A well-known game
theoretic argument shows that this lower-bound technique is without loss as there is always a distribution µ that
matches Rε(f). That is

max
µ

Dµε (f) = Rε(f).

Before proving this statement, let us recall the basic game theoretic result required for the proof.
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Consider a zero-sum game between two players A and B: There are two sets S = {s1, . . . , sm} and T = {t1, . . . , tm}
corresponding to the possible strategies that players A and B can take, respectively. Let M be the payoff matrix:
M = [mij ]m×n is a real matrix, where mij is the gain of Player A (and loss of Player B) if they choose to use strategies
si and tj . The term zero-sum here refers to the assumption that the gain of one player equals to the loss of the other
player. In zero-sum games, this value is called the payoff.

In the game theory terminology, the strategies si and tj are called pure strategies. On the other hand a mixed
strategy for player A is a probability distribution µ over {s1, . . . , sm}, and a mixed strategy for player B is a probability
distribution over {t1, . . . , tn}. These mixed strategies mean that Player A picks a strategy si according to µ and player
B picks a strategy tj according to ν. What is the expected payoff?

Esi∼µ
tj∼ν

[mij ] = µtMν,

where on the right-hand-side µ and ν are represented as vectors. Player A wants to maximize the pay-off, and Player
B wants to minimize it.

Suppose we ask Player A to choose her mixed strategy µ first and then allow Player B to choose his strategy
accordingly. Assuming that they play according to their best interests, they should arrive at the payoff of

max
µ

min
ν
µtMν.

It might seem that this puts the Player B at a great advantage since he can tailor his strategy according to µ. Let us
examine this case more carefully. In this case, the pay-off is

⟨µtM,ν⟩ =
n∑
j=1

νj

(
m∑
i=1

µimij

)
.

This is minimized by a ν that assigns all its mass to the j with the smallest
∑m
i=1 µimij . In other words, ν is a

basically some pure strategy tj :

max
µ

min
ν
µtMν = max

µ
min
j

m∑
i=1

µimij .

Now let us reverse the order of the player and force the Player B to choose his strategy ν first, and then allow
player A to choose her strategy accordingly. This time, assuming the rationality of the players, the payoff will be

min
ν

max
µ

µtMν.

In this case, it seems that Player A is at a great advantage. Also, again note that Player A can use a pure strategy
without affecting the optimum payoff.

min
ν

max
µ

µtMν = min
ν

max
i

n∑
j=1

mijνj .

Perhaps surprisingly, it turns out that it does not matter which player chooses their strategy first.

Theorem 18.3 (Minimax theorem).

max
µ

min
ν
µtMν = min

ν
max
µ

µtMν.

We will not prove this theorem, but those readers who are familiar with linear programming should notice that it
follows easily from the linear programming duality. Now let us apply this theorem to communication complexity.

Theorem 18.4. For every f : X × Y → {0, 1}, we have

max
µ

Dµε (f) = Rε(f).

Proof. We have already seen that maxµD
µ
ε (f) ⩽ Rε(f).

To prove the opposite direction, let c = maxµD
µ
ε (f), let S = X × Y, and let T be the set of all deterministic

protocols with communication cost at most c. Consider the two-player zero-sum game with pure strategies S and T ,
where the payoff of (x, y) ∈ S and π ∈ T is 1 if π(x, y) ̸= f(x, y), and 0 otherwise. Now a mixed strategy for player
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A is a distribution µ on X × Y, and a mixed strategy for player B is a distribution ν on T , which is a randomized
communication protocol of cost at most c. The pay-off here is

Pr
(x,y)∼µ
π∼ν

[f(x, y) ̸= π(x, y)]

By the minimax theorem

min
ν

max
µ

Pr
(x,y)∼µ
π∼ν

[f(x, y) ̸= π(x, y)] = max
µ

min
ν

Pr
(x,y)∼µ
π∼ν

[f(x, y) ̸= π(x, y)] = max
µ

min
π∈T

Pr
(x,y)∼µ

[f(x, y) ̸= π(x, y)] ⩽ ε,

where in the last inequality we used to assumption that maxµD
µ
ε (f) = c. Hence, we conclude that

min
ν

max
(x,y)

Pr
(x,y)∼µ
π∼ν

[f(x, y) ̸= π(x, y)] = min
ν

max
µ

Pr
(x,y)∼µ
π∼ν

[f(x, y) ̸= π(x, y)] ⩽ ε,

which shows that there exists a ν such that for every (x, y), we have

Pr
π∼ν

[f(x, y) ̸= π(x, y)] ⩽ ε.

Consequently,
Rε(f) ⩽ c.

Since π ∼ ν is a randomized protocol of cost at most c.
□

Note that Theorem 18.4 is quite robust, and it applies to any other situation where randomized protocols are defined
as a probability distribution over deterministic protocols (e.g. query complexity, randomized algorithms, randomized
decision trees, etc).

Exercises

Exercise 18.1. Prove the minimax theorem using linear programming duality.
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Chapter 19

Discrepancy and Sign-rank

In this chapter, we look at two extreme settings of communication complexity and see that they lead to two important
mathematical notions of discrepancy and sign-rank. Later in Chapter 20, we prove that these notions also arise as two
fundamental concepts in theoretical machine learning.

Question 19.1. Given a function f : X × Y → {0, 1}, what is the best error that can be achieved by a randomized
protocol of cost 2?

The reason we consider 2 bits of communication is to allow both Alice and Bob to speak. Note that R 1
2
(f) = 0 as

to achieve an error of 1/2, it suffices for Alice and Bob to agree on a random bit. Hence the question is: How much
improvement can we gain over 1/2 if we are only allowed 2 bits of communication?

The second extreme setting is to be content with any improvement over the obvious error of 1
2 and ask for the

smallest communication complexity that can achieve an error that is strictly smaller than 1
2 . As we shall see, this

question is only interesting in the private coin model.

Question 19.2. Given a function f : X × Y → {0, 1}, what is the smallest communication cost of a private-coin
protocol that achieves an error that is strictly less than 1

2?

Discrepancy

It turns out that the answer to Question 19.1 is the so-called discrepancy. This notion is one of the most commonly
used measures in communication complexity to prove lower bounds for randomized protocols. To define this parameter,
it is more convenient to switch to ±1-valued functions.

Let X ,Y be finite sets. The discrepancy of a function f : X ×Y → {−1, 1} with respect to a measure µ on X ×Y
is defined as

Discµ(f) = max
A×B⊆X×Y

|Exy∼µ [f(x, y)1A(x)1B(y)]| ,

and the discrepancy of f is defined with respect to the “hardest” distribution µ:

Disc(f) = min
µ

Discµ(f),

where the minimum is over probability distributions µ on X × Y.
Note that if A × B is a monochromatic rectangle, then |Exy∼µ [f(x, y)1A(x)1B(y)]| = µ(A × B). So a small

discrepancy under µ, in particular, implies that all monochromatic rectangles have small measures, and thus the
discrepancy method is a generalization of the rectangle bound. Roughly speaking, the discrepancy of a function
under µ is small if combinatorial rectangles are balanced: the difference between the measure of 1’s and −1’s in every
rectangle is small. By the concentration of probability, it is not difficult to see that a typical random function will
always have a very small discrepancy.

First, we show that discrepancy can be used to achieve a protocol of cost 2 that has error guarantee 1
2 − Disc(f)

2 .

Theorem 19.3. For δ = Disc(f), we have
R 1

2−
δ
2
(f) ⩽ 2.

Proof. Suppose that
Disc(f) = min

µ
max

A×B⊆X×Y
|Exy∼µ [f(x, y)1A(x)1B(y)]| = δ.
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Consider the following two-player zero-sum game: Player 1 chooses (A×B, b), where b ∈ {−1, 1}, and Player 2 chooses
an input (x, y). If (x, y) ̸∈ A×B, then the payoff is zero, and otherwise, the payoff is 1 if b = f(x, y), and −1 otherwise.
Now we can rephrase the discrepancy as

Disc(f) = min
µ

max
(A×B,b)

Exy∼µ [f(x, y)b1A(x)1B(y)] = δ.

By applying the minimax principle,

max
ν

min
xy

E(A×B,b)∼ν [f(x, y)b1A(x)1B(y)] = δ.

In particular, there exists a distribution ν such that

min
xy

E(A×B,b)∼ν [f(x, y)b1A(x)1B(y)] ⩾ δ.

Think of ν as a probabilistic protocol. We choose a random rectangle (A,B) according to ν, together with a predicted
value b ∈ {−1, 1} for the points in the rectangle. For the points outside the rectangle, we make no predictions.

Consider the following randomized protocol πR of communication cost 2: Alice and Bob choose (A×B, b) according
to the distribution ν, they check to see if x ∈ A and y ∈ B, and in that case they agree on the output b, and otherwise
they agree on a random ±1 bit as their output.

Note that for every (x, y),

ER [πR(x, y)f(x, y)] = E(A×B,b)∼ν [f(x, y)b1A(x)1B(y)] ⩾ δ,

which shows that

Pr
R
[πR(x, y) ̸= f(x, y)] ⩽

1

2
− δ

2
.

□

The following theorem shows that discrepancy implies lower bounds for randomized communication complexity.

Theorem 19.4. Let f : X × Y → {−1, 1}, let ε ∈ (0, 1/2). We have

log

(
2ε

Disc(f)

)
⩽ R 1

2−ε
(f).

Proof. Let c = R 1
2−ε

(f). For every probability distribution µ on X × Y, we have

Dµ1
2−ε

(f) ⩽ c,

and thus, there is a deterministic protocol π such that

1

2
+ ε ⩽ Pr

xy∼µ
[π(x, y) = f(x, y)],

which translates to
Exy∼µ[π(x, y)f(x, y)] ⩾ 2ε.

Since the leaves of the protocol provide a partition of X × Y into at most 2c rectangles Aℓ × Bℓ, we can write
π(x, y) =

∑
ℓ 1Aℓ(x)1Bℓ(y)π(ℓ), where π(ℓ) ∈ {−1, 1} is the output of the protocol at leave ℓ.

Hence, there exists a combinatorial rectangle A×B such that

2ε

2c
⩽ Exy∼µ[f(x, y)π(x, y)1A(x)1B(y)] ⩽ |Exy∼µ[f(x, y)1A(x)1B(y)]| .

We conclude

Disc(f) ⩾
2ε

2c
.

□

Note that by Theorem 19.3 and Theorem 19.4, we have the following corollary that answers Question 19.1.

Corollary 19.5 (Answer to Question 19.1). Let f : X × Y → {−1, 1}. Then

Disc(f)

2
⩽ sup{ε : R 1

2−ε
(f) ⩽ 2} ⩽ 2Disc(f).
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Eigen-value method

Discrepancy and Grothendieck’s inequality

We defined the discrepancy Discµ(f) according to correlations with combinatorical rectangles. That is the largest
possible

|⟨f, 1A(x)1B(y)⟩µ| = |Eµf(x, y)1A(x)1B(y)|.
Sometimes it is useful to relax this slightly, and instead of rectangles 1A(x)1B(y), use more general rank-1 functions
u(x)v(y), where u : X → [−1, 1] and v : Y → [−1, 1]. Let us define

Discµ±(f) = max
u:X→[−1,1]
v:Y→[−1,1]

Exy∼µ [f(x, y)u(x)v(y)] .

Since this definition is a relaxation of the definition of Discµ(f), we have

Discµ(f) ⩽ Discµ±(f).

On the other hand, note that Exy∼µ [f(x, y)u(x)v(y)] is a linear function in each u(x) and each v(y). It follows that in
the definition of Discµ±(f), we can actually assume that the range of u and v are the discrete set {−1, 1}, and define
equivalently:

Discµ±(f) = max
u:X→{−1,1}
v:Y→{−1,1}

Exy∼µ [f(x, y)u(x)v(y)] .

Note that u(x)v(y) can be written as a sum and subtractions of four rectangles:

u(x)v(y) = 1A(x)1B(y) + 1Ac(x)1Bc(y)− 1Ac(x)1B(y)− 1A(x)1Bc(y),

where A = u−1(1) and B = v−1(1). We conclude that the two notions are equivalent:

Discµ(f) ⩽ Discµ±(f) ⩽ 4Discµ(f).

Let us relax the definition even further. Let Sd−1 denote the unit sphere in dimension Rd.

Discµγ2(f) = max
d

max
u:X→Sd−1

v:Y→Sd−1

Exy∼µ [f(x, y)⟨u(x), v(y)⟩] .

Again we could alternatively define Discµγ2(f) using the unit ball instead of the unit sphere, and the two definitions
would be equivalent.

Note that when d = 1 the only points on S1 are {−1, 1}, and we recover the definition of Discµ±(f). Hence, this is
a relaxation, and we have

Discµ±(f) ⩽ Discµγ2(f).

We can also bound Discµγ2(f) by O(Discµ±(f)) using the so-called Grothendieck inequality.

Theorem 19.6 (Grothendieck inequality). Let M = [mij ] be an m× n matrix with real entries, and let d ∈ N. Then

max
ui,vj∈Sd−1

∑
i,j

mij⟨ui, vj⟩ ⩽ K max
ui,vj∈{−1,1}

∑
i,j

mijuivj ,

where K = π
2 ln(1+

√
2)

⩽ 1.78.

We conclude that the three notions Discµ(f),Discµ±(f),Discµγ2(f) are equivalent:

Discµ(f) ⩽ Discµ±(f) ⩽ Discµγ2(f) ⩽ 8Discµ(f).

Unbounded-Error model

As we have seen in the discussion about the complexity class PP, achieving an error of 1/2 for a randomized protocol is
trivial. Namely, for any Boolean function f : {0, 1}n × {0, 1}n → {−1, 1} and any input (x, y), the players can output
a random bit b ∈ {−1, 1}, and they will be correct with probability 1/2. An unbounded-error protocol has a better
success probability, but we do not care by how much.

A question arises: Should we consider public-coin protocols or private-coin protocols? First, we argue that this
model is not very interesting for public randomness.
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Proposition 19.7. For any f : {0, 1}n × {0, 1}n → {−1, 1} there is a public-coin protocol πR of cost 2 such that

Pr
R
[πR(x, y) ̸= f(x, y)] <

1

2
.

Proof. Alice and Bob use the shared randomness to sample an input (x′, y′). They check if x = x′ and y = y′. If both
agree, they can compute f(x, y) = f(x′, y′). Otherwise, they output a random bit. Note that

Pr[Error] =
1

2
Pr[(x, y) ̸= (x′, y′)] <

1

2
.

□

So, we focus our attention from now on to private-coin protocols.

Definition 19.8 (unbounded-error communication complexity). The unbounded-error communication complexity of
a function f : {0, 1}n×{0, 1}n → {−1, 1}, denoted by U(f), is the smallest cost of a private-coin protocol π such that

Pr[π(x, y) ̸= f(x, y)] <
1

2
∀x, y.

Sign-rank

Recall that the log-rank conjecture speculates that for deterministic protocols, the communication complexity is
polynomially related to log of the rank of the corresponding matrix. A similar connection is known to be true for
unbounded-error protocols, except that rank is replaced by sign rank.

Definition 19.9 (Sign-rank). The sign-rank of a matrix A = [aij ], denoted by rk±(A) is the smallest rank of a matrix
B = [bij ] such that aijbij > 0 for all i, j.

Theorem 19.10 (Paturi and Simon [PS86]). For every f : {0, 1}n × {0, 1}n → {−1, 1}, we have

U(f) = log rk±(f)±O(1).

Proof. We first prove that log rk±(f) ⩽ U(f) + O(1). Assume that U(f) = c. That is, there is an unbounded-
error protocol π for f with cost c. Define A(x, y) = ERA,RB [π(x, y)], which has the same sign as f(x, y). Thus
rkα ± (f) ⩽ rk(A). We next bound the rank of A. We can view π as a protocol tree of depth c, where at every node
v there is a probability assigned to each of its children. If v is an Alice’s node, then its left child is followed with
probability av(x) ∈ [0, 1], and its right child with probability 1 − av(x). If v is a Bob’s node, then the same thing
holds, except that now the probabilities are bv(y) and 1− bv(y), respectively. Take a leaf ℓ. The probability that we
reach ℓ is the product of probabilities that we take the path leading to it, which is a product of av(x), 1−av(x), bv(y),
or 1− bv(y) over the nodes v in the path from the root to ℓ. Putting them together, the probability that π reaches a
leaf ℓ can be succinctly written as pℓ(x)qℓ(y), for some functions pℓ : X → [0, 1], and qℓ : Y → [0, 1]. Hence denoting
by L the set of all leaves, we have

A(x, y) =
∑
ℓ∈L

pℓ(x)qℓ(y),

which shows that rk(A) ⩽ |L| ⩽ 2c as desired.
We next prove that U(f) ⩽ log rk±1+O(1). Assume that rk±(f) = r. Equivalently, there exist vectors ux, vy ∈ Rr

such that sign(⟨ux, vy⟩) = f(x, y) for all (x, y) ∈ X × Y. Recall that for a vector u, we have ∥u∥1 =
∑r
i=1 |ui|. We

may assume that ∥ux∥1 = ∥vy∥1, for all x, y as this does not change the premise. The benefit is that we can treat the
entries |(ux)1|, . . . , |(ux)r| as a probability distribution over [r], and similarly for vy. Consider the following protocol:

• Alice samples an element i ∈ [r] with probability |(ux)i| and sends i to Bob.

• In addition, Alice computes ai = sign((ux)i) ∈ {−1, 1} and sends it to Bob.

• Bob, on receiving i ∈ [r], ai ∈ {−1, 1} from Alice, knows ux(i). He samples a random bit b ∈ {−1, 1} such that
E[b] = ux(i)vy(i), and output it.

Note that

E[b] =
r∑
i=1

ux(i)vy(i) = ⟨ux, vy⟩,

which together with sign(⟨ux, vy⟩) = f(x, y) shows that the error probability of π is strictly less than 1
2 . □

In light of Theorem 19.10, we can forget about communication complexity, and focus on the mathematical notion
of sign-rank. In Chapter 20, we will prove a celebrated theorem of Forster, which shows that similar to discrepancy,
the spectral norm can be used to establish a lower-bound on sign-rank.
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Chapter 20

Theory of Learning: Dimension and
Margin

In Chapter 19, we saw that the randomized communication complexity in the unbounded-error model is essentially
equivalent to a fundamental matrix parameter called sign-rank. This section studies sign-rank and a closely related
parameter called margin. These notions occupy a central place in present-day machine learning in theory and practice.
The performance of classifiers such as Support Vector Machines (a.k.a SVM) relies on low-dimension high-margin
representations of data. As we shall see, these coincide with the sign rank and the margin of the corresponding matrix.

Figure 20.1: In the Support Vector Machine algorithm, the data is represented in a low dimensional space (feature
space), and generated hypothesis is the hyperplane with the highest margin on the training data.

Sign-rank in Machine Learning: Dimension

Let X be a set of data items, e.g. a list of books, movies, songs, restaurants. In the terminology of machine learning,
every function f : X → R is called a concept. A concept class C = {f1, . . . , fm} is simply a set of functions fj : A→ R.
We will be interested in the Boolean case, where concepts take ±1 values. Such concepts, for example, could correspond
to likes/dislikes of a person, e.g fj(a) = 1 means that the person j likes the item a, and fj(a) = −1 corresponds to
disliking the item.

The goal in machine learning is to observe the value of an unknown f ∈ C only on a few samples from X (called
training data), and accordingly produce a hypothesis h : X → {−1, 1} that predicts the value of f on every item in
X. For example, by observing a person’s preferences on a few books, a few songs, etc., we want to predict whether
the person likes or dislikes the other items in our list.

It is helpful to represent the concepts and the data items geometrically as points in Rd for some d. For example,
for medical research, a person can be represented by their age, height, weight, etc., each corresponding to a coordinate
of Rd. The space Rd is called the feature space, and every coordinate of Rd is a feature of the input.

Every concept f : X → {−1, 1} is a partition of the input points into two sets. It is desirable to define these
partitions via mathematically nice objects such as hyperplanes.

115



Definition 20.1. We say that the concept class C is realized by unit vectors u1, . . . , um ∈ Rd and x1, . . . , xn ∈ Rd if

fj(xi) = sign(⟨uj , xi⟩),

where

sign(x) =

 1 x > 0
0 x = 0
−1 x < 0

.

Note that

sign(⟨uj , xi⟩) = sign

(〈
uj
∥uj∥

,
xi

∥xi∥

〉)
, (20.1)

and thus the assumption that the vectors uj and xi are unit vectors is without loss of generality.
In such a realization, items are represented by points xi on the unit sphere, and the concepts fj are represented

by the half-space Hj defined by the normal vectors uj :

Hj = {x ∈ Rd : ⟨uj , x⟩ > 0}.

Such representations are useful both for theoretical and practical reasons. For example, in Support Vector Machines,
having observed the value of a few points, one tries to generate a hypothesis that is a hyperplane that best separates
the +1 points from −1 points. Intuitively a good separation is achieved by the hyperplane that has the largest distance
to the nearest training-data point. For such algorithms to succeed, it is desirable to make sure that the data points
are far away from the boundary of these half-spaces. This is captured by the margin of the representation, which is
defined as

γ = min
i,j

|⟨uj , xi⟩|.

Note that γ is the closest distance of any point xi to one of the hyperplanes defined by ui.
Two important questions arise naturally:

• What is the smallest dimension d such that C can be realized in Rd?

• What is the largest (more accuratly, supremum of) γ such that there is a realization of C with margin γ? This
quantity is called the margin of the concept class and is denoted by mgin(C).

It turns out that sign-rank is the answer to the first question, and the discrepancy is the answer to the second
question!

For the reader’s convenience, we recall the definition of the sign-rank.

Definition 20.2 (Sign-rank). The sign-rank of a matrix A = [aij ], denoted by rk±(A) is the smallest rank of a matrix
B = [bij ] such that aijbij > 0 for all i, j.

Proposition 20.3. Let C = {f1, . . . , fm} be a concept class of functions fj : X → {−1, 1}, and let M = [mij ]m×n be
the matrix with entries mij = fi(xj). The sign-rank of M is the smallest d such that C can be realized in Rd.

Proof. First note that if there is a realization of C in Rd with vectors u1, . . . , um and v1, . . . , vn, then M = sign(UV ),
where U is the m× d matrix with rows ui, and V is the d× n matrix with columns vj . Thus rk±(F ) ⩽ rk(UV ) ⩽ d.

On the other hand, suppose that M can be sign-represented by a matrix B of rank d. That is bijmij > 0 for all
i, j and rk(B) = d. Then B has a decomposition B = UV where U is an m× d matrix, and V is a d×n matrix. Note
that we can normalize the rows of U , and the columns of V to turn them into unit vectors, without affecting the signs
of the entries of UV . This concludes the proposition. □

Non-homogeneous hyper-planes: In the definition of the realization in Rd, we used homogeneous hyperplanes,
i.e. the ones that pass through the origin. One might wonder if we can gain some advantage by allowing half-spaces
that are defined through general hyperplanes: For uj ∈ Rd and tj ∈ [−1, 1]:

Hj = {x ∈ Rd : ⟨uj , x⟩ > tj}.

It turns out allowing non-homogeneous polynomials does not bring much advantage neither regarding the dimension
nor the margin. Indeed we can convert a non-homogeneous realization in Rd to a homogeneous realization in Rd+1 by
using the vectors

u′j :=
1√

1 + t2j

[
uj
−tj

]
x̃′i =

1√
2

[
x̃i
1

]
.
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Note that

⟨u′j , x̃′i⟩ > 0 ⇔ ⟨uj , x̃i⟩ > tj ,

and furthermore the margin of this new realization is only by a factor of at most 1
2 worse than the old margin. Hence

essentially, without loss of generality, we can work with homogeneous half-spaces.

Low-degree polynomials: Half-spaces are defined through degree one polynomials:

x 7→ sign(⟨u, x⟩) = sign
(∑

uixi

)
.

One way to generalize half-spaces is to use higher degree polynomials. Indeed such polynomial realizations are common
in machine learning, and in the terminology of machine learning, those polynomials are called kernels. The following
lemma shows that using low-degree polynomials do not bring us significant advantage regarding the degree.

Lemma 20.4. Let p1, . . . , pn : Rd → R be polynomials of degree e. Let x1, . . . , xn ∈ Rd. Define a sign matrix S given
by Si,j = sign(pj(xi)). Then rk±(S) = O(de).

Proof. We use linearization. Let Ie denote the set of all α = (α1, . . . , αd) ∈ Zd+ such that
∑d
i=1 αi ⩽ e. For

x = (x1, . . . , xd) ∈ Rd, and α ∈ Ie, we shorthand xα =
∏d
i=1 x

αi
i . Note that these are all the monomials of degree at

most e.
Assume pi(x) =

∑
α∈Ie λi,αx

α. For each pi define the vector ui = (λi,α : α ∈ Ie) ∈ R|Ie|, and for every x ∈ Rd
define the vector vx = (xα : α ∈ Ie). Now note that pi(x) = ⟨ui, vx⟩. Hence

rk±(S) = |Ie| = O(de).

□

Margin and Discrepancy

Theorem 20.5. Let f : X × Y → {−1, 1}. We have

mgin(f) = Discγ2(f).

Proof. Let δ = Discγ2(M). Then for every ε > 0, by applying Yao’s minimax principle, there exists a d such that

δ − ε

2
< max

ν
min
xy

E(u,v)∼ν [f(x, y)⟨u(x), v(y)⟩] ,

where ν is a probability distrubtions over pairs (u, v) with u : X → Sd−1, and v : Y → Sd−1. In paticular, there exists
a number k ∈ N such that for every x, y, we have

δ − ε < f(x, y)

(
k∑
i=1

ν(i)⟨ui(x), vi(y)⟩

)
, (20.2)

where ui : X → Sd−1, and vi : Y → Sd−1.
Define theunit vectors ux, vy ∈ Rkd as

ux =
(√

ν(1)u1(x),
√
ν(2)u2(x), . . . ,

√
ν(k)uk(x)

)
∈ Rkd,

and similarly

vy =
(√

ν(1)v1(y),
√
ν(2)v2(y), . . . ,

√
ν(k)vk(y)

)
∈ Rkd.

Note that Eq. (20.2) now means that

δ − ε ⩽ f(x, y)⟨ux, vy⟩,

and thus, we have a realization of f in Rkd with margin at least δ − ε. Taking the limit of ε→ 0 proves that

mgin(f) ⩾ Discγ2(f).
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On the other hand, consider a realization ux, vy ∈ Rd of f with margin η. That is ux, vy ∈ Rd are unit vectors, and
for every x, y we have

η ⩽ f(x, y)⟨ux, vy⟩.

Then for every distribution µ on the inputs

Discµγ2(f) ⩾ Eµf(x, y)⟨ux, vy⟩ ⩾ η,

which shows that
Discγ2(f) ⩾ mgin(f).

□

Bounding discrepancy by spectral norm

One improtant method to bound the discrepancy is to show that the spectral norm of the matrix is small. Recall that
the spectral norm of a matrix M is defined as

∥M∥ = sup
∥Mu∥2
∥u∥2

= σmax(M),

where σmax is the largest singular value of M . Equivalently σmax =
√
λmax, where λmax is the largest eigenvalue of

MMT . A good rule of thumb is that sign-matrices that have small spectral norm are random-looking, and they have
high complexity.

Lemma 20.6. For every m× n matrix M , we have

Discµγ2(M) ⩽
∥M∥√
mn

,

where µ is the uniform measure over [m]× [n].

Proof. For all unit vectors ui, vj ∈ Rd, we have

mn×Discµγ2(M) =
∑
i,j

mij⟨ui, vj⟩ =
d∑
r=1

∑
i,j

mijui(r)vj(r) =

d∑
r=1

⟨u(r),Mv(r)⟩ ⩽
d∑
r=1

∥u(r)∥∥M∥∥v(r)∥

⩽ ∥M∥

√√√√ d∑
r=1

∥u(r)∥2

√√√√ d∑
r=1

∥v(r)∥2 =
√
mn∥M∥.

□

Forster’s Sign-rank Lower-bound

Proving a strong lower bound on the sign-rank of an explicit sign-matrix was open for 15 years until finally Forster in
a breakthrough [For02] used geometric ideas to establish strong lower bounds on the sign-rank of Hadamard matrices
and, more generally, all sign matrices with a small spectral norm.

Consider a sign-matrix M ∈ {−1, 1}m×n, say with small ∥M∥. We want to prove a lower-bound on the dimension
d of any realization of M in Rd by vectors ui, vj ∈ Rd. First of all, as we discussed in Remark 20.1 t we can always
assume that these vectors are unit vectors, as replacing them with the unit vectors ui

∥ui∥ and
vj

∥vj∥ , does not change the

sign(⟨ui, vj⟩).
The key idea of Forster was to show that one can further assume that, similar to the standard bases e1, . . . , ed,

the vectors ui are evenly distributed in all the directions. Of course, we cannot assume that ui’s are orthonormal,
simply because X might be much larger than d. Instead, this even distribution is captured by what is called isotropic
position.

Definition 20.7. A set of vectors u1, . . . , um ∈ Rd is said to be in isotropic position, if∑
i∈[m]

utiui =
m

d
Id,

where Id is the identity matrix. Equivalent, for every vector v, we have
∑
i∈[m]⟨ui, v⟩2 = m

d ∥v∥
2.
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Note that an orthonormal basis such as e1, . . . , ed is in isotropic position. Also note that the union (with repretition)
of two isotropic set of vectors is also isotropic. Another way to obtain a set of points in isotropic positions is to take
a large set of points that are well distributed on a sphere.

The following theorem shows how to transform any set of vectors in general position into a set in isotropic position.
We will not prove the theorem. For the proof, either the original paper of Forster [For02] or the book of Lokam [Lok08]
are good sources.

Theorem 20.8 (Forster [For02]). Let u1, . . . , um ∈ Rd be in general positions, meaning that every d of them are
linearly independent. There exists an invertible linear transformation T : Rd → Rd such that the unit vectors
Tu1

∥Tu1∥ , . . . ,
Tum

∥Tum∥ ∈ Rd are in isotropic position.

The assumption in Theorem 20.8 that the vectors ui are in general position is not an issue for us. Indeed if
u1, . . . , um ∈ Rd and v1, . . . , vn ∈ Rd realizes a matrix M ∈ {−1, 1}m×n, then we can simply perturb the vectors ui
by adding a small random noise to them. This will not change the signs of ⟨ui, vj⟩, but it will guarantee that with
probability one, they are in general positions. Theorem 20.8 allows us to assume, without loss of generality, that in a
realization of M ∈ {−1, 1}m×n with unit vectors u1, . . . , um ∈ Rd and v1, . . . , vn ∈ Rd, the vectors ui are in isotrpic
position. Indeed we can apply Theorem 20.8, and replace the original vectors with the unit vectors Tui

∥Tui∥ ∈ Rd and

T−1vj
∥T−1vj∥ ∈ Rd. Note that

⟨Tui, T−1vj⟩ = ⟨ui, vj⟩,

which shows

sign

〈
Tui
∥Tui∥

,
T−1vi

∥T−1vj∥

〉
= sign⟨ui, vj⟩.

We are ready to prove Forster’s lower-bound on sign-rank.

Theorem 20.9 (Forster’s Theorem). Every matrix M ∈ {−1, 1}m×n satisfies

rk±(M) ⩾
mn

∥M∥γ∗
2

⩾

√
mn

∥M∥
.

Proof. Consider a realization of M ∈ {−1, 1}m×n with unit vectors u1, . . . , um ∈ Rd and v1, . . . , vn ∈ Rd. By
Theorem 20.8, we can assume without loss of generality that u1, . . . , um ∈ Rd are in isotropic position.

Since |⟨ui, vj⟩| ⩽ 1, and the fact that ui are in isotropic position, we have

∑
i,j

|⟨ui, vj⟩| ⩾
n∑
j=1

m∑
i=1

|⟨ui, vj⟩|2 =

n∑
j=1

m∥vj∥2

d
=
mn

d
.

On the other hand, by Lemma 20.6∑
i,j

|⟨ui, vj⟩| =
∑
ij

mij⟨ui, vj⟩ ⩽ mnDiscµγ2(M) ⩽
√
mn∥M∥.

Together, they imply

d ⩾

√
mn

∥M∥
.

□

An example

Consider the ±1 version of the inner product function: IP : {0, 1}n × {0, 1}n → {−1, 1} defined as

IP(x, y) := (−1)
∑n
i=1 xiyi = χx(y),

where χx is the Fourier character corresponding to x. Let H be the 2n × 2n matrix with xy-entry being equal to
IP(x, y).

By the orthogonality of Fourier characters, we have

HHT (x, z) =
∑
y

H(x, y)H(x, z) =
∑
y

χx(y)χz(y) =

{
0 x ̸= z
2n x = z

.
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Hence HHT = 2n I2n , where I2n is the identity matrix. Thus all the eigvenvalues of HHT are 2n. Consequently, all
the signular values of H are 2n/2, and thuus ∥H∥ =

√
2n = 2n/2. We conclude that

Discγ2(H) ⩽
2n/2√
2n × 2n

= 2−n/2,

which in particular implies
R(IP) = Ω(n).

Furthermore by Theorem 20.9
rk±(IP) ⩾ 2n/2,

which shows that, we even have
U(IP) = Ω(n).

Exercises

Exercise 20.1. Prove that Tr(AB) =
∑
i,j aijbij .

Exercise 20.2. Let M = [mij ] be an m× n real-valued matrix. We have

∥M∥γ2 = sup
{
∥uMvt∥Tr : u ∈ Rm, v ∈ Rn, ∥u∥, ∥v∥ ⩽ 1

}
,

and in particular

∥M∥γ2 ⩾
∥M∥Tr√
mn

.

Exercise 20.3. Prove
∥M∥γ2 = sup

N :∥N∥γ∗2=1

⟨M,N⟩

Exercise 20.4. Prove that in the definitions of ∥M∥γ2 and ∥M∥γ∗
2
, one can restrict to d ⩽ minm,n.

Exercise 20.5. Grothedieck

Exercise 20.6. Box norm.

Exercise 20.7. Convert ±1 and α to Boolean.
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[Tar88] Éva Tardos, The gap between monotone and non-monotone circuit complexity is exponential, Combinatorica
8 (1988), 141–142. 77

[Tod91] Seinosuke Toda, PP is as hard as the polynomial-time hierarchy, SIAM J. Comput. 20 (1991), no. 5,
865–877. MR 1115655 47

[Vin04] N. V. Vinodchandran, AMexp ⊈ (NP ∩ coNP)/poly, Inform. Process. Lett. 89 (2004), no. 1, 43–47. MR
2025889 83

[Vio09] Emanuele Viola, Guest column: correlation bounds for polynomials over {0 1}, ACM SIGACT News 40
(2009), no. 1, 27–44. 69

[Wig93] A. Wigderson, The fusion method for lower bounds in circuit complexity, Combinatorics, Paul Erdős is
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Appendix A

Background: Basic Analysis

This chapter aims to introduce the necessary definitions, notations, and basic results from measure theory, probability
theory, and functional analysis. We will not immediately need all these definitions and results, and the reader can skip
this chapter or some parts of it in the first reading.

We will only need these definitions in the finitary setting, but to provide a reference for the interested reader and
put them in a broader context, we state them in the more general form.

Some basic inequalities

One of the most basic inequalities in analysis concerns the arithmetic mean and the geometric mean. It is sometimes
called AM-GM inequality.

Theorem A.1. The geometric mean of n non-negative reals is less than or equal to their arithmetic mean: If a1, . . . , an
are non-negative reals, then

(a1 . . . an)
1/n ⩽

a1 + . . .+ an
n

.

In 1906 Jensen founded the theory of convex functions. This enabled him to prove a considerable extension of the
AM-GM inequality. Recall that a subset D of a real vector space is called convex if every convex linear combination
of a pair of points of D is in D. Equivalently, if x, y ∈ D, then tx+ (1− t)y ∈ D for every t ∈ [0, 1]. Given a convex
set D, a function f : D → R is called convex if for every t ⩽ [0, 1],

f(tx+ (1− t)y) ⩽ tf(x) + (1− t)f(y).

If the inequality is strict for every t ∈ (0, 1), then the function is called strictly convex.
Note that f is a convex function if and only if {(x, y) ∈ D×R : y ⩾ f(x)} is a convex set. Also note that f : D → R

is convex if and only if fxy : [x, y] → R with fxy : tx + (1 − t)y 7→ tf(x) + (1 − t)f(y) is always convex. By Rolle’s
theorem, if fxy is twice differentiable, then this is equivalent to f ′′xy ⩾ 0.

A function f : D → R is concave if −f is convex. The following important inequality is often called Jensen’s
inequality.

Theorem A.2. If f : D → R is a concave function, then for every x1, . . . , xn ∈ D and t1, . . . , tn ⩾ 0 with
∑n
i=1 ti = 1

we have
t1f(x1) + . . .+ tnf(xn) ⩽ f(t1x1 + . . .+ tnxn).

Furthermore if f is strictly concave, then the equality holds if and only if all xi are equal.

The most frequently used inequalities in functional analysis are the Cauchy-Schwarz inequality, Hölder’s inequality,
and Minkowski’s inequality.

Theorem A.3 (Cauchy-Schwarz). If x1, . . . , xn and y1, . . . , yn are complex numbers, then∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣ ⩽
(

n∑
i=1

|xi|2
)1/2( n∑

i=1

|yi|2
)1/2

.

Hölder’s inequality is an important generalization of the Cauchy-Schwarz inequality.
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Theorem A.4 (Hölder’s inequality). Let x1, . . . , xn and y1, . . . , yn be complex numbers, and p, q > 1 be such that
1
p +

1
q = 1. Then ∣∣∣∣∣

n∑
i=1

xiyi

∣∣∣∣∣ ⩽
(

n∑
i=1

|xi|p
)1/p( n∑

i=1

|yi|q
)1/q

.

The numbers p and q appearing in Theorem A.4 are called conjugate exponents. In fact, 1 and ∞ are also called
conjugate exponents, and Hölder’s inequality in this case becomes:∣∣∣∣∣

n∑
i=1

xiyi

∣∣∣∣∣ ⩽
(

n∑
i=1

|xi|

)(
n

max
i=1

|yi|
)
.

The next theorem is called Minkowski’s inequality.

Theorem A.5 (Minkowski’s inequality). If p ⩾ 1 is a real number, and x1, . . . , xn are complex numbers, then(
n∑
i=1

|xi + yi|p
)1/p

⩽

(
n∑
i=1

|xi|p
)1/p

+

(
n∑
i=1

|yi|p
)1/p

.

The case of p = ∞ of Minkowski’s inequality is the following:

n
max
i=1

|xi + yi| ⩽
(

n
max
i=1

|xi|
)
+
(

n
max
i=1

|yi|
)
.
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Measure spaces

A σ-algebra (sometimes sigma-algebra) over a set Ω is a collection F of subsets of Ω that satisfies the following three
properties:

• It includes ∅. That is ∅ ∈ F .

• It is closed under complementation. That is, if A ∈ F , then the complement of A also belongs to F .

• It is closed under any countable union of its members. That is, if A1, A2, . . . belong to F , then ∪∞
i=1Ai ∈ F .

Example A.6. Let Ω be an arbitrary set. Then the family consisting only of the empty set and the set Ω is called
the minimal or trivial σ-algebra over Ω. The power set of Ω, denoted by P(Ω), is the maximal σ-algebra over Ω.

There is a natural partial order between σ-algebras over Ω. For two σ-algebras F1 and F2 over Ω, if F1 ⊆ F2 then
we say that F2 is finer than F1, or that F1 is coarser than F2. Note that the trivial σ-algebra is the coarsest σ-algebra
over Ω, while the maximal σ-algebra is the finest σ-algebra over Ω.

Definition A.7. A measure space is a triple (Ω,F , µ) where F is a σ-algebra over Ω and the measure µ : F →
[0,∞) ∪ {+∞} satisfies the following axioms:

• Null empty set: µ(∅) = 0.

• Countable additivity: if {Ei}i∈I is a countable set of pairwise disjoint sets in F , then

µ(∪i∈IEi) =
∑
i∈I

µ(Ei).

The function µ is called a measure, and the elements of F are called measurable sets. If furthermore µ : F → [0, 1]
and µ(Ω) = 1, then (Ω,F , µ) is called a probability measure.

Example A.8. The counting measure on Ω is defined in the following way. The measure of a subset is taken to be
the number of elements in the subset if the subset is finite, and ∞ if the subset is infinite.

A measure space M = (Ω,F , µ) is called σ-finite, if Ω is a countable union of measurable sets of finite measure:
That is Ω = ∪∞

i=1Si with Si ∈ F , and µ(Si) <∞.

Every measure space in this course is assumed to be σ-finite.

For many natural measure spaces M = (Ω,F , µ), it is difficult to specify the elements of the σ-algebra F . Instead,
one specifies an “algebra” of elements of Ω which generates F .

Definition A.9. For a set Ω, a collection A of subsets of Ω is called an algebra if

• ∅ ∈ A.

• A,B ∈ A, then A ∪B ∈ A.

• A,B ∈ A, then A \B ∈ A.

The minimal σ-algebra containing A is called the σ-algebra generated by A.

Example A.10. Let A be the set of all finite unions of (open, closed, or half-open) intervals in R. Then A is an
algebra over R, but it is not a σ-algebra as it is not closed under any countable union of its members.

Before proceeding, let us mention that µ : A → [0,∞) ∪ {+∞} is called a measure over an algebra A if for every
finite set of E1, . . . , Fm ∈ A, we have

µ(∪mi=1Ei) =

m∑
i=1

µ(Ei).

The following theorem, due to Carathéodory, is one of the basic theorems in measure theory. It says that if the measure
µ is defined on the algebra, then we can automatically and uniquely extend it to the σ-algebra generated by A.

Theorem A.11 (Carathéodory’s extension theorem). Let A be an algebra of subsets of a given set Ω. One can always
extend every σ-finite measure defined on A to the σ-algebra generated by A; moreover, the extension is unique.
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Example A.12. Let A be the algebra on R, defined in Example A.10. Let µ be the measure on A, defined by setting
the measure of an interval to its length. By Carathéodory’s extension theorem, µ extends uniquely to the σ-algebra
generated by A. The resulting measure is called the Borel measure on R.

Consider two measure spaces M := (Ω,F , µ) and N := (Σ,G, ν). The product measure µ× ν on Ω× Σ is defined
in the following way: For F ∈ F and G ∈ G, define µ× ν(F ×G) = µ(F )× ν(G). So far we defined the measure µ× ν
on A := {F × G : F ∈ F , G ∈ G}. Note that A is an algebra in that ∅ ∈ A, and A is closed under complementation
and finite unions of its members. However, A is not necessarily a σ-algebra, as it is possible that A is not closed under
any countable union of its members. Let F ×G be the σ-algebra generated by A, i.e. it is obtained by closing A under
complementation and countable unions. It should be noted that F × G is not the cartesian product of the two sets
F and G, and instead, it is the σ-algebra generated by the cartesian product of F and G. Theorem A.11 shows that
µ× ν extends uniquely from A to a measure over all of F ×G. We denote the corresponding measure space by M×N
which is called the product measure of M and N .

Probability Spaces

A measure space (Ω,F , µ) is called a probability space if µ : F → [0, 1], and µ(∅) = 0, and µ(Ω) = 1.
Consider two measure spaces M = (Ω,F , µ) and N = (Σ,G, ν). A function X : Ω → Σ is called measurable if the

preimage of every set in G belongs to F .
If M is a probability space, then X is called a random variable. In this case, for every S ∈ G, we have

Pr[X ∈ S] := µ({a ∈ Ω : X(a) ∈ S}).

Example A.13. Let Ω = {00, 01, 10, 11}, F = P(Ω), and µ(A) = |A|/4 for all A ∈ F . Here µ is the uniform
probability measure on Ω. Let X : Ω → N be defined as X(00) = 0, X(10) = X(01) = 1, and X(11) = 2. Here N is
considered with the discrete counting measure. Now X is a random variable, and for example

Pr[X ∈ {1, 2}] = µ({10, 01, 11}) = 3

4
.

We finish this section by stating the Borel-Cantelli theorem.

Theorem A.14 (Borel-Cantelli). Let (En) be a sequence of events in some probability space. If the sum of the
probabilities of the En is finite, then the probability that infinitely many of them occur is 0, that is,

∞∑
n=1

Pr[En] <∞ ⇒ Pr[lim sup
n→∞

En] = 0,

where

lim sup
n→∞

En :=

∞⋂
n=1

n⋃
k=1

Ek.
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Normed spaces

Ametric space is an ordered pair (M,d) whereM is a set and d is ametric onM , that is, a function d :M×M → [0,∞)
such that

• Non-degeneracy: d(x, y) = 0 if and only if x = y.

• Symmetry: d(x, y) = d(y, x), for every x, y ∈M .

• Triangle inequality: d(x, z) ⩽ d(x, y) + d(y, z), for every x, y, z ∈M .

A sequence {xi}∞i=1 of elements of a metric space (M,d) is called a Cauchy sequence if for every ε > 0, there exist
an integer Nε, such that for every m,n ⩾ Nε, we have d(xm, xn) ⩽ ε. A metric space (M,d) is called complete if
every Cauchy sequence has a limit in M . A metric space is compact if and only if every sequence in the space has a
convergent subsequence.

Now that we have defined the measure spaces in Section A, let us state the Hölder’s and Minkowski’s inequalities
in a more general form.

Theorem A.15 (Hölder’s inequality). Consider a measure space M = (Ω,F , µ), and two reals 1 < p, q < ∞ with
1
p +

1
q = 1. If the two measurable functions f, g : Ω → C are such that both |f |p and |g|q are integrable, then∣∣∣∣∫ f(x)g(x)dµ(x)

∣∣∣∣ ⩽ (∫ |f(x)|pdµ(x)
)1/p(∫

|g(x)|qdµ(x)
)1/q

.

Theorem A.16 (Minkowski’s inequality). Consider a measure space M = (Ω,F , µ), a real p ⩾ 1, and two measurable
functions f, g : Ω → C such that |f |p and |g|p are both integrable. Then(∫

|f(x) + g(x)|pdµ(x)
)1/p

⩽

(∫
|f(x)|pdµ(x)

)1/p

+

(∫
|g(x)|pdµ(x)

)1/p

.

Next we define concept of a normed space which is central to function analysis.

Definition A.17. A normed space is a pair (V, ∥ · ∥), where V is a vector space over R or C, and ∥ · ∥ is a function
from V to nonnegative reals satisfying

• (non-degeneracy): ∥x∥ = 0 if and only if x = 0.

• (homogeneity): For every scalar λ, and every x ∈ V , ∥λx∥ = |λ|∥x∥.

• (triangle inequality): For x, y ∈ V , ∥x+ y∥ ⩽ ∥x∥+ ∥y∥.

We call ∥x∥, the norm of x. A semi-norm is a function similar to a norm except that it might not satisfy the
non-degeneracy condition.

The spaces (C, | · |) and (R, | · |) are respectively examples of 1-dimensional complex and real normed spaces.
Every normed space (V, ∥ · ∥) has a metric space structure where the distance of two vectors x and y is ∥x− y∥.
Consider two normed spaces X and Y . A bounded operator from X to Y , is a linear function T : X → Y , such

that

∥T∥ := sup
x ̸=0

∥Tx∥Y
∥x∥X

<∞. (A.1)

The set of all bounded operators from X to Y is denoted by B(X,Y ). Note that the operator norm defined in (A.1)
makes B(X,Y ) a normed space.

A functional on a normed space X over C (or R) is a bounded linear map f from X to C (respectively R), where
bounded means that

∥f∥ := sup
x ̸=0

|f(x)|
∥x∥

<∞.

The set of all bounded functionals on X endowed with the operator norm, is called the dual of X and is denoted by
X∗. So for a normed space X over complex numbers, X∗ = B(X,C), and similarly for a normed space X over real
numbers, X∗ = B(X,R).

For a normed space X, the set BX := {x : ∥x∥ ⩽ 1} is called the unit ball of X. Note that by the triangle inequality,
BX is a convex set, and also by homogeneity it is symmetric around the origin, in the sense that ∥λx∥ = ∥x∥ for every
scalar λ with |λ| = 1. The non-degeneracy condition implies that BX has non-empty interior.
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Every compact symmetric convex subset of Rn with non-empty interior is called a convex body. Convex bodies are
in one-to-one correspondence with norms on Rn. A convex body K corresponds to the norm ∥ · ∥K on Rn, where

∥x∥K := sup{λ ∈ [0,∞) : λx ∈ K}.

Note that K is the unit ball of ∥ · ∥K . For a set K ⊆ Rn, define its polar conjugate as

K◦ = {x ∈ Rn :
∑

xiyi ⩽ 1, ∀y ∈ K}. (A.2)

The polar conjugate of a convex body K is a convex body, and furthermore (K◦)◦ = K.
Consider a normed space X on Rn. For x ∈ Rn define Tx : Rn → R as Tx(y) :=

∑n
i=1 xiyi. It is easy to see that

Tx is a functional on X, and furthermore every functional on X is of the form Tx for some x ∈ Rn. For x ∈ Rn define
∥x∥∗ := ∥Tx∥. This shows that we can identify X∗ with (Rn, ∥ · ∥∗). Let K be the unit ball of ∥ · ∥. It is easy to see
that K◦, the polar conjugate of K, is the unit ball of ∥ · ∥∗.

Hilbert Spaces

Consider a vector space V over K, where K = R or K = C. Recall that an inner product ⟨·, ·⟩ on V , is a function from
V × V to K that satisfies the following axioms.

• Conjugate symmetry: ⟨x, y⟩ = ⟨y, x⟩.

• Linearity in the first argument: ⟨ax+ z, y⟩ = a⟨x, y⟩+ ⟨z, y⟩ for a ∈ K and x, y ∈ V .

• Positive-definiteness: ⟨x, x⟩ > 0 if and only if x ̸= 0, and ⟨0, 0⟩ = 0.

A vector space together with an inner product is called an inner product space.

Example A.18. Consider a measure space M = (Ω,F , µ), and let H be the space of measurable functions f : Ω → C
such that

∫
|f(x)|2dµ(x) <∞. For two functions f, g ∈ H define

⟨f, g⟩ :=
∫
f(x)g(x)dµ(x).

It is not difficult to verify that the above-mentioned function is indeed an inner product.

An inner product can be used to define a norm on V . For a vector x ∈ V , define ∥x∥ =
√

⟨x, x⟩.

Lemma A.19. For an inner product space V , the function ∥ · ∥ : x 7→
√
⟨x, x⟩ is a norm.

Proof. The non-degeneracy and homogeneity conditions are trivially satisfied. It remains to verify the triangle in-
equality. Consider two vectors x, y ∈ V and note that by the axioms of an inner product:

0 ⩽ ⟨x+ λy, x+ λy⟩ = ⟨x, x⟩+ |λ|2⟨y, y⟩+ λ⟨x, y⟩+ λ⟨x, y⟩.

Now taking λ :=
√

⟨x,x⟩
⟨y,y⟩ ×

⟨x,y⟩
|⟨x,y⟩| will show that

0 ⩽ 2⟨x, x⟩⟨y, y⟩ − 2
√

⟨x, x⟩⟨y, y⟩|⟨x, y⟩|,

which leads to the triangle inequality. □

A complete inner-product space is called a Hilbert space.

Example A.20. Consider the vector space V of all functions f : N → R that have finite supports, meaning that
{x : f(x) ̸= 0} is finite. This is clearly a vector space over R, and can be turned into an inner product space with the
inner product

⟨u, v⟩ =
∑
i∈N

uivi.

However, this is not a Hilbert space as it is not complete. For example, consider the sequence of vectors

u(k) = (1, 2−1, 2−2, . . . , 2−k, 0, 0, . . .).

It is easy to see that u(1), u(2), . . . is a Cauchy sequence, but it does not have a limit in V , and hence V is not a Hilbert
space. However, we can complete V to a Hilbert space by extending it to include all functions f : N → R with∑

i∈N
|f(i)|2 <∞.
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The Lp spaces

Consider a measure space M = (Ω,F , µ). For 1 ⩽ p < ∞, the space Lp(M) is the space of all functions f : Ω → C
such that

∥f∥p :=
(∫

|f(x)|pdµ(x)
)1/p

<∞.

Strictly speaking the elements of Lp(M) are equivalent classes. Two functions f1 and f2 are equivalent and are
considered identical, if they agree almost everywhere or equivalently ∥f1 − f2∥p = 0.

Proposition A.21. For every measure space M = (Ω,F , µ), Lp(M) is a normed space.

Proof. Non-degeneracy and homogeneity are trivial. It remains to verify the triangle inequality (or equivalently prove
Minkowski’s inequality). By applying Hölder’s inequality:

∥f + g∥pp =

∫
|f(x) + g(x)|pdµ(x) =

∫
|f(x) + g(x)|p−1|f(x) + g(x)|dµ(x)

⩽
∫

|f(x) + g(x)|p−1|f(x)|dµ(x) +
∫

|f(x) + g(x)|p−1|g(x)|dµ(x)

⩽

(∫
|f(x) + g(x)|pdµ(x)

) p−1
p

∥f∥p +
(∫

|f(x) + g(x)|pdµ(x)
) p−1

p

∥g∥p

= ∥f + g∥p−1
p (∥f∥p + ∥g∥p),

which simplifies to the triangle inequality □

Another useful fact about the Lp norms is that when they are defined on a probability space, they are increasing.

Theorem A.22. Let M = (Ω,F , µ) be a probability space, 1 ⩽ p ⩽ q ⩽ ∞ be real numbers, and f ∈ Lq(M). Then

∥f∥p ⩽ ∥f∥q.

Proof. The case q = ∞ is trivial. For the case q <∞, by Hölder’s inequality (applied with conjugate exponents q
p and

q
q−p ), we have

∥f∥pp =
∫

|f(x)|p × 1dµ(x) ⩽

(∫
|f(x)|qdµ(x)

)p/q (∫
1

q
q−p dµ(x)

) q−p
q

= ∥f∥pq .

□

Note that Theorem A.22 does not hold when M is not a probability space. For example, consider the set of
natural numbers N with the counting measure. We shall use the notation ℓp := Lp(N). In this case, the ℓp norms are
decreasing.

Exercises

Exercise A.1. Let x = ⟨x1, . . . , xn⟩ and y = ⟨y1, . . . , yn⟩ be complex vectors. By studying the derivative of ⟨x +
ty, x+ ty⟩ with respect to t, prove Theorem A.3.

Exercise A.2. Deduce Theorem A.5 from Hölder’s inequality.

Exercise A.3. Let 1 ⩽ p ⩽ q ⩽ ∞. Show that for every f ∈ ℓp, we have ∥f∥q ⩽ ∥f∥p.

Exercise A.4. Recall that by Hölder’s inequality, if p, q ⩾ 1 are conjugate exponents and a1, . . . , an, b1, . . . , bn are
complex numbers, then ∣∣∣∣∣

n∑
i=1

aibi

∣∣∣∣∣ ⩽
(

n∑
i=1

|ai|p
)1/p( n∑

i=1

|bi|q
)1/q

.

Deduce from this, that if p1, . . . , pn are non-negative numbers with
∑n
i=1 pi = 1, then∣∣∣∣∣

n∑
i=1

aibipi

∣∣∣∣∣ ⩽
(

n∑
i=1

|ai|ppi

)1/p( n∑
i=1

|bi|qpi

)1/q

.
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Exercise A.5. Let X be a probability space, and p, q ⩾ 1 be conjugate exponents. Show that for everyf ∈ Lp(X),
we have

∥f∥p = sup
g:∥g∥q=1

|⟨f, g⟩| .

Exercise A.6. Suppose that (X,µ) is a measure space and 1
p + 1

q +
1
r = 1, for p, q, r ⩾ 1. Show that if f ∈ Lp(X),

g ∈ Lq(X), and h ∈ Lr(X), then ∣∣∣∣∫ f(x)g(x)h(x)dµ(x)

∣∣∣∣ ⩽ ∥f∥p∥g∥q∥h∥r.

Exercise A.7. Suppose that X is a measure space and 1
p + 1

q = 1
r , for p, q, r ⩾ 1. Show that if f ∈ Lp(X) and

g ∈ Lq(X), then
∥fg∥r ⩽ ∥f∥p∥g∥q.

Exercise A.8. Let X be a probability space. Let ∥T∥p→q denote the operator norm of T : Lp(X) → Lq(X). In other
words

∥T∥p→q := sup
f :∥f∥p=1

∥Tf∥q.

Recall that the adjoint of T is an operator T ∗such that

⟨Tf, g⟩ = ⟨f, T ∗g⟩,

for all f, g ∈ L2(X). Prove that for conjugate exponents p, q ⩾ 1, and every linear operator T : L2(X) → L2(X), we
have

∥T∥p→2 = ∥T ∗∥2→q.
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