 
 
 
 
 
 
 
  
 Next: About this document ...
 Up: Frequently Asked Questions in
 Previous: Acknowledgements
     Contents 
- ABS97
- 
D. Avis, D. Bremner, and R. Seidel.
 How good are convex hull algorithms.
 Computational Geometry: Theory and Applications, 7:265-302,
  1997.
- AF92
- 
D. Avis and K. Fukuda.
 A pivoting algorithm for convex hulls and vertex enumeration of
  arrangements and polyhedra.
 Discrete Comput. Geom., 8:295-313, 1992.
- AF96
- 
D. Avis and K. Fukuda.
 Reverse search for enumeration.
 Discrete Applied Mathematics, 65:21-46, 1996.
- Ame
- 
N. Amenta.
 Directory of computational geometry.
 http://www.geom.uiuc.edu/software/cglist/.
- Avi
- 
D. Avis.
 lrs Homepage.
 http://cgm.cs.mcgill.ca/~avis/C/lrs.html.
- BDH96
- 
C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa.
 The quickhull algorithm for convex hulls.
 ACM Trans. Math. Softw., 22(4):469-483, December 1996.
- BDH03
- 
C.B. Barber, D.P. Dobkin, and H. Huhdanpaa.
 qhull, Version 2003.1, 2003.
 program and report available from
  http://www.qhull.org/.
- BEF00
- 
B. Büeler, A. Enge, and K. Fukuda.
 Exact volume computation for convex polytopes: A practical study.
 In G. Kalai and G. M. Ziegler, editors, Polytopes -
  Combinatorics and Computation, DMV-Seminar 29, pages 131-154. Birkhäuser,
  2000.
- BFM97
- 
D. Bremner, K. Fukuda, and A. Marzetta.
 Primal-dual methods for vertex and facet enumeration.
 In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 49-56,
  1997.
- BL98
- 
M.R. Bussieck and M.E. Lübbecke.
 The vertex set of a -polytope is strongly p-enumerable. -polytope is strongly p-enumerable.
 Computational Geometry, 11:103-109, 1998.
- BMFN96
- 
A. Brüngger, A. Marzetta, K. Fukuda, and J. Nievergelt.
 The parallel search bench zram and its applications.
 Technical report, ETH Zurich, May 1996.
- BMT85
- 
C. Buchta, J. Müller, and R. F. Tichy.
 Stochastical approximation of convex bodies.
 Math. Ann., 271(2):225-235, 1985.
- BP00
- 
I. Bárány and A. Pór.
 0-1 polytopes with many facets.
 Manuscript, Rényi Institute of Mathematics, Hungarian Academy of
  Sciences, 2000.
 http://www.renyi.hu/~barany/.
- CCH53
- 
A. Charnes, W.W. Cooper, and A. Henderson.
 An introduction to linear programming.
 John Wiley & Sons, Inc., 1953.
- Cha93
- 
B. Chazelle.
 An optimal convex hull algorithm in any fixed dimension.
 Discrete Comput. Geom., 10:377-409, 1993.
- Chv83
- 
V. Chvatal.
 Linear Programming.
 W.H.Freeman and Company, 1983.
- CK70
- 
D.R. Chand and S.S. Kapur.
 An algorithms for convex polytopes.
 J. Assoc. Comput. Mach., 17:78-86, 1970.
- CL97
- 
T. Christof and A. Löbel.
 PORTA: Polyhedron representation transformation algorithm (ver.
  1.3.1), 1997.
 http://www.zib.de/Optimization/Software/Porta/.
- Cla94
- 
K. L. Clarkson.
 More output-sensitive geometric algorithms.
 In Proc. 35th Annu. IEEE Sympos. Found. Comput. Sci., pages
  695-702, 1994.
 http://cm.bell-labs.com/who/clarkson/pubs.html.
- Dan63
- 
G.B. Dantzig.
 Linear Programming and Extensions.
 Princeton University Press, Princeton, New Jersey, 1963.
- DF88
- 
M.E. Dyer and A.M. Frieze.
 The complexity of computing the volume of a polyhedron.
 SIAM J. Comput., 17:967-974, 1988.
- Dye83
- 
M.E. Dyer.
 The complexity of vertex enumeration methods.
 Math. Oper. Res., 8:381-402, 1983.
- Ede87
- 
H. Edelsbrunner.
 Algorithms in Combinatorial Geometry.
 Springer-Verlag, 1987.
- Eri
- 
J. Erickson.
 Computational geometry pages, list of software libraries and codes.
 http://compgeom.cs.uiuc.edu/~jeffe/compgeom/.
- FG
- 
R. Fourer and J.W. Gregory.
 Linear programming frequently asked questions (LP-FAQ).
 http://www-unix.mcs.anl.gov/otc/Guide/faq/linear-programming-faq.html.
- FLL00
- 
K. Fukuda, Th. M. Liebling, and C. Lütolf.
 Extended convex hull.
 In D. Bremner, editor, Proceedings of the 12th Canadian
  Conference on Computational Geometry, pages 57-63, 2000.
- FLM97
- 
K. Fukuda, Th. M. Liebling, and F. Margot.
 Analysis of backtrack algorithms for listing all vertices and all
  faces of a convex polyhedron.
 Computational Geometry, 8:1-12, 1997.
 ps file available from
  ftp://ftp.ifor.math.ethz.ch/pub/fukuda/reports/optvert9610.ps.gz.
- FO85
- 
R. Freund and J. Orlin.
 On the complexity of four polyhedral set containment problems.
 Math. Programming, 33:133-145, 1985.
- FR94
- 
K. Fukuda and V. Rosta.
 Combinatorial face enumeration in convex polytopes.
 Computational Geometry, 4:191-198, 1994.
- Fuk
- 
K. Fukuda.
 Komei Fukuda's Homepage, McGill University, Montreal, Canada.
 http://www.cs.mcgill.ca/~fukuda/.
- Fuk02
- 
K. Fukuda.
 cdd, cddplus and cddlib homepage.
 McGill University, Montreal, Canada, 2002.
 http://www.cs.mcgill.ca/~fukuda/software/cdd_home/cdd.html.
- Ge97
- 
J.E. Goodman and J. O'Rourke (eds.).
 Handbook of Discrete and Computational Geometry.
 CRC Press, 1997.
- GJ99
- 
E. Gawrilow and M. Joswig.
 Polymake, version 1.3, 1999.
 http://www.math.tu-berlin.de/diskregeom/http://www.math.tu-berlin.de/diskregeom/.
- Kal97
- 
G. Kalai.
 Linear programming, the simplex algorithm and simple polytopes.
 Math. Programming, 79(1-3, Ser. B):217-233, 1997.
 Lectures on mathematical programming (ismp97) (Lausanne, 1997), ps
  file available from
  http://www.ma.huji.ac.il/~kalai/papers.html.
- Kar84
- 
N. Karmarkar.
 A new polynomial-time algorithm for linear programming.
 Combinatorica, 4:373-395, 1984.
- Kha79
- 
L.G. Khachiyan.
 A polynomial algorithm in linear programming.
 Dokklady Akademiia Nauk SSSR, 244:1093-1096, 1979.
- Kha93
- 
L.G. Khachiyan.
 Complexity of polytope volume computation.
 In J. Pach, editor, New Trends in Discrete and Computational
  Geometry, pages 91-101. Springer Verlag, Berlin, 1993.
- LS93
- 
L. Lovasz and M. Simonovits.
 Random walks in a convex body and an improved volume algorithm.
 Random structures & algorithms, 4:359-412, 1993.
- Lüb99
- 
M.E. Lübbecke.
 zeRone: Vertex enumeration for polytopes (ver. 1.8.1), 1999. polytopes (ver. 1.8.1), 1999.
 http://www.math.tu-bs.de/mo/research/zerone.html.
- Mar97
- 
A. Marzetta.
 pd - C-implementation of the primal-dual algoirithm, 1997.
 code available from
  http://www.cs.unb.ca/profs/bremner/pd/.
- McM70
- 
P. McMullen.
 The maximum number of faces of a convex polytope.
 Mathematika, XVII:179-184, 1970.
- MRTT53
- 
T.S. Motzkin, H. Raiffa, GL. Thompson, and R.M. Thrall.
 The double description method.
 In H.W. Kuhn and A.W.Tucker, editors, Contributions to theory of
  games, Vol. 2. Princeton University Press, Princeton, RI, 1953.
- MS71
- 
P. McMullen and G.C. Shephard.
 Convex polytopes and the upper bound conjecture.
 Cambridge University Press, 1971.
- Mul94
- 
K. Mulmuley.
 Computational Geometry, An Introduction Through
  Randamized Algorithms.
 Prentice-Hall, 1994.
- O'R
- 
J. O'Rourke.
 comp.graphics.algorithms FAQ.
 http://www.faqs.org/.
- OSS95
- 
Th. Ottmann, S. Schuierer, and S. Soundaralakshmi.
 Enumerating extreme points in higher dimensions.
 In E.W. Mayer and C. Puech, editors, STACS 95: 12th Annual
  Symposium on Theoretical Aspects of Computer Science, Lecture Notes in
  Computer Science 900, pages 562-570. Springer-Verlag, 1995.
- Rot92
- 
G. Rote.
 Degenerate convex hulls in high dimensions without extra storage.
 In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 26-32,
  1992.
- RTV97
- 
C. Roos, T. Terlaky, and J.-Ph. Vial.
 Theory and Algorithms for Linear Optimization: An Interior Point
  Approach.
 John Wiley and Sons, 1997.
- Sch86
- 
A. Schrijver.
 Theory of Linear and Integer Programming.
 John Wiley & Sons, New York, 1986.
- Sei86
- 
R. Seidel.
 Constructing higher-dimensional convex hulls at logarithmic cost per
  face.
 In 18th STOC, pages 404-413, 1986.
- Sei91
- 
R. Seidel.
 Exact upper bounds for the number of faces in -dimensional
  Voronoi diagram. -dimensional
  Voronoi diagram.
 In P. Gritzmann and B. Sturmfels, editors, Applied Geometry and
  Discrete Mathematics - The Victor Klee Festschrift, DIMACS Series in
  Discrete Mathematics and Theoretical Computer Science, pages 517-529. Amer.
  Math. Soc., Providence, RI, 1991.
- Sey94
- 
P.D. Seymour.
 A note on hyperplane generation.
 J. Combin. Theory, Series B, 61:88-91, 1994.
- Yap00
- 
C.K. Yap.
 Fundamental problems in algorithmic algebra.
 Oxford University Press, New York, 2000.
- Zie94
- 
G.M. Ziegler.
 Lectures on polytopes.
 Graduate Texts in Mathematics 152. Springer-Verlag, 1994.
Komei Fukuda
2004-08-26