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0 Convex Polyhedra and Arrangements: Quick Tour

The main purpose of this section is to present some basic terminology and theorems on two important
objects for our study: convex polyhedron and arrangement of hyperplanes. Those who are familiar with
these objects should be able to scan through this section quickly, or even skip it and visit when statements
in later sections demand clarifications of the associated terminology.

0.1 Convex Polyhedra and Faces

The intersection of a finite number of closed halfspaces in Rd is called a convex polyhedron or simply a
polyhedron. Equivalently, a polyhedron is a subset P of Rd which can be represented as the solution set to
a system of linear inequalities:

P = {x ∈ Rd : Ax ≤ b}

where A is an m× d real matrix and b is a real m dimensional vector. Clealy a polyhedron is not necessarily
bounded. A bounded polyhedron will be called a polytope. Here are some polytopes in the plane R2 and
the 3-space R3.

One can easily show that every polyhedron is convex , i.e., if x1 and x2 are points in a polyhedron P ,
then any convex combination of x1 and x2, x = λx1 + (1 − λ)x2 ( 0 ≤ λ ≤ 1), is also in P , or equivalently
the whole line segment [x1, x2] is contained in P .

There are natural substructures of a polyhedron, called faces, which are themselves polyhedra. The
notion of faces plays an essential role in the combinatorial study of polyhedra. We shall now define faces
and study some basic properties.

Let P be a polyhedron. For a real d-vector c and a real number β, a linear inequality cT x ≤ β is called
valid for P if cT x ≤ β holds for all x ∈ P . A subset F of a polyhedron P is called a face of P if it is
represented as

F = P ∩ {x : cT x = β}

for some valid inequality cT x ≤ β.

P

cT x = β

F

cT x = β

F

P
cT x ≤ β

cT x ≤ β

By this definition, the polyhedron itself and the empty set are faces of any polyhedron. But from the
definition, it is not clear how many faces a polyhedron can have. It is not even clear whether the number of
faces of a polyhedron is finite. The first theorem states that it is in fact finite and the faces are generated
by any system of linear inequalities to represent the polytope.

We say a linear inequality system Ax ≤ b represents P if P = {x : Ax ≤ b}.
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Theorem 0.1. Let Ax ≤ b be a linear inequality system representing a polyhedron P . Then a nonempty
subset F of P is a face of P if and only if F is represented as the set of solutions to an inequality system
obtained from Ax ≤ b by setting some of the inequalities to equalities, i.e.,

F = {x : A1x = b1 and A2x ≤ b2},

where A =

[

A1

A2

]

and b =

[

b1

b2

]

.

For our proof of Theorem 0.1, the following lemma is useful.

Lemma 0.2. Let Ax ≤ b be any linear inequality system representing a polyhedron P , and let cT x ≤ β be a
valid inequality for P such that there exists a point x ∈ P with cT x = β. Define

S = {i ∈ {1, 2, . . . , m} : x ∈ P and cT x = β imply Aix = bi}.

Then the following statements hold.

(a) There exists a point x′ ∈ P such that cT x′ = β, Aix
′ = bi for all i ∈ S, and Ajx

′ < bj for all j ∈
{1, 2, . . . , m} \ S.

(b) There exists no point x′′ ∈ P such that cT x′′ < β and Aix
′′ = bi for all i ∈ S.

Proof. Exercise.

Proof. (of Theorem 0.1) Let Ax ≤ b be a linear inequality system representing a polyhedron P , and let F
be a nonempty subset of P .

To prove the “only if” part, we assume that F is represented by F = {x : A1x = b1 and A2x ≤ b2} where

A =

[

A1

A2

]

and the vector b =

[

b1

b2

]

. Define c = 1T A1 and β = 1T b1, where 1 denotes the vector of all

1’s (of an appropriate size). Then one can easily verify that F = P ∩ {x : cT x = β}, implying F is a face of
P .

For the “if” part, we assume F is a face of P and

F = P ∩ {x : cT x = β}

for a valid inequality cT x ≤ β. Let

S = {i ∈ {1, 2, . . . , m} : x ∈ P and cT x = β imply Aix = bi}.

By Lemma 0.2 (b), we have the equality

P ∩ {x : cT x = β} = P ∩ {x : Aix = bi ∀i ∈ S}.

This implies that the face F is the set of solutions to the inequality system obtained from Ax ≤ b by setting
the inequalities Aix ≤ bi, i ∈ S to equalities. This completes the proof.

0.2 Theorem of Minkowski-Weyl

By definition, every convex polyhedron is represented as a finite number of linear inequalities. The well-
known theorem of Minkowski and Weyl states that a convex polyhedron has another “finite” representation.

In order to state the theorem, we need some definitions. For vectors v1, v2, . . . , vk ∈ Rd, we define
conv{v1, v2, . . . , vk} as their convex hull:

conv{v1, v2, . . . , vk} = {x : x =
k

∑

j=1

λjvj ,
k

∑

j=1

λj = 1 and λj ≥ 0 ∀j = 1, 2, . . . , k},

and define nonneg{v1, v2, . . . , vk} as their nonnegative hull :

nonneg{v1, v2, . . . , vk} = {x : x =
k

∑

j=1

λjvj and λj ≥ 0 ∀j = 1, 2, . . . , k}.
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For two subsets P and Q of Rd, P + Q denotes the Minkowski sum of P and Q:

P + Q = {p + q : p ∈ P and q ∈ Q}.

Theorem 0.3 (Minkowski-Weyl’s Theorem). For a subset P of Rd, the following statements are equiv-
alent:

(a) P is a polyhedron, i.e., for some matrix A and vector b, P = {x : Ax ≤ b};

(b) There are vectors v1, v2, . . . , vn and r1, r2, . . . , rs such that
P = conv{v1, v2, . . . , vn} + nonneg{r1, r2, . . . , rs}.

The second representation (b) is refered as a (finite) generator representation or V-representation, while
the first representation is (finite) inequality representation or H-representation. Of course, V stands for ver-
tices and H stands for halfspaces. The essence of the theorem lies in the finiteness of generators v1, v2, . . . , vn

and r1, r2, . . . , rs: every polyhedron is finitely generated. Clearly if we allow the number of generators to be
infinite in (b), the equivalence does not hold. Here is a simple illustration of the theorem:

v1

v2 v3

r1

r2

P

This theorem is one of the most important theorems on convex polyhedra. The conversions of one
representation, (a) or (b), to the other are fundamental transformations with many applications, while they
can be considered as a constructive proof.

We shall discuss these transformations with various different approaches in detail in Section 2.1. In order
to analyze the complexity of these transformations, it is essential to understand the combinatorial structure
of convex polytopes.

0.3 Face Lattice of Polytopes

Let P be a polytope in Rd. The set of all faces of P , denoted by F(P ), ordered by set inclusion is called
the face lattice of the polytope. Clearly the least element and the greatest element of F(P ) are ∅ and P ,
respectively. This set is finite by Theorem 0.1. A trivial bound for the cardinality of F(P ) is 2m where m
is the number of inequalities to represent P . A large part of convex polytope theory has been devoted to
study the set F(P ).

In this section, we state some of the fundamental results on F(P ) without proofs, since all the results
given here can be extended to the broader context of oriented matroids, and we shall present these extensions
with proofs later.

Proposition 0.4. Let P be a convex polytope. Then its face lattice F(P ) satisfies the Jordan-Dedekind
chain property, i.e., every maximal chain: F = F1 ⊂ F2 ⊂ · · · ⊂ Fk = F ′ between any two ordered elements
F ⊂ F ′ in F(P ) has the same length.

This proposition is a corollary of a more general statement in oriented matroids, Proposition 1.2. This
property implies that the dimension of each face F can be defined combinatorially. The dimension dim(F )
of a face F in a polytope P is one less than the length of any maximal chain from the smallest face to F .
Consequently, the empty face has dimension −1. The dimension of a polytope P is the dimension of P as
a face. A face of dimension i will be called i-face, and a polytope of dimension i is called a i-polytope. We
shall denote by Fi(P ) the set of all i-faces of P .
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The standard definition of dimension of a face F is the maximum number of affine independent vectors
in F . This is not convenient for our purpose because this cannot be extended to abstract combinatorial
polytopes.

There are convenient names for faces of particular dimensions. The faces of dimension 0 are called the
vertices , those of dimension 1 the edges , and those of dimension dim(P ) − 1 the facets .

Theorem 0.5 (Duality of Polytopes). For any polytope P , there exists a polytope P d whose face lattice
is isomorphic to the polar of the face lattice of P .

P

Pd

Any polytope P d satisfying the property of the theorem above is called a dual polytope of P . There is
a natural construction of a dual polytope. Let P be a d-dimensional polytope in Rd, and assume that P
contains the origin 0 in its interior. (If not, one can translate P to satisfy this property.) Then it can be
proved that the following set P ∗, called the polar of P ,

P ∗ = {y ∈ Rd : xT y ≤ 1 for all x ∈ P}

is a polytope, and a dual polytope of P . In fact, by using the Minkowski-Weyl’s Theorem, Theorem 0.3,
we know that the polytope P can be represented by the convex hull of a finite set of points as: P =
conv{v1, v2, . . . , vn}. Then, it is easy to see that P ∗ is a polytope because it has a finite description, namely,

P ∗ = {y ∈ Rd : vT
i y ≤ 1 for all i = 1, 2, . . . , n}.

What remained to be proved is the existence of a one-to-one correspondence between F(P ) and F(P ∗) which
reverses the set inclusion. We leave this as an exercise for the reader.

For a d-polytope P , we denote by fi(P ) the number of i-faces of P , for each i = −1, 0, 1, . . . , d, i.e.,
fi(P ) = |Fi(P )|. The f -vector f(P ) of a d-polytope P is (f0(P ), f1(P ), . . . , fd−1(P )).

The following is a classical theorem:

Theorem 0.6 (The Euler-Poincaré Relation). For any d-polytope P , the following equality holds:

d
∑

i=−1

(−1)ifi(P ) = 0.

There are different proofs for the theorem. For example, the book of Grünbaum [Grü67] (page 141)
contains a geometric proof using induction of d. It is sometimes hard to verify geometric proofs in higher
dimensions as correct statements in low dimensions may not generalize as one hopes. For a proof not
depending on geometric reasoning, the axiomatic framework of oriented matroids is useful, see [CVM82]. This
theorem is also a direct consequence of the shellability theorem of convex polytopes, which was first stated
by L. Schläfli in 1852 and proved only recently by [BM71]. The shellability theorem has been generalized in
oriented matroids by Edmonds-Fukuda-Mandel, see [Fuk82, Man82].

Another fundamental result on f -vectors of polytopes is the upper bound theorem. Consider the moment
curve in Rd given by x(t) = (t, t2, t3, . . . , td). For n real numbers, t1 < t2 < t3 < · · · < tn with n > d, we
define C(n, d) be the convex hull of the n points {x(t1), x(t2), . . . , x(tn)}. This polytope, known to be
the cyclic polytope, has been shown to have the largest number of i-faces among all d-polytopes with n
vertices. This theorem, known to be the upper bound theorem for convex polytopes, was first formulated as
a conjecture by Motzkin [Mot57] and proved by McMullen [McM70].
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Theorem 0.7 (Upper Bound Theorem). For any d-polytope P with n-vertices, the following inequality
holds for each −1 ≤ i ≤ d:

fi(P ) ≤ fi(C(n, d)).

For each i, the number fi(C(n, d)) can be written as a function of n and d explicitly (see, e.g. [MS71]).
Among them, the most important one is for i = d − 1,

fd−1(C(n, d)) =

(

n − b(d + 1)/2c
n − d

)

+

(

n − b(d + 2)/2c
n − d

)

,

which is the maximum number of facets in a d-polytope with n-vertices. Using the polarity, Theorem 0.5,
this number is also the maximal number of vertices in a d-polytope with n-facets.

This number is of course an exponential function of n and d. To see how fast it can grow, we can use a
symbolic computational system such as Maple or Mathematica to compute this number exactly. Here is the
table of fd−1(C(n, d)) for some “small” polytopes.

n \ d 1 2 3 4 5 6 7 8 9 10
10 2 10 16 35 42 50 40 25 10 –
20 2 20 36 170 272 800 1120 2275 2730 4004
30 2 30 56 405 702 3250 5200 17250 25300 63756

100 2 100 196 4850 9312 152000 285760 3460375 6367090 60990020

Finally we mention a couple of nice results on the graph structure of the polytope.

Proposition 0.8 (Diamond Property). Let P be a polytope. For any two ordered faces F ⊂ F ′ of P
with dim(F ′) = dim(F ) + 2, there are exactly two faces of P between F and F ′.

This proposition implies that in any polytope P each edge contains exactly two vertices. This defines the
graph G(P ) of a polytope P . A graph is called (d-)polytopal if it is isomorphic to the graph of a (d-)polytope.

The most well-known theorem on the graph of polytopes is perhaps Steinitz’ Theorem on 3-polytopes.

Theorem 0.9 (Steinitz’ Theorem). A graph G is 3-polytopal if and only if it is simple, planar and
3-connected.

There is no known characterization of polytopal graphs in general. The following theorem of Balinski
[Bal61] gives a necessary condition for a graph to be d-polytopal.

Theorem 0.10 (d-Connectivity). The graph G(P ) of a d-polytope P is d-connected.

There are recent results (by Mnëv and Richter-Gebert) implying that it is very unlikely that a simple
characterization of d-polytopal graphs exists for any fixed d ≥ 4. These suggest that we should look for
a larger class of graphs that can be nicely characterized. The graphs of oriented matroid polytopes (also
known as tope lattices) might be an excellent one for future investigation.

A d- polytope P is called simple if each vertex of P is adjacent to exactly d-vertices, and simplicial if its
dual polytope P is simple.

Blind and Mani-Levitska [BML87] has recently shown that the graph structure of a simple polytope
contains the complete information of its combinatorial structure.

Theorem 0.11. The face lattice of any simple d-polytope is uniquely determined by its graph G(P ).

See Section 0.6 for an elegant proof by Kalai [Kal88]. Unfortunately, the proof does not yield an efficient
way to reconstruct the face lattice of a simple polytope from its graph. In particular, it would be very
interesting if one finds an algorithm which runs in time polynomial in the size of the face lattice. The
complexity of the problem is still unknown and it remains to be a challenging open problem.
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0.4 Arrangements of Hyperplanes and Spheres

Arrangemet of Hyperplanes
A finite family A = {hi : i = 1, 2, . . . , m} of hyperplanes in Rd is called an arrangement of hyperplanes.

To eliminate nonessential generalities, we always assume the following regularity assumption.

Assumption 0.12. There is a subset of A whose intersection is a single point.

If this assumption is not satisfied, the intersection of all hyperplanes is an affine space of dimension at
least 1, and there is a hyperplane orthogonal to this affine space which can serve as the ground Euclidean
space Rd for smaller d. The combinatorial structure of such nonregular arrangement, the notion to be defined
precisely later in this section, will be isomorphic to that of a lower dimensional regular arrangement.

The following drawing illustrates an arrangement of hyperplanes in R2, which satisfies the assumption.

h1

h2

h3

h4

h5

A representation of an arrangement A is the pair (A, b) where A is a real m × d matrix, b is a real
m-vector and hi = {x : Ai x = bi} for i = 1, 2, . . . , m. The arrangement represented by (A, b) is denoted by
A(A, b).

Let A be an arrangement of hyperplanes. Associated with each hyperplane hi in the arrangement, there
are two open halfspaces bounded by the hyperplane, which will be denoted by h+

i and h−
i . We call h+

i (h−
i )

the plus side (minus side) of the hyperplane. Here it is not important which side is the plus side. The only
importance is to fix the assignment of + and −. Accordingly, we shall use h0

i for the hyperplane itself hi,
which can be called the zero side of the hyperplane. When the arrangement is represented by (A, b), there
is a canonical way to assign the sides as

h+
i = {x : Ai x < bi}, h−

i = {x : Ai x > bi}

For each point x ∈ Rd, we shall associate with the sign vector δ(x) on {1, 2, . . . , m} defined by

δ(x)i =







+ if x ∈ h+
i

0 if x ∈ h0
i

− if x ∈ h−
i

i ∈ {1, 2, . . . , m}.

Since the vector δ(x) encodes the position of a point x with respect to each hyperplanes, it is called the
position vector of x. We denote by F(A) the set of all position vectors, i.e.,

F(A) = {δ(x) : x ∈ Rd}.

A face of the arrangement is a subset F of Rd which can be represented as F = ∩m
i=1h

Yi

i for some sign
vector Y ∈ F(A). It is easily seen that two different vectors in F(A) determine different faces. Thus we
shall identify the vectors in F(A) with the faces of the arrangement. Also, it is important to note that the
definition of faces does not depend on any particular assignment of “+” and “−” to the halfspaces of each
hyperplane.
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h1

h2

h3

h4

h5

+−

−

−+
+

_

+

_

+

(0-0-+) (+++++)

(++++0)

We are most interested in the geometric incidence relationship between faces of the arrangement. For this
purpose, we define facial incidence relation on sign vectors: for two sign vectors Y and Y ′ in {+, 0,−}m, Y
is said to be a face of Y ′ (denoted by Y � Y ′; we also say Y conforms to Y ′) if Yi = Y ′

i for all i with Yi 6= 0.
The poset F(A) ordered by facial relation � is what we call the combinatorial structure of the arrangement.

A better mathematical model to study the combinatorial structure of a general arrangement of hyper-
planes is the central arrangement which we introduce now.

Central Arrangement of Hyperplanes and Arrangement of Spheres
An arrangement of hyperplanes in which all its hyperplanes contain the origin 0 is called a central

arrangement of hyperplanes . By Assumption 0.12, this condition is equivalent to ∩m
i=1hi = {0}.

h1

h2

h3

0

h4

+
-

- + + -

-
+

A central arrangement is a special type of hyperplane arrangements. However, any arrangement of hyper-
planes can be considered as the intersection of a central arrangement with another hyperplane. Furthermore,
central arrangements are much easier to deal with mathematically because the faces are all homogeneous
cones, unlike noncentral arrangements where two different types of faces exist, bounded and unbounded.
Indeed, the set of position vectors of any central arrangement A:

F(A) = {δ(x) : x ∈ Rd}

is closely related to a vector subspace. To see this, let (A, 0) be a representation of a central arrangement
A, and let V be the column space of A, i.e.,

V = {y ∈ Rm : y = Ax, x ∈ Rd}

Note that V is a vector subspace of Rm. Now let σ(V ) be the set of the sign vectors of vectors in V . Recall
that the sign vector σ(y) of a real m-vector y is simply the vector in {+, 0,−}m with σ(y)j = sign(yj).
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Observing that δ(x) = σ(Ax) for x ∈ Rd, we have

F(A) = σ(V ).

Consequently the combinatorial structure of a central arrangement is “merely” the sign patterns of vectors
in a vector subspace, and vice versa.

We shall see that oriented matroid is an abstraction of sets of form σ(V ). Therefore, any general
statement on oriented matroids can be interpreted as a general statement on the combinatorial structure of
vector subspaces and of central arrangements. Furthermore, it appears that the axioms of oriented matroids
captures much of the combinatorial structure of arrangements if it is not most of it. This fact will be verified
later in the lecture notes.

Finally, we define an arrangement of spheres on the unit d-sphere Sd (in Rd+1) is a set A = {si : i =
1, 2, . . . , m} of unit (d − 1)-spheres on Sd. An arrangement of spheres can be considered as the cut section
of a central arrangement in Rd+1 with the unit sphere Sd. A representation of an arrangement of spheres
is simply a representation (A, 0) of the associated central arrangement. With a representation (A, 0), each
sphere si is merely the sets

si = {x : Ai x = 0} ∩ Sd

for each i = 1, 2, . . . , m.
The regularity assumption for arrangements of spheres, corresponding to Assumption 0.12, is

Assumption 0.13. The intersection of all spheres si in A is empty, or equivalently in terms of represen-
tation (A, 0), the matrix A is row full rank.

The faces of an arrangement of spheres are defined accordingly, i.e., a subset F of Sd is a face if it is the
intersection of Sd and some face of the corresponding central arrangement. Thus, as combinatorial objects,
an arrangement of spheres is equivalent to some central arrangement.

S1

S2

S4

S3

+
-

+ -

+
-

+-

(-+++)

(00++)

(-0++)

There are two reasons that we prefer arrangements of spheres to central arrangements of hyperplanes.
The first reason is practical. A central arrangement of hyperplanes in R3 is very difficult to visualize, but the
corresponding arrangement of spheres in S2 can be visualized easily as we see above. The second reason is
more important: as we see in the Section 1.2, every oriented matroid can be represented by an arrangement
of topological spheres, which is a generalization of arrangements of spheres. Therefore, arrangements of
spheres are a more natural structure to deal with in the study of oriented matroids. We shall define this
general structure later.
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0.5 Polyhedral Realization of Arrangements

In this section we show that every arrangement of spheres (and hence every central arrangement of hyper-
planes) is combinatorially equivalent to some convex polytope. The following figure is a simple example to
illustrate this claim.

Figure 0.1: Sphere System and Its Polyhedral Realization

Let A be an arrangement of spheres {si : i = 1, 2, . . . , m} in Sd−1. Since the face poset F(A) of the
arrangement does not contain the greatest element, it is convenient to use F̂(A) to denote the set F(A) with
the artificial largest element 1 added. We shall call this set F̂(A) the face lattice of the arrangement A.

Now suppose that the arrangement A has a representation (A, 0), and si = {x : Ai x = 0}. Consider the
following polytope:

PA = {x : yT A x ≤ 1, ∀ y ∈ {−1, +1}m}

Theorem 0.14. The face lattice F̂(A) is isomorphic to the face lattice of the polytope PA.

Observing that the face lattice of a d-dimensional polytope in Rd is isomorphic to a substructure (lower
ideal) of the face lattice of an arrangement of spheres in Sd, the polyhedral representation of an arrangement
is rather surprising. Each of two structures is “specializations” of the other. This two way relationship is
important in the study of these fundamental structures. One simple application of the theorem is that every
combinatorial theorem on general convex polytopes is true for arrangements.

We call an inequality cT x ≤ β facet-defining for a polytope P if the set P ∩ {x : cT x = β} is a facet of
P . The key lemma for proving the theorem above is:

Lemma 0.15. Let y be any vector in {−1, +1}m. Then, the sign vector σ(y) of y is in F(A) if and only if
the inequality yT A x ≤ 1 is facet-defining for PA.

The polar of the polytope PA is the polytope

(PA)∗ = conv{yT A ∈ Rd : y ∈ {−1, +1}m}

= {yT A ∈ Rd : y ∈ [−1, +1]m}

= L1 + L2 + · · · + Lm,

where Li is the line segment [−Ai, Ai]. This set, which is the Minkowski sum of a finite set of line segments,
is known to be a zonotope. By the polarity of polytopes, Theorem 0.5, we have the following correspondence:

Lemma 0.16. Let y be any vector in {−1, +1}m. Then, the sign vector σ(y) of y is in F(A) if and only if
the vector yA is a vertex of the zonotope (PA)∗.
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(PA)
*

Figure 0.2: Face Correspondence: an Arrangement and its Zonotope

0.6 Construction of the Face Lattice from the Graph

For any d-polytope P , we denote by F(P ) the face lattice of P and by G(P ) the graph of P . It is known
that G(P ) does not determine F(P ) uniquely (up to isomorphism). In fact, the complete graph Kn with
n vertices with n ≥ 5 can be realized as the graph of 4-polytopes (or more explicitely 4-dimensional cyclic
polytopes), as well as the graph of (n − 1)-dimensional simplex.

It is a quite surprising result of Blind and Mani-Levistska [BML87] that for simplex polytopes the graph
contains the complete information. We recall the theorem:

Theorem 0.11. The graph of a simplex d-polytope determines its face lattice uniquely up to isomorphism.

Here we present the elegant constructive proof of this theorem due to Kalai [Kal88]. For this proof, the
notion of good orientation is important.

Let P be any d-polytope. An orientation O of G(P ) is said to be good if it is acyclic and the subgraph
G(F ) induced by each face F of P has a unique sink. Here we represent each face as the set of its vertices.
Such an orientation always exists: take any linear function cT x which is not constant on any edge of P , and
orient each edge so that the function increases along the direction. Such an orientation can be called an LP
orientation. Furthermore, it is easy to show that

(*) there is an LP orientation with a property that a prescribed face F is a source set , meaning every edge
between F and its complement is directed away from F .

Now we present the main lemmas.

Lemma 0.17. Let P be a simple d-polytope with f faces and let O be any acyclic orientation of G(P ).
Denote by hO

k the number of vertices of indegree k, and define

fO :=

d
∑

k=0

2k hO
k .

Then the folloing statements hold:

(a) f ≤ fO;

(b) f = fO if and only if O is good.

Lemma 0.18. Let P be a simple d-polytope and let O be any good orientation of G(P ). If a subset F of
vertices is a source set of O and G(F ) is k-regular then F is a k-face of P .

Proof. (of Theorem 0.11) Let G be the graph of a simple d-polytope P . We describe how to construct all
faces of P . First of all, we can generate all good orientations of G by Lemma 0.17 just with the knowlegdge
of G. For each good orientation O, we list all source sets F which induce some regular subgraph. By Lemma
0.18 and (*), the generated family of sets F must coincides with the set of all faces of P .
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1 Oriented Matroids: Overview

In this section, we shall introduce the notion of oriented matroids and present many fundamental results
without proofs. The reader will find proofs and detailed discussions in later sections.

1.1 Face Axioms

There are many different ways to define oriented matroids, but for our purpose the following definition is
most natural.

Let E be a finite set. A sign vector on E is a vector in {+, 0,−}E. We denote by 0 the sign vectors of all
0’s. The negative −Y of a sign vector Y is the sign vector Z on E with Zj = −Y j for all j. An index j ∈ E
is said to separate two sign vectors Y and Y ′ on E if Y and Y ′ have opposite signs on j, i.e. Yj = −Y ′

j 6= 0.
The set of all elements separating Y and Y ′ is denoted by D(Y, Y ′). The composition Y ◦ Y ′ of two sign
vectors Y and Y ′ on E is the sign vector Z on E with

Zj =

{

Yj if Yj 6= 0
Y ′

j otherwise

for all j ∈ E.

An oriented matroid on E is a pair M = (E,F), where E is a finite set and F is a set of sign vectors on
E satisfying the following axioms:

(F1) 0 ∈ F ;

(F2) Y ∈ F =⇒ −Y ∈ F ; (symmetry)

(F3) Y, Y ′ ∈ F =⇒ Y ◦ Y ′ ∈ F ; (composition)

(F4) Y, Y ′ ∈ F and f ∈ D(Y, Y ′) =⇒ there exists Z ∈ F such that
Zf = 0 and Zj = (Y ◦ Y ′)j for all j 6∈ D(Y, Y ′). (strong elimination)

Axiom 1.1: Face Axioms (or Covector Axioms)

Here we call each member of F a face of the oriented matroid. The faces are sometimes called covectors .
The most straighforward example of an oriented matroid arises from a vector subspace V of RE. Namely,

let F be σ(V ), the set of sign vectors of vectors in V . Then M = (E,F) satisfies the axioms (F1)∼(F4).
Such an oriented matroid is called representable or linear. As we remarked in Section 0.4, the set F(A) of
positions vectors of any central arrangement of hyperplanes satisfies the axioms as well, since it is the linear
oriented matroid of the column space of A.

There are infinitely many nonlinear oriented matroids. We will see soon in this section one simple way
of constructing nonlinear oriented matroids, using classical theorems on geometry such as Pappus’ Theorem
or Desargue’s Theorem. Later in the lecture notes, we will see completely different constructions which
use the idea of linear programming. The latter construction leads us to define non-Euclidean oriented
matroids which constitute a “strongly non-linear” class. It appears that this class identify those non-linear
oriented matroids that are badly behaving. In other words, a deeper understanding of non-Euclidean oriented
matroids is necessary to resolve many open problems (to be discussed as we go along).

Abstraction is a very important element of mathematics, but in my personal opinion, should not be
abused. There are good abstractions and bad abstractions. Good abstractions allows us to see more about
the concrete objects we are interested in, and allows us to simplify the existing proofs, to clarify what is
essential for the validity of existing theorems and eventually to discover new theorems, new constructions
and new algorithms.

For us, the concrete objects of interests are convex polyhedra, arrangements of hyperplanes (or spheres),
vector subspaces of Rd and optimization problems over convex polyhedra. Oriented matroids has been
proven to be an extremely good abstraction for these. First of all, it has been shown over the last twenty
years that oriented matroids retain much of the combinatorial properties of the concrete objects. In fact,
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it is very difficult to recognize whether a given oriented matroid is linear. It has been proved by Mnëv
that the recognition problem is NP -hard. Secondly using oriented matroid axioms, we can prove many
fundamental theorems on the concrete objects in higher dimensions rigorously, while our history witnessed
many wrong intuitive proofs for higher geometry. Finally many new theorems and algorithms have been
found via oriented matroids. The main purpose of the rest of the section is to present these new discoveries.

1.2 OM and Topological Representation Theorem

One of the most important theorems in oriented matroid theory is the topological representation theorem
[FL78, Man82]. By this theorem, every oriented matroid can be considered as a simple topological object
as well as a combinatorial object. This fact is extremely important when one tries to formulate a conjecture
on oriented matroids, because the face axioms 1.1 do no give much imagination to guess what can be true
for the structure.

Let Sd be the unit d-sphere in Rd+1 and denote by s(d−1) the (d − 1)-sphere {x ∈ Sd : x1 = 0}

embedded in Sd. The sphere s(d−1) partitions Sd into three sets {s+
(d−1), s

0
(d−1), s

−
(d−1)} where s0

(d−1) = s(d−1),

s+
(d−1) = {x ∈ Sd : x1 > 0} and s−(d−1) = {x ∈ Sd : x1 < 0}.

A d-sphere is a topological space homeomorphic to Sd, and a sphere is a d-sphere for some d. A subset s
of a sphere S is called a equator of S if there is a homeomorphism f : Sd → S such that f(s(d−1)) = s. Every

equator s of S partitions S into three sets s+, s0, s− which are the images of, respectively, s+
(d−1), s

0
(d−1), s

−
(d−1)

under f . The sets s+ and s− are called the sides of s.
A sphere system of dimenstion d is a triple (E, S,A) where E is a finite set, S a d-sphere, and A is a

family {{s+
i , s0

i , s
−
i } : i ∈ E} satisfying the following axioms:

(S1) Each s0
i is an equator of S whose sides are s+

i and s−i , for each i ∈ E;

(S2) For each subset F of E, ∩i∈F s0
i is a sphere, called a flat ;

(S3) For each flat t and any i ∈ E, either t ⊂ s0
i or t∩s0

i is an equator of t whose sides are t∩s+
i and t∩s−i .

Axiom 1.2: Sphere System Axioms

si
0

+
-

Figure 1.3: Sphere System

For a sphere system (E, S,A), there is a natural way to define the position vector δ(x) of each point
x ∈ S:

δ(x)i =







+ if x ∈ s+
i

0 if x ∈ s0
i

− if x ∈ s−i

i ∈ E.

Theorem 1.1. Let M = (E,F) be an oriented matroid. Then there exists a sphere system (E, S,A) such
that δ(S) = F . Conversely, if (E, S,A) is a sphere system, then (E, δ(S)) is an oriented matroid.
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1.3 Construction of Nonlinear OMs

As we mentioned, there are infinitely many oriented matroids that are nonlinear. Several different ways to
construct nonlinear oriented matroids are known. The easiest way is perhaps to use one of the well known
theorems on projective geometry such as Pappus Theorem and Desargues Theorem. Another construction is
to use the abstraction of linear programming: oriented matroids of rank 4 or more can be constructed so that
the simplex algorithm applied to the associated program will produce a cycle of nondegenerate pivots, see
[Fuk82, BVS+93]. This construction yields nonlinear OMs of special interests which are called non-Euclidean
OMs. We shall study the latter construction later in the lecture.

Here we explain the main idea to construct a non-Pappus oriented matroid which has rank 3. (It is quite
easy to see that every oriented matroid of rank 2 or less is always linear.) The following drawing illustrates
the Pappus Theorem, which states that if three points a, b and c in the plane are colinear and other three
points a′, b′ and c′ are also colinear, then the intersection points d, e and f in the figure must be colinear.

a
b

c

a’ b’

d
e

f

c’

colinear

d,e,f must be

In order to construct a nonlinear oriented matroid, we first construct a linear arrangement of 8 spheres
in S2. Then, we add one more topological 1-sphere so that it passes through the points d and f but e. The
resulting sphere arrangement and the associated set of signed vectors cannot be linear because of the Pappus
theorem.

Linear Nonlinear

ExtensionExtension

Non-Pappus O.M.

a

b
c

a’
b’

c’

d e f
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1.4 Faces, Vertices and Topes

We introduce a partial order among the faces of an oriented matroid which abstracts the geometrical facial
incidence relationship in arrangements of spheres.

For two sign vectors Y and Y ′ in {+, 0,−}E, Y is said to be a face of Y ′ (denoted by Y � Y ′) if i ∈ E
and Yi 6= 0 imply Yi = Y ′

i . This relation is also called conformal relation and Y � Y ′ reads Y conforms
to Y ′. This partial order coincides with the facial incidence relation in arrangements of hyperplanes and
spheres.

Let M = (E,F) be an oriented matroid, and consider the set F of faces as a poset ordered by �. Since
F does not contain the greatest element, it is convenient to define F̂ the set F ∪{1}, where 1 is the artificial
greatest element. Then the set F̂ is a lattice.

The following theorem allows us to define “dimension” of each face nicely, and also to define some
associated graph structures.

Proposition 1.2. Let M = (E,F) be an oriented matroid. Then, the following statements hold:

(a) The lattice F̂ has the Jordan-Dedekind chain property, i.e. every maximal chain between two ordered
faces Y and Y ′ in F has the same length.

(b) For any ordered faces Y , Y ′ in F̂ with distance two, there are exactly two faces between them.

The rank r(Y ) of a face Y in an oriented matroid M is defined as the length of any maximal chain from
0 to Y . More intuitive notion is the dimension d(Y ) of a face Y which is simply one less than its rank,
d(Y ) = r(Y ) − 1. The dimension d(M) (rank r(M) ) of an oriented matroid is defined as the dimension
(rank, respectively) of any maximal face.

For a set of sign vectors S, the set of all minimal (maximal) members of S is denoted by Min(S)
(Max(S)). For an oriented matroid M = (E,F), the maximal faces of M are called the topes and the
nonzero minimal faces are called the vertices . The set of topes and the set of vertices are denoted by T (M)
and V(M), respectively, i.e.,

T (M) = Max(F)

V(M) = Min(F\{0}).

The geometrical meaning of vertices and topes should be quite clear in an arrangement of spheres. These
two subsets of F are both very important since they actually contain complete information of the oriented
matroid.

1

0

topes

vertices

dimension

-1

0

1

d(M)

A sphere system (= oriented matroid) and its face lattice F̂

Proposition 1.3. Let M = (E,F) be an oriented matroid. Then the following statements hold:

(a) The set T = T (M) uniquely determines the oriented matroid by

F = {Y ∈ {+, 0,−}E : Y ◦ T ∈ T ∀T ∈ T }.
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(b) The set V = V(M) uniquely determines the oriented matroid by

F =< V , ◦ >

where < V , ◦ > denotes the composition closure of V.

Now, a natural question is: can we characterize the set of vertices (or topes)? It turns out that it is easy
for vertices, but we have no “simple” way to characterize the sets of topes. Here “simple” means intuitively
“easy to write and check”. We shall explain this more rigorously later.

For a sign vector Y on E, we denote by Y its nonzero support, i.e. {j ∈ E : Yj 6= 0}.

Proposition 1.4. Let V be a set of sign vectors on E. Then V is the set of vertices of an oriented matroid
if and only if:

(V1) V, V ′ ∈ V and V ⊆ V =⇒ either V = V ′ or V = −V ′; (minimality)

(V2) V, V ′ ∈ V , f ∈ D(V, V ′) and g ∈ V \D(V, V ′) =⇒
there exists W ∈ V such that Wf = 0, Wg = Vg and
Wj = Vj , V ′

j or 0 for all j ∈ E. (vertex elimination)

Axiom 1.3: Vertex (Cocircuit, Circuit) Axioms

Those who are familiar with the notion of matroids might notice that the set of supports of vertices
satisfy matroid circuit axioms. More specifically, setting

C = V := {V : V ∈ V}.

Then we can easily see that the set C satisfies the matroid circuit axioms:

(M1) C, C ′ ∈ C and C ⊆ C ′ =⇒ C = C ′; (minimality)

(M2) C, C ′ ∈ C, f ∈ V ∩ C ′ and g ∈ C\C ′ =⇒
there exists D ∈ C such that f 6∈ D, g ∈ D and D ⊂ C ∪ C ′ (circuit elimination)

Axiom 1.4: Matroid Circuit Axioms

We shall call the pair M = (E,V) the underling matroid of an oriented matroid M = (E,F), and call
each member a cocircuit of the matroid. The underlying matroid contains only a partial information of
the associated oriented matroid. Yet, as we see soon, it contains essential information for determining the
dimensions of faces, the number of k-dimensional faces, etc.

Now we observe some basic properties of the set of topes. For this we need one definition. Two elements
f and g in E are called parallel in M if either Yf = Yg for all faces Y ∈ F or Yf = −Yg for all faces Y ∈ F .
The parallelness is an equivalence relation, and the set of elements parallel to an element f is denoted by
[f ].

Proposition 1.5. Let T be the set of topes of an oriented matroid M = (E,F). Then it satisfies the
following properties, known as the face axioms of acycloids:

(T1) T ∈ T =⇒ −T ∈ T ; (symmetry)

(T2) T, T ′ ∈ T =⇒ T = T ′; (unique support)

(T3) T, T ′ ∈ T and T 6= T ′ =⇒
there exist f ∈ D(T, T ′) and U ∈ T such that
U[f ] = −T[f ] and Uj = Tj for all j ∈ E\[f ]. (shelling property)

Axiom 1.5: Face Axioms of Acycloids
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The first two conditions (T1) and (T2) are clearly satisfied by the set of topes. The third condion (T3)
is the most important property of topes. For instance, to prove the shellabililty of tope lattices, which
generalizes the shallablity of polytope face lattices due to Bruggesser and Mani [BM71], the condition (T3)
plays a very important role. Here, a tope lattice is a lattice isomorphic to the interval [0, T ] for some tope T
of an oriented matroid.

One natural question is whether the conditions (T1), (T2) and (T3) are sufficient to characterize the set
of topes. The answer is negative. There are counterexamples on a ground set of five elements which we will
present later. There are some known characterizations of topes, e.g., [BC87, Han91, dS91], but none of them
yields an efficient way for verification. One open question is

Open Problem 1.1 Tope Characterization

Is there any axiomatization for the topes of an oriented matroid that can be verified in time polynomial in
the size of input?

On the other hand, there is a polynomial time algorithm [FST91] to verify whether a set T of sign vectors
on E is the set of topes of an oriented matroid. It is interesting to note that to construct a polynomial time
algorithm, a new theorem on complexity of oriented matroids had to be proved. As a corollary, this theorem
yields that the number of faces of any oriented matroid is bounded by a small polynomial of the number of
topes.

1.5 Geometric Computation and Oriented Matroids

We have already seen that the notion of oriented matroids is a simple and straighforward abstraction of vector
subspaces, arrangements and polytopes. It has been remarked that many theorems on these “concrete”
objects can be generalized in the setting of oriented matroids.

In this section, we shall formulate some classical problems for geometric computation using our oriented
matroid language. By doing this, it will be clear how oriented matroid theory can help to solve some
geometric computation problems. Also we see how to decompose a geometric computation into numerical
computation and combinatorial computation.

For a E × d matrix A, we denote by V the column space {Ax : x ∈ Rd} of A. Let F = σ(V ) and let M
be the linear oriented matroid (E,F) respresented by A. The sets of topes and vertices are denoted by T
and V .

Geometric Computation 1.1 Face Enumeration for Arrangements

Input : A ∈ Rm×d =⇒ Output: F .

Geometric Computation 1.2 Tope (or Cell) Enumeration for Arrangements

Input : A ∈ Rm×d =⇒ Output: T .

Geometric Computation 1.3 Vertex Enumeration for Arrangements

Input : A ∈ Rm×d =⇒ Output: V .

Now we list fundamental problems for polytopes. Let T be any fixed tope with a prescribed sign pattern.
Without loss of generality, let T = (+, +, . . . , +). The associated tope cell is the interval (lower ideal) [0, T ],
which the face lattice of the polyhedral cone P = {x : A x ≥ 0}.

Geometric Computation 1.4 Face Enumeration for Polytopes

Input : A ∈ Rm×d =⇒ Output: [0, T ].

Geometric Computation 1.5 Facet Enumeration for Polytopes

Input : A ∈ Rm×d =⇒ Output: all coatoms of [0, T ] (all faces covered by T ).
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Geometric Computation 1.6 Vertex Enumeration for Polytopes

Input : A ∈ Rm×d =⇒ Output: all atoms (vertices) of [0, T ].

The six problems listed above are similar in nature, that is, the size of output might be very large,
meaning, might be exponential in the size of input A. In order to evaluate algorithms for these type of
problems, we must introduce a different measure from the usual polynomial time algorithm. Namely, a
polynomial-time algorithm for enumeration problems runs in polynomial in both input size and output size.
An ideal algorithm is linear-time algorithm which is a polynomial-time algorithm that runs linear in output
size.

For enumeration problems, the space requirement is also important. Clearly an algorithm which requires
space polynomial in both input and output sizes is (much) less preferable to one which requires space
polynomial only in input size and independent of output size. An algorithm of the latter type is called
compact .

Consequently, it is best if one could find a compact linear-time algorithm. Among the six problems
above, the problems for which a compact linear-time algorithm is known are Problem 1.2 (see [AF92b]),
Problem 1.4 (see [FLM94]) and Problem1.5 (see [OSS95]). Only (non-compact) polynomial-time algorithms
are known for Problem 1.1 (see [FST91]) and Problem 1.3 (see [Sey94]). No polynomial algorithm is known
for 1.6. Finally, when the input is nondegenerate (i.e., the vector subspace V contains no nonzero vector
with at least d zero components), both Problems 1.3 and 1.6 admit a compact linear-time algorithm, see
[AF92a].

We shall present the basic ideas of the algorithms mentioned above in Section 3.

1.6 The Underlying Matroid

Let M = (E,F) be an oriented matroid and let V be the set of vertices. Recall that V is the set of cocircuits
of the underlying matroid M . An element j contained in no cocircuit is called a loop.

The complement E \C of a cocircuit C is called a hyperplane, and any subset L of E which is the
intersection of some hyperplanes is called a flat of the matroid. The set of all hyperplanes (all flats) are
denoted by H (L, respectively). The flats (hyperplanes) are nothing but the the zero supports E\Y of faces
(vertices, respectively) Y of M .

The following terminology applies to any matroid on E, but for our purpose we fix our attention to the
underlying matroid M . Let S be any subset of E. The span of a S is the smallest flat that contains it, or
equivalently the intersection of all flats containing S. A set S is said to span L if L is the span of S. A subset
J of E is called independent if it is a minimal set whose span is the span of J . A basis of S is defined as an
independent subset of S that spans S. It is important to note that every basis of S has the same cardinality,
called the rank r(S). A basis of the matroid M is a basis of the ground set E. The rank r(M) = r(M ) of
the matroid is simply the cardinality of any basis.

The sets of hyperplanes, flats, independent sets and bases all uniquely define the matroid, and there are
simple matroid axioms for each of these objects, see e.g. [Wel76, (ed87].

We shall use these terms for oriented matroids to mean the same objects for the underlying matroids,
e.g, a basis of an oriented matroid M means a basis of the underlying matroid M .

There are many statements on an oriented matroid that only depends on the underlying matroid. First
of all, the dimension of each face Y depends on M .

Proposition 1.6. The dimension d(Y ) (= r(Y )−1) of each face Y in an oriented matroid M is determined
by the rank function r of the underlying matroid by

d(Y ) = r(M) − r(E\Y ) − 1.

Define fk = fk(M) to be the number of k-faces of an oriented matroid M , for k = −1, 0, . . . , d(M). The
following is an extension, due to Las Vergnas [Ver80], of Zaslavsky’s theorem for arrangements of hyperplanes
[Zas75] to oriented matroids.

Theorem 1.7. The face numbers fk(M) are uniquely determined by the underlying matroid.
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1.7 Shellability of Tope Lattices and OM lattices

A (finite) lattice isomorphic to the face lattice of an oriented matroid is called OM lattice. A lattice
isomorphic to some tope cell [0, T ] in an oriented matroid is called a tope lattice. The face lattice of every
central arrangement of hyperplanes is an OM lattice, and the face lattice of every convex polytope is a tope
lattice. Each constitute the “linear” subclass of the corresponding lattices.

Both lattices enjoy many of nice properties of the “linear” counterpart. In particular, both OM and tope
lattices are shellable, which intuitively means they can be constructed by pasting together faces in such a
way that each pasting part is “nice”. This niceness can be best phrased topologically as ball or sphere of
dimension one less than the pasted face. For example, the boundary of the dodecahedron can be constructed
by pasting the twelve (pentagon) facets in a sequence F1, F2, . . . , F12 is such a way that each pasting part
(∪j−1

i=1 Fi) ∩ Fj ( j = 2, 3, . . . , 12) is topologically a 1-ball except for the last one that is a 1-sphere, see
Figure 1.4.

F1 F2

F3

F4

F5

F6

F7

F12
F11

F10

F9

F8

Figure 1.4: Shelling of a Dodecahedron

The actual definition must pose similar conditions recursively to each pasting part so that we can apply
inductive arguments in proofs.

The notion of shellability goes back to the classical paper of Schläfli, where the shellability of convex
polytopes is used without proof. It was only recently that this nice constructive property of convex polytopes
is proved by Bruggesser and Mani [BM71].
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In order to present the main results, we employ a combinatorial definition of shellability. A poset is JD
if every maximal chains between any two ordered elements have the same height. When a JD poset has the
least element, the dimension d(X) of an element is the height of X minus one. A pure poset P of dimension
d is a JD poset with the least element in which every maximal elements have the same dimension d. The
boundary ∂P of a pure poset P is the set of all elements of dimension d(P ) − 1 contained in exactly one
maximal element together with all elements below.

A poset P is called shellable d-ball if it is a pure poset of dimension d (with d ≥ 0) satisfying either

(SB1) P has the greatest element 1 and ∂P = P − 1 is a shellable (d − 1) sphere; or

(SB2) P has multiple maximal elements and they can be ordered p1, p2, . . . , ps in such a way that

(a) The interval Fj := [0, pj ] is a shellable d-ball for each j = 1, 2, . . . , s; and

(b) (∪j−1
i=1 Fi) ∩ Fj is contained in ∂(∪j−1

i=1 Fi) and it is a shellable (d − 1)-ball.

A poset P is called shellable d-sphere if it is a pure poset of dimension d (with d ≥ −1)satisfying either

(SS1) d = −1 (i.e., P = {0 = 1} ) ; or

(SS2) d ≥ 0 and P has a maximal element q such that both P − q and Q := [0, q] are shellable d-balls and
Q ∩ (P − q) = ∂Q.

Finally a poset P is called shellable if it is either a shellable d-ball or shellable d-sphere. Let us denote by
fk(P ) the number of k dimensional elements of a pure poset P . The following proposition is easily verified
from the definition above.

Proposition 1.8 (The Euler-Poincaré Relation for Shellable Posets).

(a) If P is a shellable d-ball, then
∑d

i=−1(−1)ifi(P ) = 0.

(b) If P is a shellable d-sphere, then
∑d

i=−1(−1)ifi(P ) = (−1)d.

A generalization, due to Edmonds-Fukuda-Mandel [Fuk82, Man82], of the shellability theorem [BM71]
of convex polytopes is valid, implying the Euler-Poincaré relation for tope lattices.

Theorem 1.9 (Shellability of Tope Lattices). Every tope lattice of dimension d is a shellable d-ball.

The proof is a natural extension of the elegant and constructive proof for the convex polytope case by
Bruggesser and Mani. The idea is very simple and best understood graphically. Let L be an oriented line
which intersects with a given convex polytope P . (Here P should be considered as the set of faces.) We
assume L is in general position so that it intersects with the affine hulls of each facets of P at distinct points.

Figure 1.5 (a) illustrates such a line L for the dodecahedron example. Now, we traverse this line,
starting from an interior point, following the given orientation. By considering the two points at infinity are
“joined”, we return to the starting point after crossing every facet hyperplanes. This traverse generates a
natural ordering of the crossing points, say z1, z2, . . . , zm, and thus the associated ordering of the facets,
F1, F2, . . . , Fm. An ordering of facets arising this way is called a line shelling of P , and turns out to be a
right shelling order.

In order to prove that a polytope P is shellable, we prove a stronger statement that every visible and
invisible parts of P are shellable. Here, for a given point (eye location) z ∈ Rd, let

∂P+(z) = {F : F is a visible face from z} (a visible part)

∂P−(z) = {F : F is a hidden face from z}. (a hidden part)

(Note that a face lying on both visible and hidden facets are considered both visible and hidden.) This
crucial part of the proof is illustrated in Figure 1.5 (b). Namely, to prove the part ∪4

i=1Fi (which is visible
from any point beyond z4 and before z5) shellable, we must prove the pasting part (∪3

i=1Fi)∩F4 is shellable.
But this part is in fact a visible part of the facet F4 from the point z4. This is the key idea to make an
inductive argument work.
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z1

z3

z2

z4

z5

z12

z4

L

F4

(a)

(b)

Figure 1.5: A General Line Through Dodecahedron

A correct abstraction of this line shelling is the notion of tope-graph shelling. In the prove Theorem 1.9
we use a directed path from the tope of all +’s to its negative to induce an order of elements of E. It is not
difficult to foresee that the notion of visible and hidden parts of a polytope is naturally extended to tope
cells. A formal proof will be give in a later section.

After proving the shellability of tope lattices, Theorem 1.9, it is quite simple to prove the shellability of
OM lattices. This was first proved by Lawrence.

Theorem 1.10 (Shellability of OM Lattices). Every OM lattice of dimension d is a shellable d-ball.

The key idea of Lawrence is very simple. In order to prove the shellability of an OM lattice, it is essential
to construct a shelling ordering of all topes. A Lawrence sequence is a linear ordering of all topes T0, T1, T2,
. . . , Tt such that the distance between each tope Tj from the initial T0 is nondecreasing with j. Here the
distance between two topes T and T ′ is |D(T, T ′)|.

Figure 1.6 illustrates distances of each topes from a tope numbered 0. Starting with the initial 0 tope,
then adding any sequence of distance 1 topes, any sequence of distance 2 topes, 3 topes, etc., we obtain a
Lawrence shelling of the OM lattice. A formal proof is given in a later section, but it is a good exercise to
show that this ordering is a shelling ordering.
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Figure 1.6: Partition of Topes by Distance From a Fixed Tope

1.8 Complexity of Oriented Matroids and Arrangements

For an oriented matroid M = (E,F) of dimension d, fk(M) denotes the number of k-faces in M , for each
−1 ≤ k ≤ d. We shall use m to denote the cardinality of E. The f -vector f(M) of M is defined as
(f0(M), f1(M), . . . , fd−1(M)). Note that f0 is the number of vertices and fd is the number of topes.

The first result is the exact upper bound for each fk, due to [Buc43, Zas75, Ver77].

Proposition 1.11. Let M = (E,F) be an oriented matroid of dimension d and let m = |E|. Then

fk(M) ≤ 2

bd/2c
∑

i=0

(

m
d − 2i

) (

d − 2i
d − k

)

∀0 ≤ k ≤ d.(1.1)

Furthermore, the equality holds if and only if M is nondegenerate, i.e., every vertex has exactly d zero
components.

The next theorem states how the face number fk can be bounded by the number fd of topes.

Theorem 1.12 ([FST91]). Let M = (E,F) be an oriented matroid of dimension d. Then

fk(M) ≤

(

d
k

)

fd(M) ∀0 ≤ k ≤ d.(1.2)

Some special cases of these inequalities include:

fd−1(M) ≤ d fd(M)(1.3)

f0(M) ≤ fd(M).(1.4)

The last inequality immediately implies that the f -vectors of oriented matroids constitute a considerably
different class from the f -vectors of convex polytopes, since the number of vertices can be much larger than
that of facets in convex polytopes, e.g. hypercubes.

These inequalities are useful when we design efficient algorithms for various problems in arrangements
and oriented matroids, discussed in Chapter 2. For example, we obtain a polynomial algorithm for generating
all faces from the set of topes. This algorithm can be used to efficiently check whether a given set of sign
vectors is the set of topes of an oriented matroid.

Also, this face enumeration algorithm serves as one of the two key components to design a polynomial
algorithm for the face enumeration problem in arrangements of hyperplanes, Geometric Computation 1.1.

In order to prove the main theorem, Theorem 1.12, we use inductive arguments on d and m. We shall
present the key lemma without proof here.

For this, let us define two basic operations on sign vectors.

For a set F of sign vectors on E, and for any subset R of E, we define two sets:

F\R = {YE\R : Y ∈ F}(1.5)

F/R = {YE\R : Y ∈ F and YR = 0}(1.6)
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It is straightforward to verify that if F is the set of faces of an oriented matroid M , then both pairs

M \R := (E\R,F\R)(1.7)

M/R := (E\R,F/R)(1.8)

are oriented matroids. M \R is called the minor of M obtained by deleting R, and M/R the minor of M
obtained by contracting R.

Lemma 1.13 ([FST91]). Let M = (E,F) be an oriented matroid of dimension d with m ≥ d + 2. Then
for any element e ∈ E such that dim(M \e) = d,

fk(M) ≤ fk(M \e) + fk(M/e) + fk−1(M/e) ∀0 ≤ k ≤ d.

Furthermore, if M is simple (i.e., has no loops and no parallel elements),

fd(M) = fd(M \e) + fd−1(M/e).

These recursive relations are intuitively obvious by looking at arrangements of spheres in the 2-sphere
S2. But proving the lemma for the linear case by intuition in general dimension is quite erroneous. Using
the oriented matroid axioms, we do not (and in fact cannot) depend on particular figures or intuition when
we prove this kind of geometric theorems.

Theorem 1.12 can be strengthened in various ways. One such extension is the following, which appears
to be considerably harder to prove.

Theorem 1.14 ([FTT93]). Let M = (E,F) be an oriented matroid of dimension d. Then for any 0 ≤ j <

k ≤ d, the average number of j-subfaces of a k-face is less than or equal to 2k−j

(

k
j

)

. Moreover, equality

holds if and only if j = 0 and k = 1.

Using the fact that each (k − 1)-face is a subface of at least 2(d − k + 1) k-faces, we have the following
corollary.

Corollary 1.15. Let M = (E,F) be an oriented matroid of dimension d. Then

fk−1(M) ≤
k

d − k + 1
fk(M) ∀0 < k ≤ d.(1.9)

Simple special cases include the following inequalities:

fk(M) ≤ fd−k(M) ∀0 ≤ k ≤ bd/2c,(1.10)

which shows that the upper half of the face lattice F̂ is always larger than the lower half. For example,
Figure 1.7 shows a face lattice of a degenerate 3-dimensional oriented matroid with 6 elements. More precisely
this is the linear oriented matroid of the column space of the matrix

A =

















2 −1 1 0
−2 −2 2 1
−2 −1 −1 −1
2 1 2 2
0 −3 3 1
2 −1 2 1

















.
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42

94

72

20

0

1

= f3

= f1

= f0

Figure 1.7: Face Lattice of a 3-dimensional OM

There are relatively few results for general hyperplane arrangements, since the classical mathematics
focused mostly on problems in nondegenerate (simple) arrangements. Certainly the theory of matroids and
oriented matroids has been useful in finding and proving new results in the general degenerate cases.
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1.9 Duality

There is a natural notion of duality in vector subspaces. For a given vector subspace V of RE , the orthogonal
dual space V ⊥ of V is the set of vectors orthogonal to all vectors in V . The basic duality says: V ⊥ is again
a vector subspace and its dual V ⊥⊥ is V (as long as |E| is finite).

This section introduces the notion of duality in oriented matroids that generalizes the duality of vector
subspaces. The first key fact is the set σ(V ⊥) of sign vectors of the dual space V ⊥ is uniquely determined
by the set σ(V ) of sign vectors of the original space V . To show this, we define orthogonal relation for sign
vectors.

For two sign vectors X and Y on a finite set E are said to be orthogonal (denoted by X ∗ Y ) if either

X ∩ Y = ∅ ; or(1.11)

there exist two elements f , g ∈ X ∩ Y such that Xf = Yf and Xg = −Yg .(1.12)

For any set F of sign vectors on E, its dual space F∗ is defined as the set of vectors orthogonal to all vectors
in F :

F∗ = {X ∈ {+, 0,−}E : X ∗ Y ∀Y ∈ F}.(1.13)

If two real vectors x and y of RE are orthogonal, so are their sign vectors σ(x) and σ(y). This implies
that if V is a vector subspace of RE , σ(V ⊥) ⊆ σ(V )∗. The following theorem says they are equal.

Theorem 1.16. For any vector subspace V of RE, σ(V )∗ = σ(V ⊥).

The most important message of this theorem is: for any vector subspace V , its oriented matroid σ(V )
contains the complete information of the oriented matroid of the orthogonal dual space. As a generalization
of the property V ⊥⊥ = V , we have:

Theorem 1.17 (OM Duality). Let M = (E,F) be an oriented matroid on E. Then the following state-
ments hold.

(a) the pair M∗ := (E,F∗) is an oriented matroid, called the dual of M ;

(b) the dual M∗∗ of the dual is the original M , that is, F∗∗ = F .

The following claims that deletion and contraction are dual operations.

Theorem 1.18. Let M = (E,F) be an oriented matroid on E. For any subsets R, S of E the following
statements hold.

(a) (M \R)∗ = M∗/R;

(b) (M/S)∗ = M∗\S.

For a system of linear inequalities, there are so-called “theorems of alternatives”. These theorems state
necessary and sufficient conditions for inconsistency that can be verified efficiently. Farkas’ Lemma is perhaps
most well known among them. We shall write below a disguised version of Farkas’ Lemma.

Theorem 1.19. For any vector subspace V of RE, and for any fixed index g ∈ E, exactly one of the
following statements holds:

(a) ∃y ∈ V such that y ≥ 0 and yg > 0;

(b) ∃x ∈ V ⊥ such that x ≥ 0 and xg > 0.

One can derive more familiar forms of alternative theorems by setting V to be of a particular matrix
representation. For instance, if V ⊥ is represented by

V ⊥ = {x ∈ RE : [
E−g

A −
g

b] x = 0 },

then the theorem yields Farkas’ Lemma:
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Theorem 1.20 (Farkas’ Lemma). For any matrix A ∈ Rm×d and any vector b ∈ Rm, exactly one of the
following statements hold:

(a) ∃z ∈ Rm such that zT A ≥ 0 and zT b < 0.

(b) ∃x ∈ Rd such that x ≥ 0 and A x = b;

It turns out that a combinatorial generalization of this theorem needs very little assumptions.

Theorem 1.21 (Farkas’ Lemma for OM’s). Let F be a set of sign vectors on a finite set E satisfying
(F2) and (F3). Then for any fixed index g ∈ E, exactly one of the following statements holds:

(a) ∃Y ∈ F such that Y ≥ 0 and Yg > 0;

(b) ∃X ∈ F∗ such that X ≥ 0 and Xg > 0.

For a subset R of E and for a sign vector Y on E, we denote by RY the sign vector on E obtained from
Y by reversing signs on R. Similarly, for a set F of sign vectors on E, we denote by RF the family

RF = {RY : Y ∈ F }.(1.14)

One can easily verify:

(RF)∗ =R (F∗).(1.15)

Also, if M = (E,F) is an oriented matroid,

RM := (E,RF)(1.16)

is also an oriented matroid. We say RM is the oriented matroid obtained from M by reversing signs on R.
When F is an oriented matroid, OM Farkas’ Lemma can be strengthened by Theorem 1.18 and the

remarks above to yield the following theorem, known as the Coloring Lemma.

Corollary 1.22 (Coloring Lemma for OM’s). Let F be the set of faces (covectors) of an oriented matroid
on a finite set E. Then for any partition (“coloring”) of E into disjoint subsets R, G, B, W and for any
fixed index r ∈ R ∪ G, exactly one of the following statements holds:

(a) ∃Y ∈ F such that YR ≥ 0, YG ≤ 0, YB = 0 and Yr 6= 0;

(b) ∃X ∈ F∗ such that XR ≥ 0, XG ≤ 0, XW = 0 and Xr 6= 0.

The Coloring Lemma was first formulated for digraphs and certain combinatorial structure (called di-
graphoids) more general than digraphs by Minty [Min66]. The theorem above can be considered as a natural
extension of Minty’s results. Let D = (V, E) be a digraph. For any nonempty subset S of V , define
δ+(S) (δ−(S)) as the set of edges leaving (entering, respectively) S. The cut determined by S is the union
δ(S) := δ+(S) ∪ δ−(S) The cut vector cut(S) of S is simply the (+1,−1, 0) incidence vector on E whose
+1 and −1 components are exactly δ+(S)+ and δ−(S). The linear space generated by all cut vectors in D
is called the cut space V (D) of D. The orthogonal dual space V (D)⊥ is the cycle space of D, the space
generated by the incidence vectors of cycles of D.

Considering M as the linear oriented matroid of V (G), the Coloring Lemma yields Minty’s theorem for
digraphs:

Corollary 1.23 (Minty’s Coloring Lemma for Digraphs). Let D = (V, E) be a digraph. For any
partition (“coloring”) of edges E into disjoint subsets R, G, B, W and for any fixed edge r ∈ R, exactly one
of the following statements holds:

(a) there exists a cut K = δ(S) in D containing r such that all edges in K ∩R (“red” edges) are leaving S,
all edges in K ∩G (“green” edges) are entering S, and it contains no edges of W (contains no “white”
edges);

(b) there exists a cycle C in D containing r such that all edges in C ∩R (“red” edges) are directed equally,
all edges in C ∩ G (“green” edges) are directed against r, and it contains no edges in B (contains no
“black” edges).
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1.10 Tope Graphs and Cocircuit Graphs

By Proposition 1.2, there are two graphs naturally associated with any oriented matroid. The first one is
the tope graph TG(M) = (T ≡ Fd,Fd−1) where the nodes are the topes and two topes T , T ′ are adjacent
if they have a common (d − 1)-face. The second one is the cocircuit graph CG(M) = (V ≡ F0,F1) where
the nodes are the vertices (cocircuits) of M and two vertices are adjacent if they are the two 0-faces of some
1-face.

Two oriented matroids M = (E,F) and M ′ = (E′,F ′) are called isomorphic if the two posets F and F ′

are isomorphic.
We shall list below some fundamental theorems on tope graphs and cocircuit graphs.

Theorem 1.24 ([BEZ90, CFdO00, BFF01]). Let M = (E,F) be an oriented matroid of dimension d.
Then the following statements hold:

(a) The tope graph TG(M) determines the oriented matroid up to isomorphism.

(b) The cocircuit graph CG(M) determines the oriented matroid up to isomorphism if the oriented matroid
is nondegenerate (uniform). Furthermore, there exists a degenerate (non-uniform) oriented matroid
whose cocircuit graph does not determine the oriented matroid.

The fact (a) above is the motivation of the following open problem which is closely related to Open
Problem 1.1.

Open Problem 1.2 Tope Graph Characterization

Is there any simple (graph theoretical) characterization of the tope graphs of oriented matroids?

While the characterization problem is open in general, there exists a polynomial-time algorithm [FST91]
to check whether a given graph is the tope graph of some oriented matroid. The algorithm exploits the fact
that the faces of an oriented matroid can be generated by the set of topes in polynomial time. This suggests
that it is likely that there is a good characterization of tope graphs.

Recently, a similar result was obtained for the cocircuit graphs of nondegenerate (uniform) oriented
matroids. The paper [BFF01] contains a polynomial-time algorithm to check whether a given graph is the
cocircuit graph of some uniform oriented matroid.

A natural graph theoretical question one might ask is: what are the connectivities of the tope graph and
the cocircuit graphs?

Theorem 1.25 ([CF93]). Let M = (E,F) be an oriented matroid of dimension d. Then the following
statements hold:

(a) The tope graph TG(M) is (d + 1)-connected.

(b) The cocircuit graph CG(M) is 2d-connected.

The m-cube Qm is the graph with vertex set {1,−1}m where two vertices are adjacent if they are different
in exactly one component. When the dimension is greater than two, the tope graphs and the cocircuit graphs
constitute disjoint classes of graphs by the following.

Proposition 1.26 ([FH93]). Let M = (E,F) be an oriented matroid of dimension d ≥ 3. Let m =|E |.
Then the following statements hold:

(a) The tope graph TG(M) is bipartite, and isometrically embeddable in the m-cube Qm.

(b) The cocircuit graph CG(M) contains a K3 (triangle) as a vertex-induced subgraph, and thus is not
bipartite.

A much stronger statement can be proved for the statement (b) if the oriented matroid is linear: the
cocircuit graph CG(M) contains a complete graph Kd+1, see [Sha79]. Las Vergnas [Ver80] conjectured that
this is true for nonlinear oriented matroids as well.

A graph G is called antipodal if for each vertex v there is a unique vertex v such that distance(v, u) <
distance(v, v) for all neighbors u of v.
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Proposition 1.27 ([FH93]). The tope graph of an oriented matroid is antipodal.

Now we present a good characterization of tope graphs of oriented matroids of dimension at most 2.

Theorem 1.28 ([FH93]). A graph G is isomorphic to the tope graph of an oriented matroid of dimension
d ≤ 2 if and only if G is isometrically embeddable in an m-cube, antipodal and planar.

Figure 1.8 shows the tope graph of an oriented matroid of dimension 2 and the tope graph of a non-
matroidal acycloid. The second graph has similar structures as the first one in the sense that it is isometrically
embeddable in the 5-cube and antipodal. However the crucial difference is: the first one is planar but the
second one is not.

(+,+,+,+,+)

(-,-,-,-,-)

1

2

3

4

5

(-,-,-,-,-)

(+,+,+,+,+)

1

2

3

4

5

The Tope Graph of
an Oriented Matroid
of dim 2

The Tope Graph of
an Acycloid
(non-Matroidal)

Figure 1.8: Tope graphs of an OM and an Acycloid

Observe that the tope graph of a linear oriented matroid of dimension d is isomorphic to the graph of
a (d + 1)-dimensional zonotope. The characterization above is a sort of the zonotope analogue of Steinitz’
Theorem (Theorem 0.9) for 3-polytopes. But it is not exactly, since there are nonlinear 2-dimensional
oriented matroids, as we constructed in Section 1.3. Thus one might be tempted to ask:

Is there any good characterization of the graphs of 3-zonotopes?

The question is still open but it is extremely unlikely that such a characterization exists. In fact, the problem
of determining whether a given graph is the graph of a 3-zonotope is NP-hard. This result is due to Mnëv
who proved a stronger result that the stretchability of pseudolines is equivalent to the existential theory of
reals, see [Mnë88, Sho91].
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1.11 Constructing Nonlinear Polytopes: Lawrence’s Construction

A lattice P is called polytopal if it is isomorphic to the face lattice of some polytope.
For an oriented matroid M = (E,F), a cell in M is the interval [0, Y ] some face Y ∈ F . The canonical

cell F+(M) is the set of nonnegative faces of M .
When M is linear and represented by matrix A by F = σ(C(A)) with C(A) being the column space

of A, the canonical cell PM is polytopal since it is isomorphic to the face lattice of the polyhedral cone
P (A) = {x : A x ≥ 0} with the empty face excluded (which is the face lattice of some polytope). Thus every
canonical cell (and all cells) of a linear oriented matroid is polytopal.

The main purpose of this section is to answer the fundamental question: does there exist any non-
polytopal OM cell? Clearly such a cell, if exists, must be a cell of a nonlinear OM.

In Section 1.3 we presented a certain construction of nonlinear oriented matroids. The construction
makes use of any known arrangement of pseudolines in the plane that are not stretchable. Each cell in such
a construction is very primitive and easily seen to be polytopal.

The idea of the construction of nonlinear OM’s was in a sense not quite new. We could simply use
some old known technique. When the existence of a nonlinear cell was still open in the late seventies,
Lawrence created a very simple and geneous idea, with which he answered the question positively. With his
construction, for every OM M on m elements, there is the associated OM Λ(M) (called a Lawrence matroid)
on 2m elements whose canonical cell F+(Λ(M)) encodes the complete information of M . In particular, the
importance and the beauty of the construction can be explained by the fact that M is nonlinear if and only
if F+(Λ(M)) is non-polytopal.

In order to present the construction, let M = (E,F) be an oriented matroid with |E| = m. For each
element e in E, we denote by e′ the copy of e, and let E ′ be the copy {e′ : e ∈ E} of the set E. For each
sign vector Y on E, let Ỹ denote the sign vector on E ∪E ′ whose E part is exactly Y and whose E ′ part is
the “negative of Y ”. More precisely, Ỹ is the sign vector on E ∪ E ′ such that

Ỹe = Ye for each e ∈ E(1.17)

Ỹe′ = −Ye for each e ∈ E.(1.18)

Then, we define the oriented matroid M̃ = (E ∪ E′, F̃) by

F̃ := {Ỹ : Y ∈ F}.(1.19)

Thus the matroid M̃ is the double copy of M with opposite signs for the second part. We shall call this
matroid M̃ , the symmetric double of M .

Finally, the Lawrence matroid Λ(M) of M is defined as the oriented matroid
(

(̃M∗)
)∗

, the dual of the

symmetric double of M∗.
Since the dual and the symmetric doubling operations are clearly linearity preserving operations, the

Lawrence matroid is linear if M is linear. In fact one can nicely present the Lawrence construction in terms
of matrix representation for the linear case.

Proposition 1.29 (Lawrence Matrix [BS90]). Let M be a linear oriented matroid on a finite set E
with an m × r representation matrix A. Then the Lawrence matroid Λ(M) is the linear oriented matroid

representable by the (2m) × (m + r) matrix Λ(A) =

[

I A
I 0

]

.

Proof. Let A be an m× r representation matrix of M . It is sufficient to prove the result for the case that A
is column full rank, since the column spaces of A and Λ(A) are invariant under the removal of any redundant
columns of A. Then there is an m × (m − r) representation matrix A∗ of M∗, and the matrix of (m − r)

independent columns, B =

[

A∗

−A∗

]

is a representation matrix of (̃M∗). Any matrix consisting of (m + r)

independent column vectors that are orthogonal to every column of B is a representation matrix of the
Lawrence matroid Λ(M). It is easy to see that the given matrix satisfies the condition.

For an oriented matroid M , the canonical cell F+(Λ(M)) of the Lawrence matroid Λ(M) is called the
Lawrence cell associated with M . The main theorem of this section is the following.
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Theorem 1.30 (Lawrence Construction, see [BS90]). An oriented matroid M is nonlinear if and only
if the Lawrence cell F+(Λ(M)) is non-polytopal.

The theorem is a direct consequence of the following two lemmas:

Lemma 1.31. If M is an oriented matroid and the Lawrence cell F+(Λ(M)) is polytopal, then there exists
a real matrix A such that the matrix Λ(A) represents Λ(M).

Lemma 1.32. An oriented matroid M is uniquely determined by the Lawrence cell F+(Λ(M)).

Lawrence’s Theorem 1.30 is a very powerful theorem. By this, the construction of a new nonlinear
oriented matroid yields automatically a new nonpolytopal cell. Since each OM cell is known to be a sphere
(by the shellability theorem, Theorem 1.9) , Lawrence’s Λ construction can be used as a tool to construct
and study “almost polytopal” but nonpolytopal spheres.

One might feel that the Lawrence construction is difficult to visualize geometrically. The dimension of
a Lawrence cell is quite large. When an oriented matroid M has m elements and rank r (i.e. dimension
r−1), the Lawrence matroid has 2m elements and rank m+r. This means that for the non-Pappus oriented
matroid M with r = 3 and m = 8, constructed in Section 1.3, the associated Lawrence matroid has rank 11
and 16 elements, and the non-polytopal cell has dimension 10 and 16 facets.

Nevertheless, there is a nice way to see the relation between M and F+(Λ(M)) algebraically. In a sense,
the OM lattice F is completely embedded in the Lawrence cell. In order to state this relation more rigorously,
we need some definitions.

Following [BS90], the cover poset U(M) of an oriented matroid M = (E,F) is the set of pairs (Y, I)
where Y ∈ F\I , together with the partial order �

(Y, I) � (Z, J) if and only if I ⊆ J and YJ � ZJ .(1.20)

Theorem 1.33 ([BS90]). For any oriented matroid M , the map

φ :(Y, I) 7−→ ((Y + ∪ I) ∪ (Y − ∪ I)′, ∅)(1.21)

is an order-preserving isomorphism from U(M) to F+(Λ(M)). Consequently, the conver poset U(M) is
isomorphic to the Lawrence cell associated with M .
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1.12 Oriented Matroid Programming

One of the strongest motivation to create the notion of oriented matroid stems from Rockafeller’s insights
[Roc69] to foresee a combinatorial extension of the strong duality theorem in linear programming. Folkman-
Lawrence [FL78] first proved the OM extension of the strong duality theorem, and Bland [Bla77] gave a
constructive proof of the theorem using a finite pivot algorithm to solve the OM programming problem,
a combinatorial abstraction of the linear programming problem. Edmonds-Fukuda [Fuk82] studied OM
programming and found some strange phenomenon of cycling of non-degenerate simplex pivots. This leads
us to define non-Euclidean oriented matroids, a class of “extremely nonlinear” oriented matroids, which will
be presented later in this chapter.

Despite its purely mathematical motivation of extending linear programming theory, the oriented matroid
programming theory is responsible for many discoveries of new finite algorithms for linear programming. The
famous smallest index rule for the simplex method was a byproduct of the pioneering Bland’s work [Bla77].
Several different pivot algorithms were proposed by Edmonds-Fukuda [Fuk82], Todd [Tod85], Terlaky [Ter87]
and Wang [Wan87]. These methods, except for Todd’s algorithm, are completely different from Dantzig’s
simplex method in the sense that they generate neither a sequence of feasible points nor a sequence increasing
(or decreasing) the objective function monotonically. The key idea to ensure the finiteness of these algorithms
is an inductive lemma. It should be also noted that Seidel’s randomized algorithm for linear programming
makes use of basically the same lemma, and it can be considered as a specialization of Bland’s recursive
algorithm [Bla77]. We shall discuss some of these algorithms in Chapter 7.

The OM programming has been extended to generalize the quadratic programming (QP) theory and the
linear complementarity (LCP) theory. For this, Todd [Tod84, Tod85] proved that many of the fundamental
theorems in QP and LCP can be generalized in the OM setting. Then, the results have been extended (with
simpler arguments) by Lüthi-Lemke [LL86], Klafszky-Terlaky [KT89] and Fukuda-Terlaky [FT92].

In this section, we shall present two of the most important theorems in OM programming, the duality
theorem in OM programming and the duality theorem in OM complementarity.

LP Duality and OM Extension

Linear programming problem can be defined in various way. The form we choose here is quite different from
any of the well-known canonical forms but it is perhaps the simplest and most symmetric.

Let E be a finite set and let V be a vector subspace of RE . For any two fixed elements f and g of E,
the linear programming problem is find x to

maximize xfLP(V, g, f)

such that x ∈ V

xj ≥ 0 ∀j ∈ E\{f, g}

xg = 1.

We call f the objective element and g the infinity element . A vector x satisfying all the constraints is said
to be feasible. A vector z ∈ V is a direction if zg = 0. An unbounded direction is a direction z such that
zj ≥ 0 for all j ∈ E\{f, g}. For a feasible solution x, an direction z is said to be augmenting at x if zf > 0
and zj ≥ 0 for all j ∈ E\{f, g} with xj = 0. Finally, LP is said to be feasible if it admits a feasible solution,
and unbounded if it is feasible and admits an unbounded direction.

In order to get a familiar form of LP, one can simply consider V as the null space of some real d × E
matrix

A =

[

−b A I 0
0 −cT 0 1

]

where the first and the last columns are indexed by g and f , respectively. This LP is equivalent to maximize
cT x subject to A x ≤ b and x ≥ 0. The following theorem is fundamental.

Theorem 1.34 (LP Fundamental Theorem). Every linear program LP(V, g, f) either is infeasible, un-
bounded or has an optimal solution.
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The dual LP problem of the LP(V, g, f) is defined as (V ⊥, f, g), or more explicitly

maximize ygLP(V ⊥, f, g)

such that y ∈ V ⊥

yj ≥ 0 ∀j ∈ E\{f, g}

yf = 1.

Clearly the dual of the dual LP is the primal problem LP (V, g, f). Also, if the primal (dual, respec-
tively) problem admits an unbounded direction, then the dual (primal) problem is infeasible, because of the
orthogonality of V and V ⊥.

For the case that V is given as the null space of the matrix A above, the dual problem is to minimize
bT λ subject to AT λ ≥ c and λ ≥ 0.

Two vectors x and y in RE are said to be complementary (with respect to LP(V, g, f)) if xj = 0 or yj = 0
for all j ∈ E\{f, g}. It is well known and easily shown that if a primal feasible x and a dual feasible y are
complementary then both x and y are optimal solutions.

Theorem 1.35 (LP Duality Theorem). For any dual pair of linear programs LP(V, g, f) and LP(V ⊥, f, g),
exactly one of the following two statements holds:

(a) There exists a primal feasible x and a dual feasible y that are complementary;

(b) There exists either a primal unbounded direction z or a dual unbounded direction w (thus either the
primal or the dual problem is infeasible).

This cerebrated theorem can be extended very naturally to oriented matroids, simply by replacing V by
an oriented matroid. Given, an oriented matroid M = (E,F) and two distinguished elements g and f , an
oriented matroid programming (OMP) is to find X :

maximize fOMP(M, g, f)

such that X ∈ F

Xj ≥ 0 ∀j ∈ E\{f, g}

Xg = +.

Here we say X maximizes f if there is no augmenting direction Z at X , i.e., Z ∈ F such that Zg = 0,
Zf = + and Zj ≥ 0 for all j ∈ E\{f, g} with Xj = 0. An unbounded direction is a vector Z ∈ F such that
Zg = 0 and Zf = + and Zj ≥ 0 for all j ∈ E\{f, g}. An OMP is said to be feasible if it admits a feasible
solution, and unbounded if it is feasible and admits an unbounded direction.

Following the definition of the dual LP, we define the dual problem P ∗ of P =OMP(M, g, f) as OMP(M∗, f, g).
That is, the dual problem is obtained from the primal problem P by dualizing the oriented matroid and
by exchanging the objective and the infinity elements. Two sign vectors X and Y on E are said to be
complementary if Xj = 0 or Yj = 0 for all j ∈ E \{f, g}. It follows from the coloring lemma, Theorem
1.22, that if a primal feasible X and a dual feasible Y are complementary then both X and Y are optimal
solutions.

Now we can state the two most important theorems for OMP’s.

Theorem 1.36 (OMP Fundamental Theorem). Every OMP either is infeasible, unbounded or has an
optimal solution.

Theorem 1.37 (OMP Duality Theorem). For any dual pair of OMP’s P and P ∗, exactly one of the
following two statements holds:

(a) There exists a primal feasible X and a dual feasible Y that are complementary;

(b) There exists either a primal unbounded direction Z or a dual unbounded direction W .

Note the this duality theorem follows directly from the first theorem, Theorem 1.36, and the coloring
lemma. We give two proofs for the first theorem, one inductive and the other algorithmic in Chapter 7.

For both proofs, the following induction lemma is essential. For P =OMP(M, g, f), and for any element
e ∈ E\{f, g}, we define two subproblems P\e and P/e as OMP(M\e, g, f) and OMP(M/e, g, f), respectively.
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Lemma 1.38 (OMP Induction Lemma). Let P be any OMP(M, g, f), and let e be any element in
E\{f, g}. Then the following statements hold.

(a) If both P \e and P/e have optimal solutions, then P has an optimal solution;

(b) If P \ e has an optimal solution and P/e is infeasible, then P either has an optimal solution or is
infeasible;

(c) If P\e is unbounded and P/e has optimal solution, then P either is infeasible or has an optimal solution;

(d) If P \e is unbounded and P/e is infeasible, then P is either infeasible or unbounded.

Linear Complementarity and Extensions to OM

One natural way to generalize the OMP duality theorem is to extend the duality theorems in convex quadratic
programming and linear complementarity problem to oriented matroids. We shall present only the duality
theorem of oriented matroid complementarity without showing that it is a generalization of the OMP duality
theorem. For the detail, the reader must read Chapter 7.

A linear complementarity problem (LCP) is to find vectors w and z in Rn satisfying

w = Az + b, z ≥ 0, w ≥ 0
zT w = 0.

LCP (A, b)

It is known that LP can be reduced to an LCP with a positive semidefinite (PSD-) matrix A. A fundamental
theorem in LCP [CD68, Lem68] says that if A is positive semidefinite or P-matrix, then either the LCP(A, b)
has a solution or the LCP without the complementarity conditions zT w = 0 is infeasible. Cottle, Pang and
Venkateswaran [CPV89] extended this theorem to the class of sufficient matrices. For the definition of these
matrix classes, see Chapter 7. We shall present here a further generalization of the theorem.

In order to write the problem LCP (A, b) in a form that will be convenient for extending it to the setting
of oriented matroids, we set

V (A, b) = {x ∈ R2n+1 | [−b −A I ] x = 0}.

We denote the components of a vector x ∈ R2n+1 by x = (x0, x1, x2, . . . , x2n)T instead of the usual x =
(x1, x2, . . . , x2n+1)

T , while we denote a vector x ∈ R2n by x = (x1, . . . , x2n)T . Then, one can rewrite LCP
(A, b) as

find x ∈ V (A, b) satisfying(1.22)

x ≥ 0, x0 = 1(1.23)

xi · xn+i = 0 for all i = 1, . . . , n.(1.24)

A vector x in R2n or R2n+1 is called complementary if the complementarity condition (1.24) is satisfied. A
solution to the LCP is a nonnegative complementary vector x in V (A, b) with x0 = 1.

For a nonnegative integer n, let E2n denote a set of 2n elements partitioned into prescribed n pairs; for
each e ∈ E2n there is a unique element e in E2n, called the complement of e such that e 6= e and e = e. For
a subset S of E2n let S = {e | e ∈ S}. A subset S is called complementary if S ∩ S = ∅. We use Ê2n to
denote E2n ∪ {g} for a given E2n and a distinguished element g which is assumed to be not in E2n.

One canonical choice of E2n and Ê2n is {1, 2, . . . , 2n} and {0, 1, 2, . . . , 2n} with g = 0, respectively, where
i = i + n if 1 ≤ i ≤ n, and i = i − n if n < i ≤ 2n.

For a given oriented matroid M = (Ê2n,F) with n ≥ 0, the OM complementarity problem is to

find X ∈ F satisfying
X ≥ 0, Xg = +
Xe · Xe = 0 for all e ∈ E2n.

OMCP(M)

A signed vector X on E2n or on Ê2n is called complementary if the last condition is satisfied, called strictly
sign-preserving (s.s.p.) if

Xe · Xe ≥ 0 for all e ∈ E2n and(1.25)

Xf · Xf > 0 for some f,(1.26)
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and called strictly sign-reversing (s.s.r.) if

Xe · Xe ≤ 0 for all e ∈ E2n and(1.27)

Xf · Xf < 0 for some f.(1.28)

Theorem 1.39 (OMCP Duality Theorem). Let M = (Ê2n,F) be an oriented matroid satisfying the
following conditions:

either F contains no s.s.r. vector X with Xg = 0
or F contains no s.s.p. vector X with Xg 6= 0 and,

(1.29)

either F∗ contains no s.s.r. vector Y with Yg = 0
or F∗ contains no s.s.p. vector Y with Yg 6= 0.

(1.30)

Then exactly one of the following statements holds:

(a) there exists a nonnegative complementary vector X in F with Xg = +;

(b) there exists a nonnegative complementary vector Y in F ∗ with Yg = +.

We call an oriented matroid M ′ = (E2n,F ′) sufficient if F ′ contains no s.s.r. vector and its dual (F ′)∗

contains no s.s.p. vector. If M = (Ê2n,F) is an single-element extension of a sufficient oriented matroid
M ′ = (E2n,F ′) by g, i.e., M\g = M ′, then clearly M satisfies the conditions (1.29) and (1.30) of Theorem 1.39.
Therefore we have the following corollary of the duality theorem.

Corollary 1.40. Let M = (Ê2n,F) be any single-element extension of a sufficient oriented matroid M ′ by
g. Then exactly one of the following statements holds:

(a) there exists a nonnegative complementary vector X in F with Xg = +;

(b) there exists a nonnegative complementary vector Y in F ∗ with Yg = +.

For the elementary proof of Theorem 1.39, what we need is the notion of minors of OMCP, which was
introduced by Todd [Tod84]. Let M = (Ê2n,F) be an oriented matroid with n > 0. For each complementary
element e of E2n, let M(e) = (Ê2n \({e, e}),F(e)) denote the oriented matroid M \e/e, which is called a
complementary minor of M . The OMCP duality theorem follows immediately from the following two
lemmas.

Lemma 1.41. Let M = (Ê2n,F) be an oriented matroid satisfying the conditions (1.29) and (1.30) of
Theorem 1.39. Then the complementary minor M(e) of M satisfies the same conditions for any element e
of E2n.

Lemma 1.42. Let M = (Ê2n,F) be an oriented matroid satisfying the conditions (1.29) and (1.30) of
Theorem 1.39. Then for each e ∈ E2n, at most one of the following four statements holds:

(a1) ∃ a complementary vector X1 in F with X1\{e, e} ≥ 0, X1
e = − and X1

g = +;

(a2) ∃ a complementary vector X2 in F with X2\{e, e} ≥ 0, X2
e = − and X2

g = +;

(b1) ∃ a complementary vector Y 1 in F∗ with Y 1\{e, e} ≥ 0, Y 1
e = − and Y 1

g = +;

(b2) ∃ a complementary vector Y 2 in F∗ with Y 2\{e, e} ≥ 0, Y 2
e = − and Y 2

g = +.
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1.13 Topological Interpretation of Oriented Matroid Programming

The definitions of OMP and OMCP in the previous section were a natural abstraction of LP and LCP, and
it enable us to present a generalization of the LP and LCP duality theorems quickly.

Yet, these definitions do not give much intuitive ideas about the generalized optimization problems. In
this section, we shall interprete OMP topologically, using the topological representation given in Section 1.2.

First we give few definitions which will be useful for the interpretation. For the sequel of the section, let
M = (E,F) be an oriented matroid and let g and f be two fixed elements of E. We consider the problem
P=OMP(M, g, f). We define two sets

A = {X ∈ F : Xg = +} and(1.31)

A∞ = {X ∈ F : Xg = 0},(1.32)

where A is called the affine space and A∞ is called the infinity space. We shall call a vector in A∞ a
direction. The feasible region of the OMP is the subset of the affine space defined by

P = {X ∈ A : Xj ≥ 0 ∀j ∈ E\{f, g}}.(1.33)

For a feasible vector X ∈ P , a direction ZA∞ is said to be feasible at X if X ◦Z ∈ P . Recall that a direction
Z is called augmenting at X if Zf = + and Zj ≥ 0 for all j ∈ E \{f, g} with Xj = 0. It follows that a
direction Z is augmenting at X if and only if it is a feasible direction and Zf = +.

Now look at a topological representation of M . We assume that M has dimension 2 and thus can be
represented by a sphere system (E, S,A) where S a 2-sphere, and A is a family {{s+

i , s0
i , s

−
i } : i ∈ E} of

partitions satisfying Axioms 1.2. In order to illustrate the OMP, we only need to see the nonnegative part
of the infinity equator sg , which corresponds to the union of A and A∞. The figure below shows the affine
space A as an open disk and the infinity space A∞ as the bounding circle.
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Figure 1.9: The Affine Space, the Infinity Space and Augmenting Directions

The feasible region P is simply the intersection of the nonegative sides of each constraints 1, 2, 3, 4 within
the affince space. What about augmenting directions? The following figure shows the set of augmenting
directions Z for some feasible point X . By definition, this set is the intersection of the nonegative sides of 1
and 2, the positive side of f and the infinity space.
A simple way to characterize an optimal solution is by orienting one dimensional affine flats of the oriented
matroid. Here, an affine flat is the intersection of some equators with the affine space. The empty set is
the only −1 flat, the vertices in the affine space are the 0 flats, and the lines are the minimal affine flats
containing the vertices properly. In our small examples, the lines coincide with the hyperplanes of 1, 2, 3, 4, f ,
the intersection of each equators with the affine space.
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Now we can orient each line generated by the constraint hyperplanes 1, 2, 3, 4. Each affine line either
crosses the objective hyperplane or does not cross it. For the latter case (parallel case), we do not give any
orientation to the line. Whenever a line crosses f , we orient the line from the − side of f to the + side of
f . This orientation is merely the abstraction of the incremental direction for linear programming. In our
example, all hyperplanes 1, 2, 3, 4 crosses f and all affine lines are oriented as follows:
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+

+

+

X*

It is intuitively obvious that a feasible vertex X∗ is optimal if it is a sink of the directed graph of the
feasible region. But it is not that trivial and a rigorous proof is necessary. Given this, the foundamental
theorem of OMP states that if the feasible region is nonempty, then there exists either a sink (i.e. an optimal
solution) or a feasible line oriented toward infinity (i.e., an unbounded ray).

It is quite natural to extend the simplex method for LP to OMP. The simplex method for OMP produces
a sequence of feasible vertices of the feasible region. In order to make the simplex method finite, it is
important not to produce a cycle of pivots, and thus a cycle of vertices. For this, Bland [Bla77] asked a
question whether there exists a directed cycle of adjacent vertices for some OMP, where two vertices are
adjacent if there is a line containing both. The answer is yes, and an oriented matroid which admits a
directed cycle for some selections of f and g is known to be non-Euclidean.

In the next section, we shall present a construction of non-Euclidean oriented matroids, which was
discovered thanks to the topological interpretation of OMP’s.

1.14 Construction of non-Euclidean OM’s

In order to construct a non-Euclidean OM, we need to work in 3-dimensional space. The simplest construction
starts with the following arrangement of 7 hyperplanes including the infinity plane g, see Figure 1.10. Here,
we have a feasible region in the middle bounded by 6 hyperplanes 1, 2, 3, 4, 5, 6. This region P is a bipyramid
and there is no hyperplane going through the middle horizontal triangle {a, b, c}. Also, we have a infinity
sphere g containing the whole arrangement, corresponding to the infinity space A∞. In the figure, we draw
only a small part of this infinity sphere where the intersections with hyperplane 2 and 5 are shown.

Next we add the objective hyperplane f which is parallel to the triangle {a, b, c} as shown in Figure 1.11.
The optimal solution of the OMP is the top vertex of the bipyramid, and its nonhorizontal edges are oriented
upward and the horizontal edges of the triangle are not oriented. Note that this OMP is an LP since every
hyperplane is linear.
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Figure 1.10: Initial Arrangement of 7 hyperplanes with a bipyramid feasible region

2

5

+

+ g   (= infinity sphere)

a

b

c

f

+

Figure 1.11: Objective element f and the optimum solution X∗

Now, we are at the final stage of the construction, where the three edges of the triangle {a, b, c} will
get a cyclic orientation by deforming the objective hyperplane f . This deformation operation will be called
perturbation and will be shown to preserve the OM-ness.

The deformation will be performed at three infinity points, but by symmetry we only have to explain
one. Since the objective hyperplane f is parallel to the triangle {a, b, c}, it meets the affine lines spanned
by ab, bc and ca at infinity as shown in Figure 1.11. The key idea is simply to deform f at the two infinity
points so that the edge ab gets the orientation from a to b, as shown in Figure 1.12. This deformation must
be done symmetrically at two antipodal infinity points. By applying the same perturbation for other two
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lines, we will get an OMP in which the three feasible vertices form a directed cycle: a → b → c → a.

2

5

+

+ g   (= infinity sphere)

a

b

c

f

+

Figure 1.12: Local deformation of f at infinity
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2 Geometric Computation

This chapter concerns algorithmic aspects of polyhedral geometry and related structures.

2.1 Minkowski-Weyl’s Theorem and Constructive Proofs

Minkowski-Weyl’s Theorem states that every polyhedron has two representations, the (finite) inequality
representation and the (finite) generator reprentation. This theorem is actually of two theorems, Minkowski’s
Theorem states that if a set is given by an inequality representation, then it admits a generator representation,
and Weyl’s Theorem states the reverse.

In this section, we study these theorems in various forms and constructive proofs.

2.1.1 Minkowski-Weyl’s Theorem in Various Forms

Let us recall some definitions. For vectors v1, v2, . . . , vk ∈ Rd, we define conv{v1, v2, . . . , vk} as their convex
hull:

conv{v1, v2, . . . , vk} = {x : x =

k
∑

j=1

λjvj ,

k
∑

j=1

λj = 1 and λj ≥ 0 ∀j = 1, 2, . . . , k},

and define nonneg{v1, v2, . . . , vk) as their nonnegative hull :

nonneg{v1, v2, . . . , vk} = {x : x =
k

∑

j=1

λjvj and λj ≥ 0 ∀j = 1, 2, . . . , k}.

For two subsets P and Q of Rd, P + Q denotes the Minkowski sum of P and Q:

P + Q = {p + q : p ∈ P and q ∈ Q}.

The most general form of Minkowski-Weyl’s Theorem is the following.

Theorem 2.1 (Minkowski-Weyl’s Theorem for Polyhedra). For a subset P of Rd, the following
statements are equivalent:

(a) P is a polyhedron, i.e., P = {x : Ax ≤ b} for some matrix A and vector b ;

(b) P = conv{v1, v2, . . . , vn} + nonneg{r1, r2, . . . , rs} for some vectors v1, v2, . . . , vn and r1, r2, . . . , rs.

In both statements, the “finiteness” of representation is essential. There are two implications in the
theorem. The implication (a) =⇒ (b) is known as Minkowski’s Theorem, and the other (b) =⇒ (a) is
Weyl’s Theorem. These two theorems appear to be significantly different, as remarked by Jack Edmonds.
He pointed out that Minkowski’s theorem can be proved constructively by a simple strongly polynomial
algorithm, while no such proof for Wely’s Theorem is known and every known proof relies on some proof of
Farkas’ Lemma. It should be noted that there is no simple polynomial proof for Farkas’ Lemma. We shall
discuss this issue later in this section.

While this general form of Minkowski-Weyl’ Theorem is most useful for various applications, the following
homogeneous form is mathematically more ellegant and easier to deal with.

Theorem 2.2 (Minkowski-Weyl’s Theorem for Cones). For a subset P of Rd, the following statements
are equivalent:

(a) P is a homogeneous polyhedral cone, i.e., P = {x : Ax ≥ 0} for some matrix A;

(b) P = nonneg{r1, r2, . . . , rs) for some vectors r1, r2, . . . , rs.

The last form is another special case of the first form.

Theorem 2.3 (Minkowski-Weyl’s Theorem for Polytopes). For a subset P of Rd, the following
statements are equivalent:
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(a) P is a bounded and P = {x : Ax ≤ b} for some matrix A and vector b ;

(b) P is a polytope, i.e., P = conv{v1, v2, . . . , vn} for some vectors v1, v2, . . . , vn.

What are the relationships between these three theorems? Do we need to prove three theorems separately?
Of course, not, since there are trivial implications such as Theorem 2.1 =⇒ Theorem 2.3 . Since we are
going to prove the theorem for cones, we need to do the following.

Proposition 2.4. Theorem 2.2 =⇒ Theorem 2.1.

Proof. Exercise.

2.1.2 Minkowski-Weyl’s Theorem and Farkas’ Lemma

In order to prove Minkowski-Weyl’s Theorem, it is important to understand the relation between two sub-
statements in the theorem, Minkowski’s Theorem and Weyl’s Theorem. The main purpose of this section is
to prove they are equivalent under Farkas’ Lemma.

For this purpose, the most convenient form of Farkas Lemma is the following: (Note: We do not prove
Farkas’ Lemma here. But I plan to add a small section to prove it constructively.)

Theorem 2.5 (Farkas’ Lemma). For any matrix A ∈ Rm×d and any vector b ∈ Rm, exactly one of the
following statements hold:

(a) ∃x ∈ Rd such that A x ≥ 0 and bT x < 0;

(b) ∃z ∈ Rm such that z ≥ 0 and bT = zT A.

In order to relate Farkas’ Lemma and Minkowski-Weyl’s Theorem, we first rewrite the latter theorem in
matrix form. Also this matrix form is very convenient for our presentation of algorithms to prove Minkowski’s
Theorem constructively.

A pair (A, R) of real matrices A and R is said to be a double description pair or simply a DD pair if the
relationship

Ax ≥ 0 if and only if x = R λ for some λ ≥ 0

holds. Clearly, for a pair (A, R) to be a DD pair, it is necessary that the column size of A is equal to the
row size of R, say d. The term “double description” was introduced by Motzkin et al. [MRTT53], and it is
quite natural in the sense that such a pair contains two different descriptions of the same object. Namely,
the set P (A) represented by A as

(2.1) P (A) = {x ∈ Rd : Ax ≥ 0}

is simultaneously represented by R as

(2.2) {x ∈ Rd : x = R λ for some λ ≥ 0}.

A matrix A is called a representation matrix of the polyhedral cone P (A). When a cone P is represented
by (2.2), we say R is a generating matrix for P or a matrix R generates the polyhedral cone. Clearly, each
column vector of a generating matrix R lies in the cone P and every vector in P is a nonnegative combination
of some columns of R.

Now we are ready to rewrite Minkowski and Weyl Theorems for cones, Theorem 2.2. Minkowski’s
Theorem states that every polyhedral cone admits a generating matrix.

Theorem 2.6 (Minkowski’s Theorem for Cones). For any m×d real matrix A, there exists some d×n
real matrix R such that (A, R) is a DD pair, or in other words, the cone P (A) is generated by R.

Here again, the nontriviality is in that the row size n of R is a finite number. If we allow the size n to be
infinite, there is a trivial generating matrix consisting of all vectors in the cone. In this respect, the essence
of the theorem is the statement “every cone is finitely generated.”

Weyl’s Theorem is the converse.
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Theorem 2.7 (Weyl’s Theorem for Cones). For any d× n real matrix R, there exists some m× d real
matrix A such that (A, R) is a DD pair, or in other words, the set generated by R is the cone P (A).

Now we show the following basic result using Farkas’ Lemma, Theorem 2.5.

Proposition 2.8. For any real matrices A and R, the pair (A, R) is a DD pair if and only if the pair
(RT , AT ) is a DD pair.

Proof. The proof is left to the reader.

The importance of this proposition is that it is sufficient to prove one of the two theorems, Theorem 2.6
and Theorem 2.7, since one follows directly from the other by the proposition. We give two different proofs
of Minkowski’s Theorem, Theorem 2.6 in the following two sections.

2.1.3 First Proof of Minkowski’s Theorem

In this section, we give a constructive proof of Minkowski’s Theorem using a finite algorithm, known as the
double description (DD) method [MRTT53].

Suppose that an m × d matrix A is given, and let P (A) = {x : Ax ≥ 0}. We call any vector r ∈ P (A)
ray of P (A). The DD method is an incremental algorithm to construct a d × n matrix R such that (A, R)
is a DD pair.

Let K be a subset of the row indices {1, 2, . . . , m} of A and let AK denote the submatrix of A consisting
of rows indexed by K. Suppose we already found a generating matrix R for P (AK), or equivalently (AK , R)
is a DD pair. If A = AK , clearly we are done. Otherwise we select any row index i not in K and try to
construct a DD pair (AK+i, R

′) using the information of the DD pair (AK , R).
Once this basic procedure is described, we have an algorithm to construct a generating matrix R for

P (A). This procedure can be easily understood geometrically and the reader is strongly encouraged to draw
some simple example in the three dimensional space.

The newly introduced inequality Ai x ≥ 0 partitions the space Rd into three parts:

(2.3)
H+

i = {x ∈ Rd : Ai x > 0}
H0

i = {x ∈ Rd : Ai x = 0}
H−

i = {x ∈ Rd : Ai x < 0}.

Let J be the set of column indices of R and let rj denote the jth column of R. The rays rj (j ∈ J) are then
partitioned into three parts:

(2.4)
J+ = {j ∈ J : rj ∈ H+

i }
J0 = {j ∈ J : rj ∈ H0

i }
J− = {j ∈ J : rj ∈ H−

i }.

We call the rays indexed by J+, J0, J− the positive, zero, negative rays with respect to i, respectively. To
construct a matrix R′ from R, we generate new |J+| × |J−| rays lying on the ith hyperplane H0

i by taking
an appropriate positive combination of each positive ray rj and each negative ray rj′ and by discarding all
negative rays.

The following lemma ensures that we have a DD pair (AK+i, R
′), and provides the key procedure for the

most primitive version of the DD method.

Lemma 2.9 (Main Lemma for Double Description Method). Let (AK , R) be a DD pair and let i be
a row index of A not in K. Then the pair (AK+i, R

′) is a DD pair, where R′ is the d × |J ′| matrix with
column vectors rj ( j ∈ J ′ ) defined by

J ′ = J+ ∪ J0 ∪ (J+ × J−), and

rjj′ = (Ai rj)rj′ − (Ai rj′ )rj for each (j, j′) ∈ J+ × J−.

Proof. Let P = P (AK+i) and let P ′ be the cone generated by the matrix R′. We must prove that P = P ′.
By the construction, we have rjj′ ∈ P for all (j, j′) ∈ J+ × J− and P ′ ⊂ P is clear.
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Let x ∈ P . We shall show that x ∈ P ′ and hence P ⊂ P ′. Since x ∈ P , x is a nonnegative combination
of rj ’s over j ∈ J , i.e., there exist λj ≥ 0 for j ∈ J such that

(2.5) x =
∑

j∈J

λjrj .

If there is no positive λj with j ∈ J− in the expression above then x ∈ P ′. Suppose there is some k ∈ J−

with λk > 0. Since x ∈ P , we have Ai x ≥ 0. This together with (2.5) implies that there is at least one
h ∈ J+ with λh > 0. Now by construction, hk ∈ J ′ and

(2.6) rhk = (Ai rh)rk − (Ai rk)rh.

By subtracting an appropriate positive multiple of (2.6) from (2.5), we obtain an expression of x as a positive
combination of some vectors rj (j ∈ J ′) with new coefficients λj where the number of positive λj ’s with
j ∈ J+ ∪ J− is strictly smaller than in the first expression. As long as there is j ∈ J− with positive λj ,
we can apply the same transformation. Thus we must find in a finite number of steps an expression of x
without using rj such that j ∈ J−. This proves x ∈ P ′, and hence P ⊂ P ′.

Now we can finish the first proof of Minkowski’s Theorem.

Proof. (of Theorem 2.6) By Lemma 2.9, it is enough to show that if A has only one row, there exists a
matrix R such that (A, R) a DD pair. One can use any set of vectors to span the space {x : Ax = 0}, their
negatives and the vector AT itself to form the columns of R (why?).

Here we write the DD method in procedural form:

procedure DoubleDescriptionMethod(A);
begin

Obtain any initial DD pair (AK , R);
while K 6= {1, 2, . . . , m} do
begin

Select any index i from {1, 2, . . . , m} \ K;
Construct a DD pair (AK+i, R

′) from (AK , R);
/* by using Lemma 2.9 */

R := R′; K := K + i;
end;
Output R;

end.

The DD method given here is very primitive, and the straightforward implementation is not quite useful,
because the size of J increases very fast and goes beyond any tractable limit. One reason for this is that
many (perhaps, most) vectors rjj′ the algorithm generates (defined in Lemma 2.9), are unnecessary. We
shall discuss later how one can avoid generating redundant vectors.

2.1.4 Second Proof of Minkowski’s Theorem

The second proof of Minkowski’s Theorem is due to Jack Edmonds.
We assume that an m × d matrix A is given, and let P (A) = {x : A x ≥ 0}. The zero set Z(r) of a

vector r ∈ Rd is {i : Ai r = 0 }. Recall that any nonzero vector r ∈ P (A) is called a ray of P (A). A ray
r of P (A) is said to be an elementary ray if its zero set is maximal. When P (A) is a pointed cone (i.e., 0
is an extreme point), there are only finitely many elementary rays up to positive multiples. Here is the key
lemma for proving Minkowski’s Theorem.

Lemma 2.10. Let A be an m × d rational matrix A, and suppose P (A) = {x : A x ≥ 0} be a pointed cone
(i.e., 0 is an extreme point). Given any rational ray r of P (A), there exists a strongly polynomial algorithm
to find elementary rays r1, . . . , rs of P (A) such that s ≤ d and r is a positive combination of ri’s.
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Proof. We use induction on d. When d = 1, every ray is elementary and the the result is trivial. Assume by
induction that for any A with column size less than d, the lemma is true.

Assume that P (A) = {x : A x ≥ 0} is a pointed cone, and let r be any ray of P (A). We may assume
that no row vector of A is zero vector, since any zero row of A can be eliminated without affecting the cone.

If Z(r) is nonempty, then r can be considered as a ray of the cone P ′ = P (A) ∩ {x : Ak x = 0} for any
fixed k ∈ Z(r). Clearly P ′ is pointed. Since Ak is nonzero, we may assume, say the last component akd is
nonzero. Then P ′ is representable by a system of linear inequalities in (d − 1) variables x′ as

P ′ = {(x′, xd) : A′ x′ ≥ 0 and xd = aT x′}

for some matrix A′ and vector a. This case reduces to the case with smaller column size for which there is a
strongly polynomial algorithm to find at most d− 1 elementary rays of P ′ to represent r. Every elementary
ray of P ′ is elementary in P , and the result follows.

Suppose Z(r) is empty set. Since P (A) is pointed, starting from the point r, one can obtain an elementary
ray, say r1, of P (A) by exactly d pivot operations for the system of equations y = A x in (m + d) variables.
This procedure is clearly strongly polynomial. Now we draw a line L from r1 toward r. Since P (A) is
pointed, this line must leave the cone P (A) at some point, say r′. (See Figure 2.13 illustrating a cut section
of the cone P (A) by some hyperplane.) Clearly Z(r′) is not empty, and we can apply the first argument to
r′ to obtain at most d − 1 elementary rays to represent r′. These rays together with r1 represent r as their
positive combinations. This completes the proof.

r

r1

r'

r2

r3

P(A)

L

Figure 2.13: A Cut Section of P (A) in Edmonds’ Proof

Since there are only finitely many elementary rays in a pointed cone, Minkowski’s Theorem for pointed
cones follows directly from the lemma above. Observe that the proof is a simple constructive algorithm that
is strongly polynomial. As far as we know, there is no similar proof for Weyl’s Theorem.

it is not difficult to extend the proof above of Minkowski’s Theorem to the non-pointed case, since such
a case can be reduced to the pointed case.

Lemma 2.11. Let A be an m× d rational matrix A, and let N(A) and R(A) be the null space and the row
space of A, respectively.

(a) P (A) is pointed if and only if N(A) = {0}.

(b) P ′(A) := P (A) ∩ R(A) is a pointed cone.

(c) Every ray of P (A) is representable by a sum of two rays, one in P ′(A) and the other in N(A).
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Proof. (a) Suppose N(A) 6= {0}. Then for any ray r ∈ N(A), the zero vector is the sum of 1
2r and 1

2 (−r)
which are both in P (A). Thus the zero vector is not an extreme point of P (A). Conversely, suppose the
zero vector is not extreme. Then 0 is a convex combination of two rays, say r1 and r2. It follows that both
r1 and r2 must be in N(A), implying N(A) 6= {0}.

(b) Let B be any matrix whose rows form a basis of N(A). Then P ′(A) = {x : A x ≥ 0 and B x = 0}.
Clearly the zero vector is the only vector x orthogonal to all rows of A and B. By (a), this implies P ′(A) is
pointed.

(c) Let r be a ray of P (A). Let r′ be the orthogonal projection of r to the subspace R(A), that is,
r − BT (BBT )−1Br. It is easy to verify that r = r′ + s and r′ ∈ P ′(A), where s = BT (BBT )−1Br ∈ N(A).
This completes the proof.

Finally we have the second proof of Minkowski’s Theorem.

Proof. (of Theorem 2.6) Let P ′(A) := P (A)∩R(A), and let b1, . . . , bk be a basis of N(A). By Lemma 2.11,
P ′(A) is pointed and by Lemma 2.10, every ray of P ′(A) is in the nonnegative hull of the finite set of
all elementary rays, say r1, . . . , rs with length 1. Observing that every vector in N(A) is a nonnegative
combination of b1, . . . , bk and their negatives, Lemma 2.11 (c) implies that

P (A) = nonneg{r1, . . . , rs, b1, . . . , bk,−b1, . . . ,−bk}.

This completes the proof.
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2.2 Computational Complexity

In the first chapter, we have presented some fundamental geometric problems, Geometric Computation 1.1
1.6, associated with convex polytopes and arrangements of hyperplanes. These problems are of similar
nature. Namely the size of output might be very large with respect to the size of input. In particular, the
output size cannot be bounded by a polynomial in the input size, in general. For this sort of problem, the
usual notion of efficient algorithms is not appropriate since such an algorithm is required to run in time
polynomial in the input size. Thus we are motivated to relax the notion of efficient algorithms so that the
time complexity can depend on the output size as well. Basically, we shall allow a time complexity that
grows polynomially (preferably linearly) in the output size. We shall give formal definitions below.

Let Σ denote the set {0, 1} (alphabet) and Σ∗ denote the set of ordered sequences (words) of 0’s and 1’s. A
relation R is a boolean function from the product space Σ∗×Σ∗ to Σ. An instance of the enumeration problem
associated with a relation R is to list all members of the enumeration set Enum(R, x) = {y : R(x, y) = 1},
for a given x.

A polynomial-time algorithm for the enumeration problem associated with a relation R is one whose
time complexity is polynomial in the input size |x| and the output size |Enum(R, x)| for any input x. A
linear-time algorithm is a polynomial time algorithm whose time complexity is linear in the output size.
Finally, a compact algorithm for the enumeration problem associated with a relation R is one whose space
complexity is polynomial in the input size |x|. A relation R is called (strongly) P-enumerable if there exists
a (compact) linear-time algorithm for the enumeration problem.

Here we take some examples. Let E be a finite set. For a rational E × d matrixA, let

C(A) := {Ax : x ∈ Rd} ( the column space of A )(2.7)

F(A) := σ(C(A)) ( the oriented matroid represented by A ).(2.8)

The arrangement face relation Rf (the arrangement vertex relation Rv) is defined by Rf (A, Y ) = 1
(Rv(A, V ) = 1) if and only if Y is in F(A) ( V is in min(F(A)\{0}) ).

2.3 Reverse Search

In the introduction we have given a basic idea of reverse search for enumeration. Here we shall present it
formally with more generality.

Let G = (V, E) be a (undirected) graph with vertex set V and edgecite set E. We shall call a triple
(G, S, f) local search if S is a subset of V , f is a mapping: V \S ⇒ V satisfying

(L1) {v, f(v)} ∈ E for each v ∈ V \S.

and finite local search if in addition,

(L2) for each v ∈ V \S, there exists a positive integer k such that f k(v) ∈ S.

Here is a procedural form of a local search (G, S, f):

procedure LocalSearch(G,S,f ,v0:vertex of G);
v := v0;
while v 6∈ S do

v := f(v)
endwhile;
output v.

The function f is said to be the local search function, and G the underlying graph structure. Naturally, we
consider the set V to be the set of candidates for a solution, the set S to be the set of solutions. The local
search function f is simply an algorithm for finding one solution.

It is not difficult to find examples of local search. To list a few,
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• the simplex method for linear programming, where V is the set of feasible bases, E is induced by the
pivot operation, f is the simplex pivot, and S is the set of optimal bases,

• the edge-exchange algorithm for finding a minimum spanning tree in a weighted graph [AHU87, Section
10.5], where V is the set of all spanning trees, E is induced by the edge-exchange operation, f is the
best-improvement exchange algorithm, and S is the set of all minimum spanning trees,

• the flip procedure for finding a Delaunay triangulation in the plane for a given set of points, where V
is the set of all possible triangulations, E is induced by the flip operation, f is the flip algorithm, and
S is the set of Delaunay triangulations.

It will be helpful for us to keep at least one of these examples in mind for better understanding of several
new notions to be introduced below.

The trace of a local search (G, S, f) is a directed subgraph T = (V, E(f)) of G where

E(f) = {(v, f(v)) : v ∈ V \S}.

The trace T is simply the digraph with all vertices of G and those edges of G used by the local search.
We also define the height h(T ) of a trace T as the length of a longest directed path in T . An obvious but
important remark is

Property 2.12. If (G, S, f) is a finite local search then its trace T is a directed spanning forest of G with
each component containing exactly one vertex of S as a unique sink.

Let (G, S, f) be a finite local search with trace T , and denote by T (s) the component of T containing a
vertex s for each s ∈ S. We call the following procedure an abstract reverse search:

procedure AbstractReverseSearch(G,S,f);
for each vertex s ∈ S do

traverse the component T (s) and output all its vertices
endfor.

Here we are purposely vague in describing how we traverse T (s). The actual traversal depends on how
the local search is given: in almost all cases for which reverse search is useful, G is not explicitly given.
Also, we shall deal with the case where |S| > 1, and the set S is not explicitly given. In many cases, we can
consider S to be the output of another reverse search for which the solution set is a singleton.

Thus, it is extremely useful to discuss a special implementation of reverse search when the local search is
given in a certain way which is general enough for our applications to be described later but yet restricted
enough for us to make interesting statements about the time complexity of reverse search.

We say that a graph G is given by adjacency-oracle or simply A-oracle when the following conditions are
satisfied:

(A1) The vertices are represented by nonzero integers.

(A2) An integer δ is explicitly given which is an upper bound on the maximum degree of G, i.e., for each
vertex v ∈ V , the degree deg(v) is at most this number.

(A3) the adjacency list oracle Adj satisfying (i), (ii) and (iii) is given:

(i) for each vertex v and each number k with 1 ≤ k ≤ δ the oracle returns Adj(v, k), a vertex adjacent
to v or extraneous 0 (zero),

(ii) if Adj(v, k) = Adj(v, k′) 6= 0 for some v ∈ V , k and k′, then k = k′,

(iii) for each vertex v, {Adj(v, k) : Adj(v, k) 6= 0, 1 ≤ k ≤ δ} is exactly the set of vertices adjacent to
v.

The conditions (i) - (iii) imply that Adj returns each adjacent vertex to v exactly once during the δ
inquiries Adj(v, k), 1 ≤ k ≤ δ, for each vertex v.

The conditions (A2) and (A3) may not seem to be natural, but as we will see, in many cases, we have no
knowledge of the maximum degree of the underlying graph but only an upper bound. Consider the simplex
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method. For each feasible basis, some pivot operations lead to feasible bases, and others lead to non-feasible
bases. In general (with possible degeneracy and an unbounded feasible region), we do not know the maximum
number of adjacent feasible bases. However, we have a trivial bound, that is, the number of pivot positions
(= number of basic variables times number of nonbasic variables). Associated with each feasible basis and
each k-th pivot position we have either an adjacent feasible basis or something else (i.e. a nonfeasible basis
or impossible pivot), that determines our A-oracle. For the flip algorithm, one can naturally see that the
underlying graph is given by A-oracle.

A local search (G, S, f) is said to be given by an A-oracle if the underlying graph G is.
When a local search is given by an A-oracle, we can write a particular implementation of abstract local

search. The following procedure, ReverseSearch, which will be used in all of the applications in the present
paper, is the one where the traversal of each component is done by depth first search and the set S is
explicitly given:

procedure ReverseSearch(Adj,δ,S,f);
for each vertex s ∈ S do

v := s; j := 0; (* j: neighbor counter *)
repeat

while j < δ do
j := j + 1;

(r1) next := Adj(v, j);
if next 6= 0 then

(r2) if f(next) = v then (* reverse traverse *)
v := next; j := 0

endif
endif

endwhile;
if v 6= s then (* forward traverse *)

(f1) u := v; v := f(v);
(f2) j := 0; repeat j := j + 1 until Adj(v, j) = u (* restore j *)

endif
until v = s and j = δ

endfor.

Note that for each vertex v ∈ V \S, exactly one “forward traverse” is performed in the procedure Revers-
eSearch. The time complexity of ReverseSearch can be now evaluated. For a local search (G, S, f) given by
an A-oracle, let t(f) and t(Adj) denote the time to evaluate f and Adj, respectively.

Theorem 2.13. Suppose that a local search (G, S, f) is given by an A-oracle. Then the time complexity of
ReverseSearch is O(δ t(Adj)|V | + t(f)|E|).

Proof. It is easy to see that the time complexity is determined by the total time spent to execute the four
lines (r1), (r2), (f1) and (f2). The first line (r1) is executed at most δ times for each vertex, and the total time
spent for (r1) is O(δ t(Adj)|V |). The line (r2) is executed as many times as the degree deg(v) for each vertex
v, and thus the total time for (r2) is O(t(f)|E|). The third line (f1) is executed for each vertex v in V \S, and
hence the total time for (f1) is O(t(f)(|V | − |S|)). Similarly, the total time for (f2) is O(δ t(Adj)(|V | − |S|)).
Since |V | − |S| ≤ |E|, by adding up the four time complexities above, we have the claimed result.

Corollary 2.14. Suppose that a local search (G, S, f) is given by an A-oracle. Then the time complexity of
ReverseSearch is O(δ (t(Adj) + t(f))|V |). In particular, if δ, t(f) and t(Adj) are independent of the number
|V | of vertices in G, then the time complexity is linear in the output size |V |.

Proof. The claim follows immediately from Theorem 2.13 and the fact that 2|E| ≤ δ|V |.
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The assumption that δ, t(f) and t(Adj) are independent of the number |V | is not satisfied in general
(e.g. when G is a complete graph), but is for many cases it can be assumed. In fact, all applications to be
presented in the next section satisfy this assumption.

We have already two simple formulas, Theorem 2.13 and Corollary 2.14, for the time complexity of the
reverse search. We shall use these to evaluate the time complexity of some of our applications. However, a
stronger result is possible in some cases. One of such cases is when the lines (r1) and (r2) have a shortcut,
i.e., it is possible to check for any vertex v of G and any integer 1 ≤ j ≤ δ whether f(Adj(v, j)) = v without
executing Adj and f . Another case is when the procedure (f2) has a shortcut, i.e., it is possible for any
vertex v of G to determine the integer j such that Adj(f(v), j) = v without executing Adj explicitly. In
order to deal with these cases more clearly we shall give below an alternative version of reverse search. Here
we use the convention that f(0) = 0.

procedure ReverseSearch2(Adj,δ,S,f);
for each vertex s ∈ S do

v := s; j := 0; (* j: neighbor counter *)
repeat

while j < δ do
j := j + 1;

(r1’) if f(Adj(v, j)) = v then (* reverse traverse *)
(r2’) v := Adj(v, j); j := 0

endif
endwhile;
if v 6= s then (* forward traverse *)

(f1) u := v; v := f(v);
(f2’) determine j such that Adj(v, j) = u (* restore j *)

endif
until v = s and j = δ

endfor.

In order to describe the time complexity of this procedure, we define tR(Adj, f) to be the time necessary to
decide for any vertex v of G and any integer 1 ≤ j ≤ δ whether f(Adj(v, j)) = v (i.e., tR(Adj, f) is the time
to decide whether moving from v to Adj(v, j) is a reverse of f). Similarly, we define tF (Adj, f) to be the
time necessary for any vertex v of G to determine the integer j such that Adj(f(v), j) = v.

Theorem 2.15. Suppose that a local search (G, S, f) is given by an A-oracle. Then the time complexity of
ReverseSearch2 is O((t(Adj) + δ tR(Adj, f) + t(f) + tF (Adj, f))|V |).

Proof. The proof is similar to that of Theorem 2.13. The total time for (r1’) is O(δ tR(Adj, f)|V |), and that
for (r2’) is O(t(Adj)(|V | − |S|)). Similarly, the total time for (f1) is O(t(f)(|V | − |S|)), and that for (f2’) is
O(tF (Adj, f)(|V | − |S|)). Adding up all these yields the result.

Looking into this theorem, we notice a possibility of further refinement of reverse search. Remark that the
part t1 = (t(Adj) + δ tR(Adj, f)) of the time complexity is the time necessary for the reverse traversal, i.e.,
moving away from the top vertex, and the remaining part t2 = (t(f)+ tF (Adj, f)) is the time for the forward
traversal, i.e. , moving toward the top vertex. One cannot really shorten the first part, but interestingly one
can shorten the latter part by storing the forward traverse paths. More precisely, if we store the forward
sequence to return to the top vertex while reversing, Neither f nor Adj need to be evaluated to go forward.
This remark can be particularly important when the trace of a local search has a short height and t1 is an
order of magnitude smaller than t2, though presently we do not have any such applications.

Finally we should remark that the space complexity is usually independent of the cardinality of the
output. At the moment, we cannot evaluate precisely the space complexity, but it only depends linearly on
the space necessary to store a single vertex and the space necessary to realize the functions (oracles) f and
Adj.
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2.4 Vertex Enumeration in Polyhedra by Reverse Search

The vertex enumeration problem is to list all vertices of the convex polyhedron given by P = {x : Ax ≤
b, x ≥ 0}, where A is an m × n matrix and b is a m-vector.

Consider the linear program of form: maximize cx subject to Ax ≤ b and x ≥ 0. The simplex algorithm
can be considered as a finite local search (GLP , SLP , fLP ) where GLP = (VLP , ELP ) is a graph with VLP is
the set of all feasible bases; where two bases are adjacent if and only if one can be obtained from the other
by a pivot operation; SLP being the set of all optimal bases; and fLP is the simplex algorithm with Bland’s
smallest subscript rule. Moreover, represent each basis by the set of indices of basic variables, and define
AdjLP to be AdjLP (B, (i, j)) = B − i + j if B is a basis and B − i + j is a basis, and 0 otherwise, for each
basic and nonbasic indices i and j. Then the local search is given by an A-oracle AdjLP with δLP = m× n.

Now, how can we find all vertices of P ? We can easily find one feasible basis of the linear inequality
system Ax ≤ b and x ≥ 0, say B, by the simplex method or the interior-point method. Then we can set
up an LP with objective function cx for which the current basic solution is the unique optimal solution and
B is an optimal basis. The associated local search (GLP , SLP , fLP ) immediately yields the reverse search
ReverseSearch(AdjLP ,δLP ,SLP ,fLP ) to list all feasible bases as long as the set SLP of all optimal bases are
explicitly given.

If the set SLP is the singleton {B} and we are done. Otherwise, we can enumerate all optimal bases
from B by another reverse search with respect to the dual simplex method applied to an auxiliary problem.
See [AF92a] for details.

If the system Ax ≤ b, x ≥ 0 is nondegenerate, then one can design a much simpler algorithm. The critical
difference is that for each feasible basis B and each nonbasic index j, there exists at most one basic index
i = i(j) such that B − i + j is again a feasible basis. Define AdjLP to be AdjLP (B, j) = B − i + j if there
exists i such that B − i + j is a feasible basis, and 0 otherwise, for each nonbasic index j. Then the local
search is given by an A-oracle AdjLP with smaller δLP = n.

It is well known that the simplex method with Bland’s rule might take an exponential number of pivots
to find an optimal solution, see [AC78]. This means that the height of the trace TLP cannot be bounded by
a polynomial function of m and n. Theoretically, this means even the best parallel implementation may not
be much faster. The expected behavior, however, might turn out to be quite different.

A C-implementation of the vertex enumeration algorithm is available in [Avi94].

2.5 Enumeration of Cells in Arrangements by Reverse Search

Let E = {1, 2, . . . , m}, let A be an arrangement of distinct hyperplanes {Hi : i ∈ E} in Rn, where each
hyperplane is given by a linear equality Hi = {x : aix = bi}. The two sides of Hi are H+

i = {x : aix ≥ bi}
and H−

j = {x : ajx ≤ bj}. For each x ∈ Rn, the signed vector SV (x) of x is the vector in {−, 0, +}E defined
by

SV (x)i =







− if x ∈ H−
i

0 if x ∈ Hi

+ if x ∈ H+
i

(i ∈ E).

Let VCELL be the set of signed vectors of points in Rn whose nonzero support is E. We can identify each
vector c in VCELL with the open cell (open n-face) of the arrangement defined by {x : SV (x) = c}. For two
cells c and c′, let sep(c, c′) be the set of separators of c and c′, that is, the set of elements i of E such that ci

and c′i have opposite signs. We say that two cells c and c′ are adjacent in GCELL if they differ in only one
component, or equivalently, |sep(c, c′)| = 1. The following lemma is important.

Lemma 2.16. For any two distinct cells c and c′ in VCELL, there exists a cell c′′ which is adjacent to c and
sep(c, c′′) ⊂ sep(c, c′).

Proof. Let c and c′ be two distinct cells, and let x (x′) be a point in c (in c′, respectively) in general
position. Moving from x toward x′ on the line segment [x, x′], we encounter the sequence of cells: co =
c, c1, c2, . . . , ck = c′, and we can easily verify that c1 is adjacent to c and sep(c, c1) ⊂ sep(c, c′).

Let us assume that V contains the cell c∗ of all +’s. Lemma 2.16 implies that for each cell c different from
c∗, there is a cell c′′ which is adjacent to c and sep(c∗, c′′) ⊂ sep(c∗, c). Let us define fCELL(c) as such c′′ that
is lexico-largest (i.e., the unique element in sep(c, c′′) is smallest possible). Then, (GCELL, SCELL, fCELL)
is a finite local search with SCELL = {c∗}. By Lemma 2.16, one immediately obtains:
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Corollary 2.17. The height of the trace TCELL of the local search (GCELL, SCELL, fCELL) is at most m.

Figure 2.14 describes the trace of the local search on a small example with n = 2 and m = 4.

1

2

3

4

1

2

3

4

++++

+−++

+++−

++−−

++−+

−+−+

−−−+
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Figure 2.14: An arrangement of hyperplanes and the trace of fCELL

By reversing this local search, we obtain an algorithm to list all cells in an arrangement. There are a few
things to be explained for an implementation. First, we assumed that the cell c∗ of all +’s is given, but we
can pick up any cell c in the arrangement, and consider it as the cell of all +’s since replacing some equality
aix = bi by −aix = −bi does not essentially change the arrangement. Note that one can obtain an initial
cell by picking up any random point in Rn and perturbing it if it lies on some hyperplanes.

Now, how can we realize ReverseSearch(AdjCELL,δCELL,SCELL,fCELL) in an efficient way? First we
can set δCELL = m and SCELL = {c∗}. For any cell c ∈ VCELL and k ∈ E, the function AdjCELL(c, k) can
be realized via solving an LP of the form

minimize (maximize) yk

subject to y = Ax − b,
yi ≥ 0 for all i 6= k with ci = +,
yi ≤ 0 for all i 6= k with ci = −,

(2.9)
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where minimization (maximization) is chosen when ck = + (ck = −, respectively). The function returns the
adjacent cell c′ with sep(c, c′) = {k} if and only if LP (2.9) has a feasible solution with negative (positive)
objective value. The time t(AdjCELL) depends on how an LP with n variables and m − 1 inequalities is
solved. We denote this as a function l(m, n) of m and n.

There is a straightforward implementation of fCELL, which solves a sequence of LP’s similar to (2.9) with
objective functions y1, y2, y3, . . .. This means we may have to solve O(m) LP’s in the worst case. Presently
we don’t know how to implement it in a more efficient manner.

Theorem 2.18. There is an implementation of ReverseSearch(AdjCELL, δCELL, SCELL, fCELL) for the
cell enumeration problem with time complexity O(m n l(m, n)|VCELL|) and space complexity O(m n).

Proof. To prove this, first we recall that Theorem 2.13 says, the time complexity of ReverseSearch is
O(δ t(Adj)|V | + t(f)|E|). As we remarked earlier, δCELL = m, t(AdjCELL) = O(l(m, n)), and t(fCELL) =
O(m l(m, n)). Since |ECELL| ≤ n |VCELL| holds for any arrangement (see, e.g., [FST91, FSTT91]), the
claimed time complexity follows. The space complexity is clearly same as the input size O(m n).

We believe that there is no previously known algorithm to enumerate all cells of an arrangement whose
time complexity is polynomial in the size of output.

The cardinality of output is of course exponential in m and n, and the maximum, explicitly given by
Buck’s formula

∑n
i=0

(

m
i

)

, is attained for any simple arrangements, see [Buc43, Ede87]. By Corollary 2.17,

the cell enumeration can profit a lot from parallel implementation.

2.6 Enumeration of Triangulations by Reverse Search

Let P be a set {p1, . . . , pn} of n distinct points in the plane. A pair {p, q} of distinct points in P is called
an edge if the line segment connecting p and q does not contain any other point of P . A triple {p, q, r} of
points in P is called a triangle if they are not collinear and the their convex hull (triangle region) does not
contain any other points in P . A point or edge in P is called external if it is contained in the boundary of
the convex hull of P , and internal otherwise.

A triangulation of P is a set ∆ of triangles in P such that (1) each external edge is contained in exactly
one triangle of ∆, (2) each internal edge is contained in either no triangle of ∆ or exactly two triangles of
∆. An edge of a triangulation ∆ is an edge contained in at least one triangle of ∆.

By using Euler’s relation, one can easily see that the number of triangles and edges of a triangulation
are independent of the choice of triangulation.

Proposition 2.19. Let ∆ be a triangulation of P , and let f1 and f2 be the number of edges and triangles
of ∆, respectively. Then, they are determined by f1 = 3n − n∗ − 3, f2 = 2n − n∗ − 2, where n∗ denotes the
number of external points.

It is clear from the definition that the number of triangulations is finite. The enumeration of all possible
triangulations of P is the problem in this section. In order to apply the reverse search technique, the notion
of Delaunay triangulation and the flip algorithm is very useful.

Let ∆ be a triangulation with f2 triangles whose interior angles α1, α2, . . . , α3f2
are indexed in such a

way that αi ≤ αj for any 1 ≤ i < j ≤ 3f2. The vector α(∆) = (α1, α2, . . . , α3f2
) is called the angle vector of

∆ . A triangulation is said to be Delaunay if its angle vector is lexicographically maximal over all possible
triangulations of the same point set, where the comparison of components is done from left to right.

Let ∆ be a triangulation. Let {a, b} be any internal edge of ∆, and let {a, b, c} and {a, b, d} be the two
triangles of ∆ containing it. We call {a, b} flippable if the set F lip(∆, {a, b}) := ∆ \ {{a, b, c}, {a, b, d}} ∪
{{a, c, d}, {b, c, d}} is again a triangulation of P . One can easily see that an internal edge {a, b} is flippable
if and only if the points a, b, c, d form a convex quadrangle.

We call {a, b} legal if the circumscribing disk of one of the triangles abc, abd does not contain the other,
and illegal otherwise. When an edge {a, b} is illegal, it is always flippable and the operation F lip(∆, {a, b})
is called a Delaunay flip.

It is known that a triangulation ∆ is Delaunay if and only if it does not contain any illegal edges. The
flip algorithm is simply a procedure to use the Delaunay flip operation repeatedly in any order until no such
operation is possible, see Figure 2.15. The following theorem states that the flip algorithm is finite.
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Delaunay Triangulation
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1

Flip {1,3}

Flip {3,5}

Flip {1,6}

Figure 2.15: Flip Algorithm and Delaunay Triangulation

Theorem 2.20 ([For87]). The flip algorithm terminates in O(n2) steps and finds a Delaunay triangulation
of P , starting with any initial triangulation.

To apply reverse search, let VTRI (STRI ) be the set of all (Delaunay, respectively) triangulations of P .
The underlying graph GTRI is (VTRI , ETRI ) where two vertices are adjacent if and only if one is a flip of
the other. We define a local search fTRI as the function from VTRI \STRI to VTRI such that

fTRI(∆) := F lip(∆, {a, b})

where {a, b} is the lexico-smallest illegal edge of ∆.
Now, how one should design an A-oracle? For any triangulation ∆, let L be the list of interior edges

ordered lexicographically and let Lk be the kth member of L. By Proposition 2.19, the cardinality |L| of L
is exactly 3n − 2n∗ − 3, which we denote by δTRI . The adjacency oracle AdjTRI (∆, k) is then defined as

AdjTRI (∆, k) :=

{

F lip(∆, Lk) if Lk is flippable,
0 otherwise,

for each k = 1, . . . , δTRI .

Theorem 2.21. There is an implementation of ReverseSearch2(AdjTRI , δTRI , STRI , fTRI) for the trian-
gulation enumeration problem with time complexity O(n |VTRI |) and space complexity O(n).

Proof. For the implementation, we can use the quad-edge data structure [GS85] for storing a triangulation.
Also we store L as a linked list of edges each with a flag indicating either nonflippable, legal or illegal, and
store the lexico-smallest illegal edge of L. For the analysis of time complexity, we apply Theorem 2.15. First,
note that we can evaluate AdjTRI and fTRI in O(n) time, including time to update L and the triangulation
data. Since we store the lexico-smallest illegal edge of L, tR(Adj, f) and tF (Adj, f) are both O(1). Since
δTRI = O(n) and by Theorem 2.15, we have the stated time complexity. The space complexity is clearly
O(n).
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We remark that enumerating all elements in STRI (i.e. the enumeration of all Delaunay triangulations)
is unnecessary. It is possible to transform any Delaunay triangulation to another by a sequence of flips, and
one can extend the local search fTRI so that it finds the lexico-smallest Delaunay triangulation by flipping
some legal edge at a non-lexico-smallest Delaunay triangulation.

Theorem 2.20 shows that a parallel implementation can be quite fast.
It should be mentioned that essentially the same algorithm has been discovered independently by H.

Telley.
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3 OM Theory I

3.1 Face Axioms

Recall that we defined oriented matroids by using the face axioms, Axiom 1.1 (F1)∼(F4). In this section,
we present two variations of the strong elimination axiom (F4) which are useful. One is stronger than (F4)
and the other is weaker than (F4), and yet they are all equivalent under the rest of axioms (F1)∼(F3).

For proving theorems in oriented matroids, the stronger axiom is useful, and to prove some given object
is an oriented matroid, obviously the weaker axiom is useful.

First we present the following stronger one:

(F4c) Y, Y ′ ∈ F and I ⊆ D(Y, Y ′) =⇒
there exist f ∈ I and Z ∈ F such that Zf = 0, ZI � YI and
Zj = (Y ◦ Y ′)j for all j 6∈ D(Y, Y ′). (conformal elimination)

Axiom 3.1: Conformal Elimination Axiom

Proposition 3.1. For any set F of sign vectors on a finite set E, the conformal elimination axiom (F4c)
is equivalent to the strong elimination axiom (F4).

Proof. It is clear that (F4c) implies (F4). We shall prove the other implication: (F4) implies (F4c).
For this, we denote by (F4c)k the statement (F4c) with the restriction that |I | = k, for any positive

integer k. We shall prove the implication: (F4) implies (F4c)k for any k, by induction on k. Clearly (F4c)1
coincides with (F4). We assume as an induction hypothesis that the implication (F4) =⇒ (F4c)i holds when
i < k, and we show (F4) =⇒ (F4c)k.

Now let (F4) is satisfied, and let Y, Y ′ ∈ F and I ⊆ D(Y, Y ′) with |I | = k > 0. Let f be any element
of I , and apply (F4) to Y and Y ′. Then there exists Z ∈ F such that Zf = 0 and Zj = (Y ◦ Y ′)j for all
j 6∈ D(Y, Y ′). If ZI � YI , then (F4c)k is valid and we are done. Suppose ZI 6� YI . Let Y ′′ = Z ◦ Y , and
let I ′ = I ∩D(Y, Y ′′). Clearly |I ′| < k, and thus by induction hypothesis, we can apply (F4c) to Y , Y ′′ and
I ′. This will produce a vector Z ′ ∈ F and f ′ ∈ I ′ such that Z ′

f ′ = 0, Z ′
I � YI and Z ′

j = (Y ◦ Y ′)j for all
j 6∈ D(Y, Y ′). Thus (F4c)k is valid, and this completes the proof.

Corollary 3.2. A set F of sign vectors on a finite set E is the set of faces of an oriented matroid if and
only if it satisfies the following axioms:

(F1) 0 ∈ F ;

(F2) Y ∈ F =⇒ −Y ∈ F ; (symmetry)

(F3) Y, Y ′ ∈ F =⇒ Y ◦ Y ′ ∈ F ; (composition)

(F4c) Y, Y ′ ∈ F and I ⊆ D(Y, Y ′) =⇒
there exist f ∈ I and Z ∈ F such that Zf = 0, ZI � YI and
Zj = (Y ◦ Y ′)j for all j 6∈ D(Y, Y ′). (conformal elimination)

Axiom 3.2: OM Face Axioms II

Now we present a weaker version of the elimination axiom (F4):
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(F4w) Y, Y ′ ∈ F , f ∈ D(Y, Y ′) and g ∈ Y \D(Y, Y ′) =⇒
there exists Z ∈ F such that
Zf = 0, Zg = Yg

and Zj = (Y ◦ Y ′)j for all j 6∈ D(Y, Y ′). (weak elimination)

Axiom 3.3: Weak Elimination Axiom

One can easily verify that (F4w) is clearly weaker than (F4), but they are equivalent under the condition
(F3). Thus we have

Proposition 3.3. A set F of sign vectors on a finite set E is the set of faces of an oriented matroid if and
only if it satisfies the axioms: (F1), (F2), (F3) and (F4w).

3.2 Proofs for Topes and Vertices

For this section, we assume M = (E,F) is an oriented matroid on a finite set E with F being the set of
faces.

The first application of the conformal elimination axiom (F4c) in the previous section is a proof for
Proposition 1.3, which state that both the set of topes and the set of vertices,

T = Max(F)(3.1)

V = Min(F\{0}).(3.2)

determine F uniquely, and thus determine the oriented matroid. First we prove the following:

Proposition 3.4. For any face Y ∈ F , and any j ∈ Y , there exists a vertex V ∈ V such that V � Y and
Vj = Yj .

Proof. Let Y be any nonzero face and let j be any index of Y . If Y ∈ V , there is nothing to prove. Assume
Y 6∈ V . Thus there is a vertex V such that V ≺ Y . If j ∈ V , we are done. Otherwise, Vj = 0. Now let
I = D(Y,−V ) and apply (F4c) with setting Y ′ = −V . Then we have Z ∈ F such that Zj = Yj , Z ≺ Y and
Z ⊂ Y . SInce Z has a smaller support, by applying the same procedure to Y replaced by Z repeatedly, we
must obtain in finite steps a vertex we are looking for. This completes the proof.

This immediately implies

Corollary 3.5 (Conformal Decomposition). Every face Y ∈ F admits a conformal decomposition into
vertices, that is, Y = V1 ◦ V2 ◦ · · · ◦ Vk for some vertices V1, V2, . . . , Vk such that Vj � Y for all j.

Now we are ready to prove the important proposition stating the vertices determine the faces:

Proof. (for Proposition 1.3 (b)) We must show F =< V , ◦ >. Let F ′ =< V , ◦ >. Since an oriented matroid
is closed under composition, clearly F ′ ⊆ F . The other inclusion is a direct consequence of Corollary 3.5.
This completes the proof.

Next we shall prove the remaining Proposition 1.3 (a). For this purpose, we first prove the following:
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Lemma 3.6. Let X be any sign vector on E.

X ◦ T ∈ T for all T ∈ T =⇒ X ◦ Y ∈ F for all Y ∈ F(3.3)

Proof. We prove this by contradiction. Suppose that the statement (3.3) is false and let (X1, Y 1) be a
counterexample: X1 ◦ T ∈ T for all T ∈ T , Y 1 ∈ F and X1 ◦ Y 1 6∈ F . Let Y be a minimal face with the
property that X1 ◦Y 1 ≺ Y . Such a vector exists because T 6= ∅ and for any tope T , the vector X1 ◦Y 1 ◦T is
a face because Y 1 ◦T is a tope and by the assumptions. Now let Y ′ = X1 ◦Y 1 ◦ (−Y ). Clearly D(Y, Y ′) 6= ∅.
By applying the conformal elimination axiom (F4c) to (Y, Y ′) with I = D(Y, Y ′), we obtain a vector Z ∈ F
such that Zf = 0 and X1 ◦ Y 1 � Z. Now Z is strictly smaller than Y , and it is strictly larger than X1 ◦ Y 1

(because Z is a face). This contradicts the choice of Y , and thus the statement (3.3) must hold.

Proof. (for Proposition 1.3 (a)) Let F ′ = {X ∈ {+, 0,−}E : X ◦ T ∈ T ∀T ∈ T } We must show F = F ′.
Since an oriented matroid is closed under composition, clearly F ⊆ F ′. Let X ∈ F ′. By Lemma 3.6, X ◦ Y
for all Y ∈ F . In particular, X = X ◦ 0 must be in F . This completes the proof.

3.3 Matroids

In this section, we review some basic results of Matroid Theory that are necessary for our presentation of
results in oriented matroids.

First we introduce an axiomatization of matroids using flats. A matroid N on a finite set E is a pair
(E,L) where L is a set of subsets of E satisfying the following axioms:

(L1) E ∈ L;

(L2) F, F ′ ∈ L =⇒ F ∩ F ′ ∈ L;

(L3) F, F ′ ∈ L, g ∈ F \F ′ and f ∈ E\(F ∪ F ′) =⇒ ∃G ∈ L such that f ∈ G 63 g and F ∩ F ′ ⊆ G.

Axiom 3.4: Matroid Flat Axioms

In order to see the relation between oriented matroids and matroids, we observe:

Proposition 3.7. For an oriented matroid M = (E,F), the set of zero supports of faces in F :

L(M) = {E\Y : Y ∈ F}(3.4)

is the set of flats of an matroid.

Proof. Let M be an oriented matroid. We shall verify Axiom 3.4 for L = L(M). First of all, (L1) is implied
by the oriented axiom (F1) of Axiom 1.1, and (L2) by (F3). To verify (L3), let F, F ′ ∈ L, f ∈ F \F ′ and
g ∈ E\(F ∪ F ′), and let Y and Y ′ be faces of M whose zero supports are F and F ′, respectively. Without
loss of generality, we can assume f ∈ D(Y, Y ′), since otherwise we may take the negative of Y as Y by (F2).
By the choice of g, Yg = 0 and thus g 6∈ D(Y, Y ′). By (F4), there exists Z ∈ F such that Zf = 0 and
Zj = (Y ◦ Y ′)j for all j 6∈ D(Y, Y ′). This implies that the zero support of Z satisfies all conditions required
for G in (L3). This completes the proof.

We call this matroid (E,L(M)) the underlying matroid of M , denoted by M . A matroid can be alternately
defined by the set of its cocircuits, as defined in 1.4, but for our purposes the flat axioms, Axiom 3.4 is most
convenient and we shall derive all fundamental results on matroids using the flat axioms. Recall that the
span span(S) of a subset S in a matroid N is the smallest flat containing S:

span(S) = ∩{F ∈ L : S ⊆ F}.(3.5)
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Some obvious properties of the function span are

S ⊆ S′ =⇒ span(S) ⊆ span(S ′), and(3.6)

span(span(S)) = span(S).(3.7)

Also, recall that a subset S of E is independent in N if the span of S properly contains the span of S − j
for all j ∈ S. The following lemma is basic and very important.

Lemma 3.8. Let N be a matroid on a finite set E. and let S be a subset of E. Then,

(a) If I is independent, then every subset of I is independent.

(b) If I is independent and f ∈ E\span(I), then I + f is independent.

Proof. To prove (a), observe that S is independent if and only if for each j ∈ S, there exists a flat F such
that S − j ⊆ F 63 j. This condition is clearly satisfied for every subset of an independent set S.

To prove (b), suppose that I is independent, f ∈ E\span(I) but I + f is not independent. This implies
that there exists g ∈ I + f such that

span(I + f − g) = span(I + f).(3.8)

Since f 6∈ span(I), span(I) 6= span(I + f). It follows that g 6= f and thus g ∈ I . Let F ∈ L such that
I ⊆ F 63 f . Since I is independent, there exists F ′ ∈ L such that I − g ⊆ F ′ 63 g. By (3.8), f 6∈ F ′. Noting
that f 6∈ F ∪ F ′ and g ∈ F \F ′, we can apply (L3) to (F, F ′) to obtain a vector G ∈ L with f ∈ G 63 g. This
contradicts to (3.8). This completes the proof.

Let S be a subset of E. A subset B of S is called a basis of S if it is a maximal independent subset
of S. A basis of the ground set E is simply called a basis (of the matroid). The following is an immediate
consequence of Lemma 3.8.

Corollary 3.9. Let N be a matroid on a finite set E, and let S be a subset of E. If B is a basis of S then
span(B) = span(S).

Now we are ready to prove a fundamental property of bases in matroids.

Proposition 3.10. Let N be a matroid on a finite set E. Then,

B and B′ are bases and f ∈ B′\B(Basis Exchange Property)

=⇒ ∃g ∈ B\B′ such that (B′ − f + g) is a basis.

Proof. Let B and B′ be bases, and let f ∈ B′\B. Since B′−f is independent and span(B′−f) ⊂ span(B′) =
span(B) (by Corollary 3.9), there exists g ∈ B\span(B ′ − f) = B\B′, and for each such g, the set B′ − f + g
is independent. We only have to show that B′ − f + g is a basis. Suppose that there are two elements g and
g′ in B\B′ such that B′′ := B′ − f + g + g′ is independent. Since B′′ is independent, there exist two flats F
and F ′ such that

B′′ − g ⊆ F 63 g

B′′ − g′ ⊆ F ′ 63 g′.

This implies that each of F and F ′ does not span span(B′) = E, and since B′ is a basis, f 6∈ F ∪F ′. By the
flat axiom (L3) applied to (F, F’), there exists a flat G such that f ∈ G 63 g and F ∩ F ′ ⊆ G. This means
that G contains B′. By Corollary 3.9, G = span(G) ⊇ span(B ′) = E, but this contradicts g 6∈ G. This
completes the proof.
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A very important corollary of the proposition above is

Corollary 3.11. Every basis of a matroid has the same cardinality.

It is easily shown that the two fundamental properties above of bases of a matroid N are still valid when
the term “basis” is replaced with “ basis of S”, for any subset S of the ground set E (Exercise: verify this
claim!). Using these, we can define the rank r(S) of a subset S in N as the size of any basis of S, and the
rank r(N) of a matroid N as r(E).

Finally, consider the set L of flats of a matroid N as the poset ordered by set inclusion. This is a lattice
because it contains the largest element E and the smallest element 0L that is the intersection of all flats.

Proposition 3.12. The lattice L of flats of a matroid satisfies the J-D property. Furthermore, the height
h(F ) of a flat is determined by h(F ) = r(F ) + 1.

Proof. Since the rank of the smallest flat is zero, it is sufficient to prove for any ordered flats F ⊆ F ′ the
followings:

(a) F ′ ⊂ F if and only if r(F ) − r(F ′) ≥ 1 ;

(b) If r(F ) − r(F ′) ≥ 2, then there exists G ∈ L such that F ′ ⊂ G ⊂ F .

Since the span of any flat is itself, the statement (a) follows directly from Lemma 3.8.
To prove (b), assume r(F ) − r(F ′) ≥ 2. Let B′ be a basis of F ′. Since F ′ is independent, it can be

extended (enlarged) to a basis B of F . By the assumption, B has at least two extra elements, say f and g.
Let G be the span of B − f . It is clearly a flat with the required property F ′ ⊂ G ⊂ F .

Exercise 3.1. Show that the following variation of the Basis Exchange property is valid for matroids:

B and B′ are bases and f ∈ B′\B

=⇒ ∃g ∈ B\B′ such that (B + f − g) is a basis.(3.9)

Exercise 3.2. Show that the rank function r of a matroid satisfies the following properties:
(R1) r(∅) = 0;
(R2) R ⊆ S ⊆ E =⇒ r(R) ≤ r(S);
(R3) R, S ⊆ E =⇒ r(R ∩ S) + r(R ∪ S) ≤ r(R) + r(S). (Submodularity)

3.4 Basic Properties of OM Lattices and Tope Lattices

In this section, we shall prove Proposition 1.2 and Proposition 1.6.
We assume M = (E,F) is an oriented matroid where F is the set of its faces ordered by conformal

relation. Also, we assume M = (E,L) is the underlying matroid with L == L(M) being the set of its flats,
and r is the rank function of M .

Lemma 3.13. Let Y and Y ′ be faces of M with Y � Y ′.

(a) Y ≺ Y ′ if and only if r(E\Y ) − r(E\Y ′) ≥ 1 ;

(b) If r(E\Y ) − r(E\Y ′) ≥ 2, then there exists Z ∈ F such that Y ≺ Z ≺ Y ′.

Proof. Statement (a) is obvious. To prove (b), assume r(E\Y ) − r(E\Y ′) ≥ 2. Let F and F ′ be the zero
supports of Y and Y ′, respectively. By Proposition 3.12, there is a flat G such that F ′ ⊂ G ⊂ F . Let Z
be a face whose zero support is G. We may assume Y ≺ Z, since otherwise we can replace Z with the face
Y ◦ Z. Now if Z ≺ Y ′, we are done. Suppose Y ≺ Z 6≺ Y ′. Now we apply the conformal elimination axiom
(F4c) to (Y ′, Z) with I := D(Y ′, Z). This produces a face Z ′ such that Y ≺ Z ′ ≺ Y ′. This completes the
proof.
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3.5 Farkas, Coloring and Duality

The main goal of this sections is to prove the basic duality results presented in Section 1.9, in particular,
Theorem 1.17. Recall the face axioms (F1), (F2), (F3), (F4) of oriented matroids, Axioms 1.1 ,

Proposition 3.14. Let F be a set of sign vectors on a finite set E. Then F ∗ satisfies the first three OM
axioms (F1), (F2) and (F3).

Proof. The first two properties (F1) and (F2) are trivially satisfied by F ∗. To verify (F3), let X, X ′ ∈ F∗

and let Y ∈ F . Setting X ′′ = X ◦X ′, we need to show X ′′ ∗Y . If X∩Y 6= ∅, then clearly X ′′ ∗Y . Otherwise,
X ′ ∗ Y implies X ′′ ∗ Y . This completes the proof.

To see that the elimination axiom (F4) is not satisfied by the dual set F∗ in general, consider

F = {(+, +, +), (+,−,−), (0, +, +), and their negatives}

F∗ = {(0, 0, 0), (+,−, +), (+, +,−), (0,−, +), and their negatives}.

It is easy to see that one cannot eliminate 2nd (or 3rd) component from the second and the third vectors.
Now we prove Farkas’ Lemma (Theorem 1.21) which I repeat here:

Theorem [Farkas’ Lemma for OM’s] (Edmonds-Fukuda-Mandel, see [Fuk82]). Let F be a set of
sign vectors on a finite set E satisfying (F2) and (F3). Then for any fixed index g ∈ E, exactly one of the
following statements holds:

(a) ∃Y ∈ F such that Y ≥ 0 and Yg > 0;

(b) ∃X ∈ F∗ such that X ≥ 0 and Xg > 0.

Proof. Clearly both statements cannot hold simultaneously. We shall prove at least one of them must hold.
Let G be the set of indices g for which the statement (a) is valid. Since F is closed under composition, i.e.
satisfying (F3), the vector Ỹ defined by Ỹ + = G and Ỹ − = ∅ is in F . It is sufficient to prove that the vector
X̃ defined by X̃+ = E\G and X̃− = ∅ is in F∗. Suppose X 6∈ F∗. This together with (F2) implies that
there exists Y ∈ F such that YE\G ≥ 0 and Yj = + for some j ∈ E\G. Again by (F3), Y ′ = Ỹ ◦ Y is in F .
Clearly Y ′ ≥ 0 and G ( Y ′. This contradicts the definition of G. Therefore, X ∈ F∗ and this completes the
proof.

Next, we prove a strengthening of Theorem 1.18 below. As you see, the first statement (a) does not need
any assumptions but the second requires all the OM axioms except (F1).

Theorem 3.15. Let F be a set of signed vectors on a finite set E. For any subsets R, S of E the following
statements hold.

(a) (F\R)∗ = F∗/R;

(b) (F/S)∗ = F∗\S, provided that F satisfies (F2), (F3) and (F4).

Proof. (a) The inclusion (F\R)∗ ⊇ F∗/R is obvious. For the other inclusion, let X ∈ (F\R)∗. Set X̃ be the
vector on E with X̃R = X and X̃E\R = 0. It follows that X̃ ∈ F∗ and thus X ∈ F∗/R.

(b) To prove the inclusion (F/S)∗ ⊇ F∗\S, let X ∈ F∗\S. This means there exists X̃ ∈ F∗ with X̃E\S = X .

Take any Y ∈ F with YS = 0. Since X̃ ∗ Y and YS = 0, X ∗ YE\S . Therefore X ∈ (F/S)∗. (Note that we
have not used any OM assumptions yet.)

For the other inclusion, we may assume that |S| = 1, since the inclusion with larger |S| follows inductively.
Let S = {s} and let X ∈ (F/{s})∗. Let us denote by X(α) the sign vector on E with X(α)E−s = X and
X(α)s = α, for each α = +, 0,−. We need to prove that at least one of X(+), X(0), X(−) is in F ∗. By
contradiction, we suppose that none of them belongs to F∗. This means that there exist Y (+), Y (0), Y (−)
in F such that X(α) 6 ∗Y (α), for α = +, 0,−. Since F satisfies (F2), we may assume that D(X(α), Y (α)) = ∅
for all α = +, 0,−. It follows from X(0) 6 ∗Y (0) that there exists f ∈ E − s such that X(0)f = Y (0)f 6= 0.
Set Y 1 = Y (+) ◦ Y (0) and Y 2 = Y (−). Since F satisfies (F3), Y 1 ∈ F . Now we apply the elimination
properly (F4) to (Y 1, Y 2) to eliminate s-component to generate a new vector Z ∈ F with Zs = 0, Zf = Xf

and D(Z, X(0)) = ∅. Clearly ZE−s ∈ F/{s} but ZE−s cannot be orthogonal to X . This contradicst the
choice of X .
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Corollary 3.16. Let F be the set of faces (covectors) of an oriented matroid with ground set E. For any
disjoint subsets R, S of E

(F\R/S)∗ = F∗/R\S.

Farkas’ Lemma for OM’s and this corollary imply the 4-coloring property (Corollary 1.22):

Theorem [Coloring Lemma for OM’s]. Let F be the set of faces of an oriented matroid on a finite
set E. Then for any partition (“coloring”) of E into disjoint subsets R, G, B, W and for any fixed index
r ∈ R∪, exactly one of the following statements holds:

(a) ∃Y ∈ F such that YR ≥ 0, YG ≤ 0, YB = 0 and Yr 6= 0;

(b) ∃X ∈ F∗ such that XR ≥ 0, XG ≤ 0, XW = 0 and Xr 6= 0.

Now we are ready to prove the key theorem, Thoerem 1.17:

Theorem [OM Duality]. Let M = (E,F) be an oriented matroid on E. Then the following statements
hold.

(1) the pair M∗ := (E,F∗) is an oriented matroid;

(2) the dual M∗∗ of the dual is the original M , that is, F∗∗ = F .

Proof. (1) By Proposition 3.14, we only need to show that F∗ satisfies (F4). Let X , X ′ ∈ F∗ and let
f ∈ D(X, X ′). Set

R = (X ◦ X ′)+\D(X, X ′)

G = (X ◦ X ′)−\D(X, X ′)

B = D(X, X ′)\{f}

W = (X ◦ X ′)0 ∪ {f}.

By Coloring Lemma, for any r ∈ R ∪ G, one of the two statements:

(a) ∃Y ∈ F such that YR ≥ 0, YG ≤ 0, YB = 0 and Yr 6= 0;

(b) ∃X ∈ F∗ such that XR ≥ 0, XG ≤ 0, XW = 0 and Xr 6= 0

must hold. We claim that the second statement (b) holds for every r ∈ R ∪ G. This implies that F ∗

satisfies (F4) because the composition of all certificate vectors X(r) ∈ F ∗ (r ∈ R ∪ G) is one satisfying the
conclusion of (F4) for F∗. By contradiction, we suppose that (a) holds for some r ∈ R ∪ G, i.e. there exists
Y ∈ F such that YR ≥ 0, YG ≤ 0, YB = 0 and Yr 6= 0. It is easy to see that Y cannot be orthogonal to
both X and X ′, since Xf and X ′

f are opposite in sign.

(2) Since F∗∗ ⊇ F is obvious, we shall prove F∗∗ ⊆ F . Let Y ∈ F∗∗ and suppose Y 6∈ F . Set

R = Y +, G = Y −, B = Y 0, W = ∅,

and let r be any member of R ∪G. Since F is an oriented matroid, it satisfies Coloring Lemma. Using that
fact that Y 6∈ F , the second statement (b) must hold for some X ∈ F∗. It is easy to see that such a vector
X cannot be orthogonal to Y , a contradiction to Y ∈ F∗∗. This completes the proof.
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Open Problems

Here I present a list of open problems discussed in this lecture. I believe that all problems are fundamental
and closely related, directly or indirectly, to the efficiency of computation. Furthermore, all problems are
quite difficult but they are “reasonable” problems, meaning that the complete answer to any of the problems
does not seem to imply any miracle discovery, such as P=NP.

In what follows, we employ the following definitions. A polynomial algorithm is one whose time complexity
is bounded by a polynomial in the size of input. A polynomial enumeration algorithm is one whose time
complexity is bounded by a polynomial in both the sizes of input and output. A linear enumeration algorithm
is one whose time complexity is bounded by a function polynomial in the size of input and linear in the
output size. Thus every polynomial algorithm is linear (and of course polynomial) enumeration algorithm.
Finally, A compact enumeration algorithm is one whose space complexity is bounded by a polynomial in the
size of input and independent in the output size. It should be noted that a polynomial or linear enumeration
algorithm is not necessarily compact.

Axiomatics of Oriented Matroids

1. Is there any axiomatization for the topes of an oriented matroid that can be verified in
time polynomial in the size of input? (Section 1.4)

Note: There are several characterizations known, e.g. [BC87, Han91, dS91], but they do not yield a (direct)

polynomial algorithm.

2. Is there any polynomially verifiable characterization of the tope graphs of oriented ma-
troids? (Section 1.10)

Note: There is a polynomial algorithm to check whether a given graph is isomorphic to the tope graph of

some oriented matroid, see [FST91]. Since the tope graph uniquely determines the oriented matroid up to

isomorphism, such a characterization makes the theory of oriented matroids a special branch of graph theory.

For rank ≤ 3, a good characterization is known, see [FH93].

Combinatorial Problems on Polytopes and Topes

1. Design a polynomial enumeration algorithm to construct the face lattice from the graph
(i.e. 1-skeleton) of a simple d-polytope.

Note: The face lattice is uniquely determined by the graph. This result is due to Blind and Mani-Levistska

[BML87]. A finite algorithm is given by Kalai [Kal88].

2. Find a good characterization of good orientations of the graph of a simple polytope.

Note: An orientation of the graph of a polytope is said to be good if it is acyclic and the subgraph induced

by each face contains exactly one sink and one source. Such an orientation always exists for any polytopes

since any linear function not constant on each edge induces a good (LP) orientation. A simple but exponential

characterization is given in [Kal88].

3. Does every tope cell admits a good orientation?

Note: A tope cell is the interval [0, T ] for some tope T of some oriented matroid. There is a natural extension

of the LP orientations of a polytope, namely the OMP orientations of a tope cell. But such an orientation

might contain a directed cycle.

4. Does the graph of a simple tope determine its face lattice?

Note: A tope T of dimension d is said to be simple if the graph of the cell [0, T ] is d-regular graph. The answer

is positive if the answer to the previous question is positive.

5. Find a good characterization of tope lattices. (“Weak” Steinitz’ Problem.)

Note: The tope lattices are a natural extension of the polytopal lattices. It is known that the problem of

checking whether a given lattice is polytopal is NP-hard, even for the restricted case of 4-polytopality, as

shown recently by Richter-Gebert [RG95, RGZ95].
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6. Does every oriented matroid have a simplex tope? (Las Vergnas’ Conjecture;Extension of
Shannon’s Theorem)

Does every oriented matroid have a simple vertex?

Note: A simplex tope is a tope whose face lattice is isomorphic to the face lattice of a simplex. A simple vertex

is a vertex which have exactly d zero components (after removal of loops and parallel elements). These two

questions were positively answered for Euclidean oriented matroids by Edmonds-Fukuda-Mandel (1982).

Computational Problems on Polytopes

Below, A is a given rational m × d matrix and we assume that the associated cone P = {x : A x ≥ 0} is
pointed (i.e. the origin is an extreme point).

1. (Any Polynomial Extreme Ray Enumeration Algorithm Exists?) Find a polynomial enu-
meration algorithm to generate all extreme rays of P , or prove no such algorithm exists.
(Section 2)

Note: A harder questions can be formulated with “polynomial” replaced with “linear” or “linear and compact”.
These are major open problems in computational geometry and optimization.

Under the nondegeneracy assumption that every nonzero feasible solution to A x ≥ 0 satisfies at most (d − 1)

inequalities with equality, there is a linear compact enumeration algorithm, see [AF92a].

2. (Any Polynomial Double Description Method Exists?) Is there any way to reorder the
rows of a given system A x ≥ 0 in such a way that the double description method adding
kth inequality with this ordering is a polynomial enumeration algorithm for the extreme
ray enumeration. (Section 2.1.3)

Note: This problem is settled negatively by David Bremner [Bre99].

3. (Extreme Ray Enumeration using Edmonds’ Proof?) Is it possible to design an extreme
ray enumeration algorithm which calls Edmonds’ oracle (for Minkowski’s Theorem) a
finite (and hopefully polynomial) number of times? (Section 2.1.4)

Note: Edmonds’ oracle returns at most d extreme rays of P to represent any given point x of P as their

nonnegative combination. It can be implemented efficiently.

LP, LCP and OM Programming

Below, a general linear programming problem (LP) is assumed to have d nonnegative variables restricted by
m (≤ d) linear equality constraints with rational coefficients. Also, a linear complementarity problem (LCP)
is assumed to have 2d variables.

1. (Any Strongly Polynomial LP Algorithm Exists?) Find a pivoting algorithm to solve any
linear programming problem which terminates in a number of pivots polynomial in d.

Note: Of course a harder question can be formulated by requiring the algorithm to stay feasible once a feasible

solution is obtained (e.g. the simplex algorithm). These are major open problems in optimization. See [FLN97]

for the best-case analysis for a certain class of pivot algorithms.

2. (Any Strongly Polynomial LCP Algorithm Exists?) Find a pivoting algorithm which
solves any linear programming problem in a number of pivots polynomial in d, whenever
a given matrix is sufficient.

Note: See [FNT95] for a simple finite pivot algorithm, and see [FLN97] for the best-case analysis for a certain

class of pivot algorithms.

3. (Any Strongly Polynomial OMP Algorithm Exists?) Find a pivoting algorithm which
solves any OMP problem OMP(M, g, f) in a number of pivots polynomial in d, where d is
the size of the ground set of M .

Note: This is a harder problem than the first LP problem, but it might be more appropriate question, since it

might be difficult to take advantage of linearity anyway.



ETH Lecture (Fukuda 2000) E–1

Exercise

Convex Polyhedra and Faces

1. Prove Lemma 0.2.

Polyhedral Realization of Arrangements

1. Let

A =





1 0
0 1
−1 1





and let A be the central arrangement with representation (A, 0).

(a) Draw the arrangement.

(b) Compute F(A).

(c) Determine PA and its dual (PA)∗, and verify Theorem 0.14 for the arrangement.

2. Let A = I(d), the identity matrix of size d, and let A be the central arrangement with representation
(A, 0).

(a) Determine F(A).

(b) Draw PA and its dual (PA)∗. What are these polytopes? Verify Theorem 0.14 for the arrangement.

3. Prove Theorem 0.14.

Hint: For y ∈ Rm, let sg(y) denote the (+1, 0,−1)-valued sign vector of y. For any nonzero
vector x of Rd, let p(x) denote the scaled vector p(x) := x

sg(Ax)T Ax . Here the denominator is

positive by Assumption 0.13. Finally, for any x ∈ Rd, define a(x) (“active set” at x for PA)
by

a(x) := {y ∈ {+1,−1}m : yT A x = 1}.

Show the following for nonzero x ∈ Rd and y ∈ {+1,−1}m:

(a) p(x) ∈ PA.

(b) y ∈ a(p(x)) if and only if sg(y)i = sg(A x)i for all i with (A x)i 6= 0.

Faces, Vertices and Topes

1. Shannon’ theorem states that every arrangement of m spheres on Sd admits a face isomorphic to a
d-simplex, under our regularity assumption, Assumption 0.13. (Actually the theorem is stronger.)

(a) State the equivalent statement in terms of (d + 1)-zonotopes.

(b) Prove the theorem for d = 2 (in the form you prefer) by using Euler’s relation f0 − f1 + f2 = 2,
where fk is the number of k-faces.

2. The Sylvester-Gallai theorem states that every set of n points in the plane not all of which are colinear
admits an ordinary line. Here a line is called ordinary if it contains exactly two points from the set.

(a) Dualize the statement of the theorem. In particular, state a theorem for arrangements of spheres
on S2 and also for 3-zonotopes.

(b) Prove the theorems in (a) by using Euler’s relation.

3. A colorful generalization of the Sylvester-Gallai theorem states:

For any set of n points in the plane not all of which are colinear, and for any balanced
non-Radon partition P = B ∪ R (colored blue and red), there is a “colorful” (i.e. blue and
red) ordinary line.
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Here a partition is balanced if the cardinalities of the two sets are as equal as possible (i.e. the difference
is at most one).

(a) State a dual version of the statement for arrangements of spheres on S2.

(b) Can you prove it? This problem is still open, although quite a few discrete geometers tried to
prove or disprove it.

4. Prove the Conformal Decomposition Theorem for OMs:
Theorem. Let M = (E,F) be an oriented matroid. Then, every face Y ∈ F admits a conformal
decomposition into vertices, that is, Y = V1 ◦ V2 ◦ · · · ◦ Vk for some vertices V1, V2, . . . , Vk such that
Vj � Y for all j.

5. Let G = (V, E) be a connected graph. Fix one orientation of G. and let A = [aij : i ∈ E; j ∈ V ] denote
the E × V (1, 0,−1) incidence matrix of G. Here aij is 1 (−1) if a vertex j is the head (the tail) of an
edge i, and 0 otherwise. Consider the oriented matroid F = σ(V) where V is the cut space of G:

V = Cut(G) := {y : y = Ax and x ∈ RV }.

An orientation is called acyclic if it does not contain a directed cycle, or equivalently each edge is
contained in a directed cut.

(a) Suppose the initial orientation is acyclic. Show that F contains the vector of all +’s.

(b) What are the topes of the oriented matroid? Can you interprete them in terms of orientations?

(c) What does Shannon’s theorem imply?

Matroids

1. Prove the basis exchange property from the flat axiom.

2. Consider an oriented matroid with a sphere system representation. Give a characterization of inde-
pendent sets (and bases) in terms of the associated sets of spheres.

Tope and Cocircuit Graphs

1. The following graph is either the tope graph or the cocircuit of a simple oriented matroid.

(a) Which one is it? Determine the rank of the oriented matroid and the size of the ground set.

(b) Recover the tope vectors of the OM up to isomorphism. Is your method efficient (i.e. polynomial)
for any correct input?

2. Design a finite algorithm to generate all acyclic orientation of a given graph. Analyze its time and
space complexity.
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Duality

1. Let

A =





1 0
0 1
−1 1





and let V be its column space {y : y = Ax, x ∈ R2}. Compute σ(V ), σ(V ⊥) and σ(V )∗. Note that
this matrix is the one given in Problem 2.1.

2. Prove the following theorem using Farkas’ Lemma (for matrices): For any vector subspace V of RE ,
σ(V )∗ = σ(V ⊥). Hint: one inclusion is trivial.

3. Let F be any set of sign vectors on a finite set E. Which of the OM face axioms (F1) ∼ (F4) are
generally satisfied by F∗? Give a counterexample for each axiom not satisfied.

4. Using the Coloring Lemma for OMs, prove that the dual F∗ satisfies the strong elimination property
(F4).

Shelling

1. Let P be a d-dimensional H-polytope:

P = {x ∈ Rd : ai x ≤ 1, i = 1, 2, . . . , m}.

Note that the origin 0 is in the interior of P . For any nonzero vector c ∈ Rd, let L(c) denote the
oriented line through the origin L(c) = {x(λ) ∈ Rd : x(λ) = λ c, λ ∈ R}. Assume that the face

Fi = {x ∈ P : ai x = 1}.

determined by ith inequality is facet, for each i. Find conditions on ai’s and c under which F1,
F2, . . ., Fm is the line shelling induced by L(c). Interprete the conditions for the dual polytope
P ∗ = conv({a1, a2, . . . , am}).

OM Programming

1. Consider the OM programming P = (M, g, f) on seven elements E = {1, 2, 3, 4, 5, f = 6, g = 7}:

2 3
1

5

46 = f

+
+

+

+

+

+

7 = g +

(a) Find a primal optimal solution.

(b) Find a dual optimal solution. Explain using the arrangement why the dual solution is in fact in
F∗.
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Hint: For X ∈ {+, 0,−}E, X ∈∈ F∗ if and only if Y ∈ F and Yj = Xj or 0 for all j ∈ X
imply Yj = 0 for all j ∈ X .

(c) Write down the dictionary D(B) for the basis B = {g, 1, 2}.

(d) Find an optimal basis B∗ and write down its dictionary. Where in the dictionary are the primal
and the dual optimal solutions represented. How many admissible pivots do we need to get to B∗

from B?

(d) Apply the criss-cross method to B. How many steps does it take to get to the optimal basis?
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