
Notes on Conformal Mappings and The

Riemann Mapping Theorem

E. Chernysh

November 29, 2016

Contents

1 Conformal Mappings 1

1.1 Möbius Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 More General Conformal Mappings . . . . . . . . . . . . . . . . . . . . 3

1.3 Automorphisms of D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Examples and Problems 6

3 The Riemann Mapping Theorem 9

4 References 10

1 Conformal Mappings

1–1.1 Möbius Transformations

Of the mappings that we will study, we begin with the rational composition of linear
functions. Of course, any linear function is entire or holomorphic in all of C. These will
turn out to be an important class of transformations as they preserve much geometry
and much of the topological properties of subsets of C. More precisely, these are
fractional linear transformations or Möbius transformations which we define as

Definition 1 (Fractional Linear Transformations). Let S = C ∪ {∞}. A mapping
T : S→ S given by

T (z) =
az + b

cz + d
, a, b, c, d ∈ C with ad− bc 6= 0 (1)

is called a linear fractional transformation or Möbius transformation. It has an in-
verse function

T −1(w) =
dw − b
a− cw

is also a fractional linear transformation. We naturally define the collection of all
such transformations by PGL(2,C); this set forms a group under composition and is
called the Möbius group. The fact that this is indeed a group when equipped with this
operation ? is left as an exercise and may be verified by brute computation.
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Conformal Mappings

These may often be represented in terms of matrices, although in general we
shall refrain from doing so. There are many such cases of these transformations.
The simplest is when c = d = 0. In this case, we are simply left with the map
T (z) = az + b which is certainly entire. Now, if a = 1 we are left with T (z) = z + c
which corresponds to a translation in the plane, clearly preserving the structure of
whatever subset Ω ⊆ S. Additionally if a 6= 0 and c = 0 we are left with T (z) = az
which corresponds to a rescaling and/or a rotation. For instance, consider the unit
disc D ⊂ C, the map z 7→ 2z will take D onto the larger disk {|z| < 2}.

However, if we consider the right-half plane H+ := {z : <(z) > 0} under the
transformation z 7→ ei

π
2 z we are no longer rescaling but rotating the half-plane H+

by π
2 and hence we send H+ onto H+ := {z : =(z) > 0}. In our case this is not too

hard to verify.

Example 1.1. The map z 7→ ei
π
2 takes H+ onto H+ conformally.

Solution. Clearly the mapping is holomorphic and hence meromorphic in C and
especially H+ ⊂ C. Now it is clear from the linearity that this mapping is injective
in C. To show that it is onto, pick a point ζ ∈ H+, or set ζ := a+ bi for a > 0. Then,
multiplying through by ei

π
2 corresponds to a rotation by π

2 or, simply a multiplication
by i. Hence, z 7→ i(a+ bi) = −b+ ai, so we conclude that this map is invertible.

The map z 7→ 1

z
is referred to as an inversion.

We now turn our attention to so-called cross ratios. Given z2, z3, z4 ∈ S, all
distinct, we may find a Möbius transformation S taking these aforementioned points
into 1, 0,∞ respectively. Indeed,

1. If none of these zi =∞ we may simply take

S(z) =
z − z3

z − z4
· z2 − z4

z2 − z3
(2)

which is clearly satisfactory and in PGL(2,C).

2. If one of z2, z3, z4 =∞ then respectively:

S(z) ∈
{
z − z2

z − z4
,
z2 − z4

z − z4
,
z − z3

z2 − z3

}
(3)

Proposition 1. The transformation S given above is uniquely determined.

Proof. If T ∼ S were any other such transformation, then ST−1 would leave the
points 1, 0,∞ fixed. This can only happen if ST−1 is the identity. Indeed, since
PGL(2,C) is a group under composition we know ST−1 takes on the form

az + b

cz + d

for suitable complex numbers a, b, c, d. Since 0 7→ 0 it follows that b = 0. Using that
1 7→ 1 we conclude that a = c+ d, but since ∞ 7→ ∞ one also has c = 0 so that a = d
and ST−1 = z or S = T .

�

Definition 2 (The Crossing Ratio). The Crossing Ratio denoted (z1, z2, z3, z4) is the
image of z1 ∈ S under the linear transformation taking z2, z3, z4 ↪→ 1, 0,∞ where we
of course assume the z2, z3, z4 are all distinct values in the extended complex plane of
Riemann sphere.
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Theorem 2. Let z1, z2, z3, z4 ∈ S be distinct and let T : S → S be any linear trans-
formation. Then (Tz1, T z2, T z3, T z4) = (z1, z2, z3, z4).

Proof. Let Sz := (z, z2, z3, z4). Then observe that ST−1 will take Tz2, T z3, T z4 into
1, 0,∞ respectively. Hence, since (a, b, c, d) is by definition the image of a under the
transformation that takes b, c, d to 1, 0,∞ we have

(Tz1, T z2, T z3, T z4) = ST−1(Tz1) = S(z1) = (z1, z2, z3, z4)

�

Theorem 3. On the Riemann sphere a straight line is a circle. Hence, a Möbius
transformation sends circles to circles.

Proof Sketch. Since a Möbius transformation may be made up of finitely many rota-
tions, scales, translations or inversions we need only argue for each of these. These
may be verified by direct calculations. The result is clear for rotations and scalings.
Translations are obvious as well.

�

Definition 3 (Left Regions). Let Ω ( C be a non-empty simply connected domain
and let (zi)

N
i=1 ⊂ ∂Ω be a collection of points on a path. We say that Ω is a left-region

with respect to (zi)
N
i=1 provided Ω lies to the left of the path travelled by z1 → z2 →

. . .→ zN .

Theorem 4 (Left Hand Rule). Let Ω ( C be a simply non-empty connected domain
and let Γ : S → S be a Möbius transformation. If Ω is a left region with respect to a
collection of ordered points (zi)

N
i=1 ⊂ ∂Ω and we denote by γ the image of ∂Ω under

Γ and (wi)
N
i=1 := (Γ(zi))

N
i=1 then Γ(Ω) is the left-region with respect to (wi)

N
i=1 ⊂ γ.

1–1.2 More General Conformal Mappings

Although these have countless applications in physics and engineering, we will mostly
focus on their geometric properties and their topological description of holomorphic
functions. It is not, however, easy to determine conformal mappings between subsets
of the complex plane. We nonetheless explore some of these in this section.

Given a conformal map w = f(z) defined on a connected subset Ω ⊂ C we may
glean some geometric information about the mapping by considering level curves of
the map w. This may of course we done by fixing a variable, say x = <(z) and
writing f(z) = u(x, y) + iv(x, y) for functions u = <(f), v = =(f). In any case, we
may explore some conformal mappings that are not Möbius transformations.

The simplest of these aforementioned conformal maps is the power mapping de-
fined by z 7→ zα for any α = <(α) > 0. To see what happens to a domain under this
map, we begin we the obvious note that z 7→ zα fixes the origin. If z 6= 0 then we
may express it as

z = ρeiθ, 0 ≤ θ < 2π

In which case, it becomes much clearer that

z 7→ zα =
(
ρeiθ

)α
= ραei(αθ)

We need to be careful here, if α is fractional then the mapping isn’t holomorphic
or injective (in fact in the plane it won’t even be single valued). The above expression
is still useful, it shows that this transformation will preserve circles and preserve the
shape of straight lines in S.
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Conformal Mappings

To return to the problem at hand, it is usually recommended to proceed in two
steps. Suppose we are given two nice regions Ω,Σ ⊂ C and which to find a conformal
mapping Ψ : Ω→ Σ. In general, the best method is two find two auxiliary conformal
mappings

Γ : Ω→ D, Λ : D→ Σ (4)

so that Ψ := Λ ◦ Γ is a desired conformal mapping.

1–1.3 Automorphisms of D

We begin with an essential definition:

Definition 4. A conformal mapping from a region Ω ⊆ C onto itself is called an
automorphism of Ω. The space of all automorphisms of Ω is denoted by Aut(Ω)

Yet again, Aut(Ω) forms a group under composition ◦, where the identity is simply
the mapping z 7→ z. All of this is a consequence of what we have shown in general
for conformal mappings. Moreover, if we let f, g ∈ Aut(Ω) then clearly

(g ◦ f)−1 = f−1 ◦ g−1 ∈ Aut(Ω)

As previously stated, rotations are automorphisms of D. Indeed, letting θ ∈ R we may
take θ ∈ [0, 2π) and see that clearly z 7→ eiθz takes D onto D. In fact, this is true for
any disc of any positive radius in C. This map has the inverse function w 7→ e−iθw.
Before we study the more interesting automorphisms of the form

ϕα(z) :=
α− z
1− αz

, α ∈ C with |α| < 1 (5)

we wil give the following lemma due to Schwarz:

Theorem 5 (The Schwarz Lemma). Let f : D → D be holomorphic along fixing the
origin. Then,

(a) |f(z)| ≤ |z| in all of D.

(b) If for some z0 6= 0 we have equality then f is a rotation.

(c) |f ′(0)| ≤ 1 and f is a rotation of equality holds true.

Proof. We first claim that f(z)
z has a removable singularity at the origin. Indeed, note

that since f(0) = 0 we may write for z with |z| < ρ� 1

f(z)

z
=
f(z)− f(0)

z − 0

z→0−−−→ f ′(0)

and hence f(z)
z is bounded in a neighbourhood of the origin and consequently by

Riemann’s theorem the origin is a removable singularity. Then, we see that we may

make f(z)
z holomorphic in all of D. Now on any circle |z| = r < 1 we observe that∣∣∣∣f(z)

z

∣∣∣∣ =
|f(z)|
|z|

≤ 1

|z|
=

1

r

where we bound |f | by 1 since f maps D into D. Now an application of the strong
maximum principle for holomorphisms shows that this is true for all z inside and on
the circle |z| = r. Now as r was arbitrary letting r → 1 yields that

|f(z)| ≤ |z| , ∀z ∈ D (a)
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If for some interior point z0 ∈ D we have |f(z0)| = |z0| then we also have that the

holomorphic quotient f(z)
z achieves it’s maximum inside some disk B(0, ρ) ⊂ D for all

sufficiently large ρ < 1. Then, again by the strong maximum principle for holomorphic
functions we deduce that

|f(z)|
|z|

= 1, ∀z ∈ D

Thence we see that f(z) = γz for some γ ∈ C with |γ| = 1. As γ 6= 0 we may express
γ = eiθ for θ ∈ R with non-negative modulus strictly less than 2π. Or, equivalently
writing

f(z) = γz = eiθz, θ ∈ [0, 2π), z ∈ D (b)

we have that f is a rotation as was required.

Finally, if we let g(z) = f(z)
z we already have that g is holomorphic inside D. It is

clear from (a) that the desired inequality in (c) it true. On the other hand, we also
note

g(0) = lim
z→0

f(z)

z
=
f(z)− f(0)

z − 0
= f ′(0) = 1

Hence g achieves it’s maximum in the interior of D and hence by the same argument
as before we must have that g ≡ 1 whence by the previous argument we also have
that f is a rotation.

�

Now we return to the briefly described function ϕ : D → D. It turns out that
mappings of this form will naturally arise in many analytic contexts. We will prove
that these are indeed automorphisms of D. Clearly, since we require |α| < 1 it follows
that αz 6= 1 in all of D for otherwise one of |α| or |z| would be no less than 1 which
is absurd. Consequently ϕα is holomorphic in D.

We must also show that ϕα indeed maps into D, as this is certainly not obvious.
First note that if |z| = 1 we have z = eiθ and hence

ϕα(z) =
α− eiθ

1− αeiθ
=

α− eiθ

eiθ (e−iθ − α)
=
αe−iθ − 1

e−iθ − α

= −e−iθ · β
β

for β := α − eθ. Therefore |ϕα(z)| = 1 on ∂D. We then see that by the strong
maximum principle we have |ϕα| ≤ 1 in D as we wanted. A not so nice calculation
(but certainly possible for even a highschool student) verifies that

ϕα ◦ ϕα = z

and hence that ϕα is it’s own inverse. These facts put together yield that this mapping
is bijective and holomorphic in D. Therefore ϕα ∈ Aut(D). This should be nice, but
not absolutely amazing...yet. This is only one possible automorphism of D? We prove
the following fact to answer this question

Theorem 6. Let f ∈ Aut(D). There exists α ∈ D and θ ∈ R so that

f(z) = eiθ
α− z
1− az

(A)
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Conformal Mappings

Proof. By hypothesis that f ∈ Aut(D) there exists a unique point α ∈ D so that
f(α) = 0 ∈ D. It is clear that the composite g := f ◦ ϕα ∈ Aut(D) as well. Note that
g(0) = 0 and so we use the Schwarz lemma to deduce that |g(z)| ≤ |z| in all D. Now,
g−1 : D → D is also an automorphism of D with g−1(0) = 0. Again, by Schwarz we
see

∣∣g−1(w)
∣∣ ≤ |w| so that |z| ≤ |g(z)| and hence g ≡ z in modulus.

Again by the Schwarz lemma, we may find θ ∈ R so that for γ := eiθ one has
g(z) = γz in D. We may now set z 7→ ϕα(z) since ϕα ∈ Aut(D) to discover that

γϕα(z) = g ◦ ϕα = f(ϕα(ϕα(z))) = f(z)

�

Corollary 7. Taking α = 0 in the above theorem, it follows that the only automor-
phisms of D fixing the origin are rotations.

2 Examples and Problems

In this section we give some actual examples of conformal mappings of subsets of C
that arise naturally in practical situations.

Example 2.1. Conformally map the disk |z − i| < 1 onto the auxiliary disk |w| < 2.

Solution. Our first step here will be to find a conformal mapping

Γ1 : {|z − i| < 1} → D

The answer here is clear, simply take z 7→ z− i and we are left with D. Indeed, to see
that this is injective write Γ1(z) = Γ2(z) so that x+ iy = u+ iy. For surjectivity, it is
suffices to show that each element in w ∈ D is mapped to by some z ∈ {|z − i| < 1}.
If w ∈ D then w = u+ iv, taking z = u+ i(v + 1) ∈ {|z − i| < 1} we see that z 7→ w.

Now let Γ2 : D → {|w| < 2} be given by z 7→ 2z. This is clearly well defined and
one-one. Hence, the composition Γ := Γ2 ◦ Γ1 is a valid mapping and is explicitly
given by

Γ(z) = (Γ2 ◦ Γ1)(z) = 2(z − i) = 2z − 2i (6)

Example 2.2. Map (conformally) the inside of the circle {|z − i| = 1} to the outside
of the circle |w| = 2.

Solution. We will send the origin of the first disk to ∞, so we want a map Γ which
takes i 7→ ∞. So, Γ will be of the form

Γ(z) =
az + b

cd+ z
=
az + b

z − i

A conformal map preserved angles and so we want to make sure points on the circle
|z − i| = 1 get mapped to |w| = 2. With these conditions imposed, we shall find
explicit values for a, b ∈ C. Consider the points 0, 1 + i, 2i which lie on the domain
circle. Now, by direct substitution we recover

Γ(0) = bi, Γ(1 + i) = a+ ai+ b, Γ(2i) =
2ai+ b

ai− i

In modulus we want these to satisfy |Γ| = 2. A simple choice is to take α = 0. We
would then require

Γ(z) =
b

z − i
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so for points on {|z − i| = 1} to be mapped to {|w| = 2} we would take b = 2 and
therefore

Γ(z) =
2

z − i
Let us now recall that we denote the right-half plane {<(z) > 0} by H+ and the

upper-half plane {=(z) > 0} by H+. With this in mind:

Example 2.3. Find a conformal mapping Γ : D→ H+.

Solution. Since conformal maps send circles to circles, and on the Riemann Sphere S a
straight line is a circle we will find a conformal map Γ which takes D onto {<(z) = 0}.
Indeed, to do so we will map a point of the circle to the north pole of S, i.e ∞.
Consider now the map

Γ(z) :=
az + b

z − 1

Clearly on S this will take 1 7→ ∞ and if we want a point, say, −1 to be mapped to
the origin we may refine Γ as follows

Γ(z) =
z + 1

z − 1

Hence this takes ∂D onto the imaginary axis since

i 7→ i+ 1

i− 1
=
i+ 1

i− 1
· −1− i−1− i = −i ∈ {<(z) = 0}

Now taking an interior point, say the origin, of D we see

Γ(0) =
1

−1
= −1

Which is an issue, however this may be corrected by a rotation of π to derive

Γ̃(z) =
1 + z

1− z
(7)

Example 2.4. Set Γ(z) :=
z

2z − 8
. How does this map the interior of the circle

C := {|z − 2| = 2}?

Solution. Note that Γ(z) is meromorphic in C since 2z − 8 = 0 ⇐⇒ z = 4 which
is certainly a point on C and hence we see that Γ is meromorphic at a point on the
circle and consequently Γ has a pole on C which together with the fact that 0 ∈ C
and Γ(0) = 0 we conclude that Γ takes C onto a straight line through the origin and
the north pole of the sphere S: the imaginary axis. Hence, by angle preservation it
will take the interior of C to either H+ or H− where we accordingly define

H− := {<(z) < 0}

Indeed, the point z = 2 is taken to

2 7→ 2

4− 8
= −1

2

So we conclude that Γ maps onto <(z) < 0.
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Conformal Mappings

Example 2.5. Conformally map Dc onto H+.

Solution. We begin by recalling the left hand rule; note that Dc can be made into a
left-region by defining (zi)

3
i=1 via z1 := −1, z2 := i and z3 := 1. Obviously the arc

defined by this triplet in this order along the circle gives Dc positive orientation.
Now, we may also make H+ into a left region by simply taking w1 := 0, w2 := −i

and w3 := ∞. It is clear that in this direction, the half-space H+ is given positive
(left) orientation.

Since we want −1 7→ 0 and 1 7→ ∞ it is natural to define

Γ(z) :=
z + 1

z − 1

Then observe

Γ(z2) =
i+ 1

i− 1
= −i

which indeed lies on the imaginary axis and is between 0 and∞. So our conditions on
the sequence (zi)

3
i=1 and the transformed sequence (Γ(zi))

3
i=1 are satisfied. Thence,

the map above will then take Dc onto H+.

Example 2.6. Find a conformal mapping Γ : Dc → H+

Solution. Just as before, take z1 := −1, z2 := i and finally z3 := 1. In this order, these
give D positive orientation. We wish to send −1 7→ 0, i 7→ 1 and 1 7→ ∞. Naturally
we begin by considering

γ(z) :=
z + 1

z − 1

Plugging in z = i we are left with

γ(i) = i

Thus this transformation leaves i fixed. Now we will rotate by −π2 in C and instead
define:

Γ(z) :=
1

i

z + 1

z − 1
(8)

Which takes ∂D ↪→ R. Yet again, we conclude that Γ takes Dc onto H+. Via a similar
procedure one can construct a map Λ : D→ H+.

Problem 2.7. Conformally map the unit disc D onto the upper half-plane H+. Hence,
find two biholomorphisms.

Solution. Considering our left hand rule we naturally seek a map ϕ which takes

1 7→ −1, i 7→ 0, −1 7→ 1

Naturally, we assume ϕ =
z − i
cz + d

and we must find such constants c, d. Plugging

in our restrictions on z = ±1 we obtain a linear system of equations and conclude
that solutions are c = i, d = −1 by simple highschool algebra. Thus, we have a
transformation

ϕ(z) =
z − i
zi− 1

, Φ(z) = −1 + iw

w + i

where Φ is the inverse transformation and takes H+ onto D.

Problem 2.8. Take the region
{
|z| < 1 ∩

∣∣z − 1
2

∣∣ > 1
2

}
onto D conformally.
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Solution. This one is more difficult than the others. First, both of these regions are
circles. Consider the first mapping

Γ1(z) :=
1

z − 1

Clearly, this sends 1 7→ ∞. Hence the inner most circle will be a line. More precisely,
we that Γ1(0) = −1 and hence the image of the inner-most circle under the trans-
formation Γ1 is a line passing through −1. To see which line, consider Γ1(1/2 + i/2)
which is given by

Γ1

(
1 + i

2

)
=

1
1+i
2 − 1

= −1− i

Thence, we conclude that Γ1 takes the inner most circle onto the line <(z) = −1.
Similarly, we repeat this process to discover that Γ1 takes the outer-most circle onto
the line <(z) = − 1

2 . Putting this facts together,{
|z| < 1 ∩

∣∣∣∣z − 1

2

∣∣∣∣} Γ1−→
{
−1 < <(z) < −1

2

}
(9)

We will now perform the following rotation: Γ2 := e−i
π
2 = −i which will take{

−1 < <(z) < −1

2

}
Γ2−→
{

1

2
< =(z) < 1

}
(10)

This last transformation is seen by writing an arbitrary z = x+ iy for −1 < x < − 1
2

where multiplying through by −i will yield the above. Introducing a third mapping
Γ3 which takes z 7→ z − i

2 we transform{
1

2
< =(z) < 1

}
Γ3−→
{

0 < =(z) <
1

2

}
(11)

A rescaling by Γ4(z) := 2πz will transform this above region to{
0 < =(z) <

1

2

}
Γ4−→ {0 < =(z) < π} (12)

Now, we will exponentiate this by taking a mapping Γ5 := ez. For any z with
=(z) < π note that writing z = x+ iy one has ez = exeiy. Thus,

{0 < =(z) < π} Γ5−→ H+ (13)

Finally, let us recall the transformation Φ from the previous problem, which took H+

onto D conformally. If we compose all of these, we are left with a conformal mapping
Γ which does the job.

3 The Riemann Mapping Theorem

This is a rather intricate proof, and we will instead simply state it and sketch the
proof.

Theorem 8 (Riemann). Let Ω ( C be a non-empty simply connected domain. Then
for z0 ∈ Ω there exists a unique conformal mapping Γ : Ω→ D so that

F (z0) = 0, F ′(z0) > 0 (R)

In particular, by taking the inverses, any two such domains Ω and Ω′ must be confor-
mally equivalent.
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Conformal Mappings

Proof Sketch. One usually begins by proving that Ω is conformally equivalent to an
open subset of D that also contains the origin. This is done by taking a complex num-
ber α ∈ C\Ω and defining a holomorphic (in Ω) logarithm log z − α and constructing
such a conformal mapping by continuity.

One then may consider the family of injective holomorphisms from Ω into the unit
disk D fixing the origin F . This is non-empty because it contains the identity. This
family is uniformly bounded. One can then find a function f ∈ F maximizing |f ′(0)|.
This is done by considering the sup over all such functions at this point and taking a
sequence of functions in F converging pointwise to the sup at the origin in their first
derivative. An application of Montel’s theorem guarantees a convergent subsequence
converging uniformly on compact sets to a function f holomorphic in Ω. One usually
shows that this function is a desired function.

Finally one will show that f is indeed conformal; or in our case surjective. Arguing
by contradiction one can show that otherwise there exists a function g ∈ F with g′(0)
larger in modulus than f ′(0). This can be done by assuming there is α ∈ D so that
f(z) 6= α in all Ω and considering the function ϕα ∈ Aut(D):

ϕα(z) =
α− z
1− αz

One can define a square root function on U := (ϕα ◦f)(Ω) by using the logarithm (see
other notes). One then defines F := ϕg(α) ◦ g ◦ϕα ◦ f and shows that F ∈ F and may
use the Schwarz lemma to conclude that |F ′(0)| > |f ′(0)| which is a contradiction.

�
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