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Honours Complex Analysis

Some Additional Problems 17
These are mostly problems from Ahlfors’ Complex Analysis.

Page 28

Problem 1

Let f : Ω ⊆ C be holomorphic in Ω and g : Λ → C be holomorphic where f(Ω) ⊆ Λ.
Then the map

g ◦ f : Ω→ C

is holomorphic. Indeed, it suffices to show that g ◦ f is (complex) differentiable at every
point of Ω, and hence as Ω is open it will follow that the composition is a holomorphism.
The chain rule easily yields this.

Problem 4

If f : Ω → C is a holomorphism in a domain Ω ⊆ C with |f | ≡ M , then f is constant.
Note that the case where M = 0 is instant as this implies

|f |2 = <(f)2 + =(f)2 ≡ 0

and hence <(f)2 ≡ =(f)2 ≡ 0. Now consider the case where |f |2 ≡ <(f)2 + =(f)2 =:
u2 + v2 ≡ M > 0 for any z ∼= (x, y) ∈ R × iR. Then differentiation with respect to x
and y will yield

2
∂u

∂x
u+ 2

∂v

∂x
v ≡ 0 (1)

2
∂u

∂y
u+ 2

∂v

∂y
v ≡ 0 (2)

We now employ the Cauchy-Riemann equations to write this only in terms of
∂

∂x
as

follows:

2
∂u

∂x
u+ 2

∂v

∂x
v ≡ 0

−2
∂v

∂x
u+ 2

∂u

∂x
v ≡ 2

∂u

∂x
v − 2

∂v

∂x
u ≡ 0

Or, equivalently (
u v
v −u

)(
ux
vx

)
=

1

2

(
0
0

)
Note that the coefficient matrix is invertible as it has determinant det

(
u v
v −u

)
=

−(u2 + v2) = −M 6= 0 by hypothesis. This yields that

(
ux
vx

)
= 0. A final application

of the Cauchy Riemann equations yields ∇f ≡ 0 over C.

Problem 5

Here we show that f is holomorphic in C if and only if f(z) also is. Note that by
symmetry of conjugation, we need only show one implication. One can show this via
algebraic manipulation of the limit definition. I, however, prefer to show that f(z) is also
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a solution to the Cauchy Riemann system of PDEs. Assuming that f is a holomorphism,
we must have

ux(x, y) = vy(x, y), uy(x, y) = −vx(x, y) (3)

where f(z) = u(x, y) + iv(x, y). Then, we also have f(z) = u(x,−y) + i(−v(x,−y)).
Thus, we may express

f(z) = α(x, y) + iβ(x, y)

for α = u(x,−y) and β = −v(x,−y). We now verify the Cauchy Riemann equations:

αx(x, y) = ux(x,−y) = vy(x,−y)

βy(x, y) =
∂

∂y
[−v(x,−y)] = vy(x,−y)

Moreover,

αy(x, y) =
∂

∂y
[u(x,−y)] = −uy(x,−y) = vx(x,−y)

−βx(x, y) = − ∂

∂x
[−v(x,−y)] = vx(x,−y)

Which concludes the proof, as being holomorphic is equivalent to solving the Cauchy
Riemann equations.

Page 78

Problem 1

(Page 78). Suppose by way of contradiction that ϕ : C∪{∞} → C∪{∞} given as above
is a linear fractional transformation, and thus must be of the form

z = ϕ(z) =
az + b

cz + d
, ∀z ∈ C

Note that if =z = 0 then z = z. In particular,

0 7→ 0 =
b

d
=⇒ b = 0 (4)

(5)

Plugging in different values yields

1 7→ a

c+ d

−1 7→ −a
−c+ d

2 7→ 2a

2c+ d

Or,

c+ d = a

d− c = a

2c+ d = a

Thus, a = d and hence c = 0. But then we have

z =
az

d
= z

Which is absurd (for instance, i 6= i).

3



Honours Complex Analysis

Problem 2

(Page 78) Here we compute several compositions:

T1T2z =
z
z+1 + 2
z
z+1 + 3

=
3z+2
z+1
4z+3
z+1

=
3z + 2

4z + 3

T2T2z =
z+2
z+3

z+2
z+3 + 1

=
z+2
z+3
2z+5
z+3

=
z + 2

2z + 5

Now note that

T−1
1 (w) =

3w − 2

1− w
Thus,

T−1
1 T2z =

3 z
z+1 − 2

1− z
z+1

=
z − 2

1
= z − 2

Problem 3

(Page 78).
We argue in a similar manner. Let ϕ be a fractional linear transformation as given.

Then, we have that ϕ(0) = 0 and for any pair (z, w) ∈ C× C:

|z − w| = |ϕ(z)− ϕ(w)| (6)

since we assume that ϕ preserved distance under transformation. Of course, we

know that then ϕ(z) =
az + b

cz + d
for complex numbers a, b, c, d. The assumption that

0 7→ 0 yields immediately

0 =
b

d

and thus we see b = 0. Now, as ϕ(0) = 0 we see from (6) that

|z| = |ϕ(z)− ϕ(0)| = |ϕ(z)− 0| =
∣∣∣∣ az

cz + d

∣∣∣∣ = |a| · |z|
|cz + d|

, ∀z ∈ C

Especially |a| > 0. As this is the case for all z ∈ C we must have

|a|
|cz + d|

≡ 1 in C (7)

Of course, this can only happen if the denominator is also constant and hence we

conclude that we require additionally that c = 0. We are left with
|a|
|d|

= 1, or |a| = |d|.

Hence we may express the quotient
a

d
in polar form:

a

d
= ρeiθ, θ ∈ [0, 2π) (8)

where ρ = 1. This corresponds purely then to a rotation in the complex plane. Finally,

ϕ(z) =
az

d
= zeiθ, 0 ≤ θ < 2π

as was required.
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Problem 4

(Page 78). Let ϕ(z) be a linear transformation with the additional restriction that
ϕ(z) ∈ R whenever z ∈ R. Write now

ϕ(z) =
az + b

cz + d

for a, b, c, d ∈ C. We will now find α, β, γ, δ ∈ R so that ϕ(z) =
αz + β

γz + δ
. We need to

distinguish separate cases:

1. If a 6= 0 do the following:

ϕ(z) =
az + b

cz + d
· a
a

=
a′z + b′

c′z + d′
, a′ ∈ R

To alleviate notation, we will denote these constants again by a, b, c, d respectively.
The important thing to observe is that we will then have =a = 0, i.e a ∈ R. We
now have a representation

ϕ(z) =
az + b

cz + d
, a ∈ R

In the above we see that ∞ 7→ a

c
implying that c ∈ R as well as a. We have seen

in class that these transformations admit an inverse

ϕ−1(z) =
dz − b
a− cz

(9)

If d = 0 then taking z = 0 we see ϕ(0) = b and hence achieve b ∈ R. We now need
to show that the same holds whenever d 6= 0. But we may repeat the above steps
for this inverse ϕ−1 to see that whenever d 6= 0 we must be able to choose d ∈ R.
Returning to ϕ, taking again z = 0 we see

0 7→ b

d
∈ R =⇒ b ∈ R ∵ d ∈ R

2. If a = 0 then we have ϕ(z) =
b

cz + d
. Here if b = 0 we have that ϕ(z) is non-

invertible which is impossible. So we may apply the same idea to this form to

write ϕ(z) =
b

cz + b
· b
b

thus obtaining

ϕ(z) =
b

cz + d
, b ∈ R

for suitable b. Taking z = 0 we see that 0 7→ b

d
. We then have d ∈ R. From this

we must also we able to take c ∈ R.

Page 80

Problem 1

We seek a transformation ϕ which takes 0 7→ 1, i 7→ −1, −i 7→ 0. We need to find
coefficients a, b, c, d ∈ C so that

ϕ(z) =
az + b

cz + d
(10)
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satisfies the conditions. That is, we require

b

d
= 1

ai+ b

ci+ d
= −1

−ai+ b

−ci+ d
= 0

From the above equations we may recover the following auxilary system

b− d = 0 (11)

(a+ c)i+ (b+ d) = 0 (12)

−ai+ b = 0 (13)

Hence b = d = ai. With this, we rewrite the second equation as

ai+ ci+ 2d = 0 = 3ai+ ci = 0 (14)

Hence 3a = −c. If we set a = 1 it immediately follows that a particular solution is the
4-tuple:

(1, i,−3, i)

So,

ϕ(z) :=
z + i

−3z + i
(ϕ)

It is clear that this certainly satisfies the desired criteria.

Page 108

Problem 3

Here we compute

∮
|z|=2

1

z2 − 1
dz. Note that (z2 − 1)−1 = (z − 1)−1(z + 1)−1 has two

poles of order 1 inside the circle |z| = 2, at z = ±1. The residues are easy to compute:∮
|z|=2

1

z2 − 1
dz = 2πi

∑
w

Resz=wf(z) = 2πi

(
1

−2
+

1

2

)
= 2πi · 0 = 0

Problem 5

Let f be holomorphic on a closed curve Γ ⊂ C, we claim that

∮
γ

f(z)f ′(z)dz is purely

imaginary. Note that as f is holomorphic it is a regular function that if infinitely many
times differentiable and and hence all partials (of any order) of it’s real and imaginary
parts exist and are continuous. We may derive from the limit definition that

f ′(z) = lim
h→0
h∈C

f(z + h)− f(z)

h
= lim
h→0

u(x+ h, y) + iv(x+ h, y)− u(x, y)− iv(x, y)

h

= lim
h→0

u(x+ h, y)− u(x, y)

h
+ i lim

h→0

v(x+ h, y)− v(x, y)

h

=
∂u

∂x
(x, y) + i

∂v

∂x
(x, y)

6



Now, ∮
γ

f(z)f ′(z)dz =

∮
γ

(u(x, y)− iv(x, y)) (ux(x, y) + ivx(x, y)) (dx+ idy)

=

∮
γ

(u(x, y)− iv(x, y)) (ux(x, y) + ivx(x, y)) (dx+ idy)

=

∮
γ

(uux + vvx − ivux + iuvx)(dx+ idy)

=

∮
γ

(uuxdx+ vvxdx− ivuxdx+ iuvxdx) + (iuuxdy + ivvxdy + vuxdy − uvxdy)

=

∮
γ

uuxdx+ vvxdx+ vuxdy − uvxdy + =(I)

=

∮
γ

(uux + vvx)dx+ (vux − uvx)dy + =(I)

where I is the integral being considered. Now, if D denotes the region enclosed by the
closed curve γ we apply Green’s theorem to see the real part is given by∫∫

D
(vxux + vuxx − uxvx − uvxx − uyux − uuxy − vyvx − vvxy) dA

=

∫∫
D

(vuxx − uvxx − uuxy − vvxy) dA

=

∫∫
D

(vvyx + uuyx − uuxy − vvxy) dA

=

∫∫
D

0dA = 0

Page 123

Some of these computations are very tedious and combinatorial and do not (in my
humble opinion) teach one much. It is more instructive to do one nice example and not
get bogged down on the computations that follow. The only crucial step is to notice the
applicability of Cauchy’s theorem. The computations that may follows are not unique
to complex analysis and are not deep.

Problem 1.

We compute

∮
|z|=1

ezz−ndz. The first thing to observe is that if n ≤ 0 the integrand

is holomorphic (even entire) and hence this integral vanishes. We now consider powers
n ∈ N. Recall Cauchy’s Integral Formula

f (n)(z) =
n!

2πi

∮
Γ

f(ζ)

(ζ − z)n+1
dζ (15)

Here we have z = 0, and n 7→ n− 1. Thus,∮
|ζ|=1

eζ

ζn
dζ =

2πi

(n− 1)!
· dn−1

dζn−1

[
eζ
]
ζ=0

=
2πi

(n− 1)!

7
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Problem 2.

We claim here that if f is entire and for all f(z) ∈ O(zn) for some n, then f is a
polynomial of at most degree n. Here we will develop of modified form of Cauchy’s
estimate. Fix z ∈ C and take R� 0 and consider the circle |ζ − z| = R. We may let R
be so large that for ζ on this circle we have |f(ζ)| ≤ C |ζ|n. Then,

f (n+1)(z) =
(n+ 1)!

2π

∣∣∣∣∣
∮
|ζ−z|=R

f(ζ)

(ζ − z)n+2
dζ

∣∣∣∣∣ ≤ (n+ 1)!

2π

∮
|ζ−z|=R

|f(ζ)|
|ζ − z|n+2 |dζ|

≤ (n+ 1)!

2π

∮
|ζ−z|=R

C |ζ|n

Rn+2
· |dz|

=
C(n+ 1)!

2πR2

∮
|ζ−z|=R

|dz|

=
K(n+ 1)!

2πR

R→∞−−−−→ 0

Hence, f (n+1)(z) = 0, and since z ∈ C was arbitrary we see f (n+1) ≡ 0 in C and hence
f is a polynomial of at most degree n.

Problem 3.

It is implied that we need to find an upper-bound that is uniform for all ρ and z inside
the domain. Note for any ρ the largest disc we can take for all z with |z| ≤ ρ < R is
simply the open disc with radius R − ρ. Thence, as this disc is contained in the larger
domain where f is bounded:∣∣∣f (n)(z)

∣∣∣ ≤ n!

2π

∮
|ζ−z|=R−ρ

M

(R− ρ)n+1
dζ =

n!M

(R− ρ)n

Problem 5.

We show that at a point where f(z) is holomorphic we cannot have for successive n:∣∣∣f (n)(z) > n!nn
∣∣∣. We may pick a small disc γ centred at z of radius r contained in a

domain in which f is holomorphic and consequently bounded. Thus, express∣∣∣f (n)(z)
∣∣∣ ≤ n!

2π

∮
|ζ−z|=r

M

|ζ − z|n+1 |dζ| =
n! ·M
rn

Shrink r so that if µn = M then

(
M

r

)
≤ n. Since the integral takes the same value

regardless of the size of the ball, this can be done for all z and all subsequent n.

Page 161

Problem 1

Here we calculate poles and residues. Let’s do this!

a) f(z) =
1

z2 + 5z + 6
. Note that we can factor the denominator as (z + 3)(z + 2)

which has zeros of order 1 at z = −2,−3. The residues are then

Res(f,−2) = 1, Res(f,−3) = −1

8



b) Here we consider
1

(z2 − 1)2
=

1

(z − 1)2(z + 1)2
which has zeros of order 2. Here

we prefer to use Cauchy’s formula, if γ is a small disc enclosing only one of ±1:

Res(f ; 1) =
1

2πi

∮
γ

(z + 1)−2

(z − 1)1+1
dz =

d

dz

[
(z + 1)−2

]
z=1

=
−2

23
= −1

4

Res(f ;−1) =
1

2πi

∮
γ

(z − 1)−2

(z + 1)1+1
dz =

d

dz

[
(z − 1)−2

]
z=−1

=
−2

(−2)3
=

1

4

c) Consider
1

sin z
. Note that sin z = 0 ⇐⇒ z = kπ for k ∈ Z. Hence, the ratio will

have poles at z = kπ. Taking a small disc enclosing at most one, we see

sin z =

∞∑
n=0

(−1)n(z − kπ)2n+1

(2n+ 1)!
, |z − kπ| ≤ R < ρ

Or, near this singularity:

sin z = (z − kπ)

∞∑
n=0

(−1)n(z − kπ)2n

(2n+ 1)!
=: (z − kπ)g(z)

this series has the same radius of convergence and hence represents a holomorphic
function there. Note also that g(kπ) 6= 0 and so we may shrink the neighbourhood
so that g 6= 0 in this small ball. It follows from that each zero of sin z is of order
one and thus we may compute:

Res(sin z, kπ) = lim
z→kπ

z − kπ
sin z

=
1

cos kπ
= (−1)k

We briefly digress to prove that this (simple) case of L’Hôpital’s rule may be used.

Theorem 1. Let f, g be holomorphic at z0 with lim
z→z0

f(z) = lim
z→z0

g(z) = 0 and

assume that g′(z0) 6= 0.Then,

lim
z→z0

f(z)

g(z)
=
f ′(z0)

g′(z0)
(16)

Proof. Write for z 6= z0 near z0:

f(z)

g(z)
=

f(z)−f(z0)
z−z0

g(z)−g(z0)
z−z0

and let z → z0.

�

d) f(z) = cot z. cot z shares poles with
1

sin z
. Hence,

Res(f ; z = kπ) = lim
z→kπ

(z − kπ)
cos z

sin z
= lim
z→kπ

cos z · lim
z→kπ

(z − kπ)

sin z
= 1

9
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e) f(z) :=
1

sin2 z
. We employ a similar strategy, since we may write

sin z = (z − kπ)

1− (z − kπ)2

3!
+ . . .+

(−1)n(z − kπ)2n

(2n+ 1)!
+ . . .︸ ︷︷ ︸

g(z)


for g(z) holomorphic and non vanishing in a neighbourhood of kπ with g(kπ) = 1.
Moreover, we have g′(kπ) = 0. Then, g(z)−2 satisfies the same properties and if
γ is a small circle centred at kπ we have by Cauchy’s integral formula

Res(f, kπ) =
1

2πi

∮
γ

g(z)−2

(z − kπ)2
dz =

d

dz

[
g(z)−2

]
z=kπ

= −2
g′(kπ)

g(kπ)3
= 0

Problem 3.

Here we only evaluate two of the more difficult ones, namely e) and h). f) is the same
as e) after an application of Jordan’s lemma, which we have not covered and so I will
omit it.

First consider

∫
R+

cosx

x2 + a2
dx =

1

2

∫
R

cosx

x2 + a2
dx and moreover

∫
R

cosx

x2 + a2
dx =

∫
R

<(eix)

x2 + a2
dx = <

(∫
R

eix

x2 + a2
dx

)
Consider the semi circle lying on the real axis with radius R � 0 centred at the

origin with upper-arc lying in =(z) >≥ 0. For all R � 0, if we denote this semi by Γ
and the upper arc by γ we have by the Calculus of Residues∮

Γ

eiz

(z − ai)(z + ai)
dz = 2πi

(
ei(ai)

2ai

)
=
πe−a

a∣∣∣∣∫
γ

eiz

(z − ia)(z + ai)
dz

∣∣∣∣ ≤ ∫ 2π

0

eiR cos θ−R sin θ

|R2eiθ2 + a2|
Rdθ ≤

∫ 2π

0

∣∣e−R sin θ
∣∣

R2 − a2
Rdθ

≤ 2π
R

R2 − a2

R→∞−−−−→ 0

Thus, in the limit as R→∞ we recover

πe−a

a
=

∮
γ

eiz

z2 + a2
dz =

∫
R

eix

x2 + a2
dx

Ergo,

∫
R+

cosx

x2 + a2
dx =

1

2
<
(
πe−a

a

)
=
πe−a

2a
.

Finally, we examine

∫ ∞
0

log x

1 + x2
dx. Consider the usual key hole with R � 0 and

ε ' 0. Choosing a branch of the logarithm with arg z ∈
(
−3π

2
,−π

2

]
(why?) note that

the integral over this curve Γ is simply∮
Γ

log z

z2 + 1
dz = 2πi

∑
z?

Res(f ; z?) = 2πi

(
log i

2i

)
= π log i

10
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Note that if ez = i then i = cos θ + i sin θ for θ = π
2 . Thus, in our branch of the

logarithm we have log i =
iπ

2
. Thus,

∮
Γ

log z

z2 + 1
dz = i

π2

2

We now examine the behaviour along a semi-circle γ of radius R:∣∣∣∣∫
γ

log z

z2 + 1
dz

∣∣∣∣ ≤ ∫
γ

|log z|
|z2|+ 1

dz =

∫ π

0

|log |R|+ iπ|
R2 − 1

Rdθ

≤
∫ π

0

logR+ π

R2 − 1
Rdθ

The usual limit rules show that this tends to 0 as R → 0 or R → ∞. Hence we may
shrink the keyhole into our usual contour preserving the value of the integral above and
seeing

i
π2

2
=

∫ ∞
−∞

log z

z2 + 1
dz ==

∫ ∞
0

log x

x2 + 1
dx

+

∫ 0

−∞

log z

z2 + 1
dz

On the otherhand,∫ 0

−∞

log z

z2 + 1
dz =

∫ 0

−∞

log |z|+ iπ

z2 + 1
dz =

∫ ∞
0

log x

x2 + 1
dx+ iπ

∫ ∞
0

1

1 + x2
dx

Equating real parts we see

2

∫ ∞
0

log x

1 + x2
dx = 0

Page 154

Problem 1.

Define f(z) = z7 − 2z5 + 6z3 − z + 1. How many roots have their modulus < 1?
Define the auxiliary function g(z) := 6z3, and note that on the circle |z| = 1 |g(z)| ≡

6. On one hand,

|f(z)− g(z)| ≤
∣∣z7
∣∣+
∣∣2z5

∣∣+ |z|+ 1 = 1 + 2 + 1 + 1 = 6 < 7

Hence, |f | − |g| < |g| and thus |f | < 2 |g|. Thus, f has as many roots inside |z| < 1 as
2g by Rouche’s Theorem. Now, g = 0 only at z = 0, multiplicity 3. Thus, we see f has
three such roots.

Problem 2.

How many roots does z4 − 6z + 3 have their moduli between 1 and 2? We mimic the
procedure above. Define g(z) = 6x and write

|f − g| =
∣∣z4 + 3

∣∣ ≤ ∣∣z4
∣∣+ 3 = 4 < |g| = 6, |z| = 1

11
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Hence, we see that f has 1 root with |z| < 1. Now, on the boundary of the annulus
|z| = 2 define h(z) = z4, considering

|f − h| ≤ |6z|+ 3 = 12 + 3 < 24 = 16

Using now that z4 has 4 roots we see by Rouche that f has 4 roots inside |z| < 2 and
thus has 3 inside 1 ≤ |z| < 2. We claim it has no roots on z = 1. To see this, note that
for such z

|f | ≥ |6z| −
∣∣z4
∣∣− |3| = 6− 1− 3 = 2

Page 133

Problem 1.

Set f(z) = z2 + z and hence f ′(z) = 2z + 1 which vanishes at z = −1

2
. Thus we cannot

have a disc with radius larger than 1/2. We now have to show that f is injective in
|z| < 1

2 . Suppose that for z, w in this disc we have w 6= z and f(z) = f(w):

0 = (z2 − w2) + (z − w) = (z − w)(z + w + 1) = 0

Since by hypothesis we have z 6= w it follows that z + w + 1 = 0 and thus

|z + w| = 1 =⇒ |z|+ |w| ≥ 1

⇐⇒ |z| ≥ 1− |w| > 1

2

which is absurd.

Problem 2.

We find the largest neighbourhood of the origin in which w := ez is injective. Recall that
ez is periodic with period 2πi, consequently it is natural to as whether ez is injective in
the disk |z| < π. Indeed, if we take z, w satisfying max(|z| , |w|) < π and assume

ez = ew ⇐⇒ ez−w = 1 ⇐⇒ z − w = 2πin, n ∈ Z

Hence, |z − w| = 2πn with n ∈ N0. Hence, |z|+ |w| ≥ 2πn implies

|z| ≥ 2πn− |w| > 2πn− π ≥ 2π − π = π

Contradicting our choice of z yielding then that z = w proving injectivity. It now
remains to show that this is the largest disk in which ez is one to one. To see this, fix
ε > 0 and use the periodicity of ez to pick elements in this disc with z2 − z1 = 2πi. We
may do so as follows:

z1 := −iπ +
ε

2
, z2 := iπ +

ε

2

(try to visualize these points in C). Then, z2 − z1 = 2πi and hence ez2 = ez1 .

Problem 3.

Recall the half angle formulae

cos2 θ =
1 + cos 2θ

2
, sin2 θ =

1− cos 2θ

2
(17)

12



Note that cos z − 1 has a 0 of order n = 2 at z = 0. Thus,

cos θ − 1 = − (1− cos θ) = −
(

2 sin2

(
θ

2

))
= −2 sin2

(
θ

2

)
=

(√
2i sin

(
θ

2

))

Problem 4.

This is a little more difficult, although very instructive. We will state it as a theorem,
as it is of great importance.

Theorem 2. Let f(z) be holomorphic in a neighbourhood of the origin with f ′(0) 6= 0.
Then, there exists a (possibly smaller) neighbourhood or the origin and a function g(z)
holomorphic in this neighbourhood so that

f(z) = f(0) + g(z)n (18)

in this neighbourhood.

Proof. We may expand f as a Taylor polynomial near the origin so that for all |z|
sufficiently small

f(z)− f(0) = a1z + a2z
2 + . . .+ akz

k + . . . , a1 = f ′(0) 6= 0 (19)

f(zn)− f(0) = a1z
n + a2z

2n + . . .+ akz
nk + . . . (20)

This last line is allowed in a smaller neighbourhood of the origin, for if |z| < 1 then
|z|n < |z| < 1 and hence the series is convergent. Now, writing

f(z)− f(0) = zn (a1 + a2z
n + . . .) = znh(z)

where h(z) is analytic near the origin and has h(0) = 1. Moreover, we may shrink the
ball so that h(z) is non vanishing in this ball. It hence has a logarithm in a closed ball
contained in this neighbourhood (see the logarithm section) and consequently we may
define an analytic sheet of the nth root

g(z) = (h(z))
1
n = e

log h(z)

n (21)

This concludes the proof.

�

The Logarithm and a Useful Construction

We begin by considering the following problem, given a non-zero complex number z does
there exist a unique complex number w such that ew = z? Yes, however the answer is
not unique. Moreover, in general we cannot simply choose a single determination. We
may write for arg z ∈ [0, 2π)

z = |z| ei arg z = |z| (cos arg z + i sin arg z)

Thus, if we write w = x+ iy

ew = ex+iyexeiy = |z| ei arg z

13
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Equating now real and imaginary parts yields ew = |z| and eiy = ei arg z. The former
has a former unique solution x = ln |z| and the latter implies

y = arg z

The trouble here is that the argument of z not not uniquely determined, indeed simply
the complex number 1 may be expressed as

1 = 1 · e0 = 1 · e2πi = . . . = 1 · 12πin, n ∈ Z

Nonetheless, we may say several nice things about the complex logarithm. If f is
holomorphic and non vanishing inside a domain Ω ⊂ C and we have a continuous
function w there such that

f(z) = ew(z)

then w is also holomorphic with w′(z) =
f ′(z)

f(z)
. Indeed, if we employ the holomorphic

property of f and the exponential we may expand

f(z + ∆z)− f(z) = ew(z+∆z) − ew(z)

so that

f(z + ∆z)− f(z) = ew(z)
(
ew(z+∆z)−w(z) − 1

)
= f(z)

(
e∆w − 1

)
, ∆w = w(z + ∆z)− w(z)

Dividing through by ∆z

f(z + ∆z)− f(z)

∆z
=
f(z)

∆z

(
∆w +

(∆w)2

2!
+ . . .

)
= f(z) · w(z + ∆z)− w(z)

∆z

(
1 +

(∆w)

2!
+ . . .

)
We see that by continuity of w(z) the power series tends to 1 as ∆z → 0. Hence, letting
z → z0 we see

w′(z) =
f ′(z)

f(z)

and hence that w is holomorphic. With this we can now construct a logarithm.

Theorem 3. Let Γ ⊂ C be a simple closed curve and f be holomorphic on and inside
Γ with f 6= 0 everywhere. There exists a holomorphic single valued function w so that

f(z) = ew(z) inside and on Γ (22)

Proof. We proceed in 4 steps.

Step 1. Here we define the logarithm. Fix an interior point of the curve Γ and let
z1, z2 ∈ Γ be points such that the segments

λ : [0, 1]→ C, z1 → z0

λ′ : [0, 1]→ C, z2 → z0

lie in inside the curve Γ, except the points z1, z2 ∈ Γ. We will begin by showing that

f(z1) exp

∫
λ

f ′(ξ)

f(ξ)
dξ = f(z2) exp

∫
λ′

f ′(ξ)

f(ξ)
dξ (23)

14



Along the arc z1z2 ⊂ Γ with positive orientation consider the function

1

f(ζ)
exp

∫ ζ

z1

f ′(ξ)

f(ξ)
dξ

where the integral is taken along this same curve. This is defined as f is holomorphic
and non vanishing on Γ. Taking the derivative,

d

dζ

(
1

f(ζ)
exp

∫ ζ

z1

f ′(ξ)

f(ξ)
dξ

)

= − f
′(ζ)

f(ζ)2
exp

∫ ζ

z1

f ′(ξ)

f(ξ)
dξ +

1

f(ζ)
· exp

∫ ζ

z1

f ′(ξ)

f(ξ)
dξ · f

′(ζ)

f(ζ)
≡ 0

for any ζ chosen along this sub-path of Γ. Thus, it is constant in ζ, it takes value
1

f(z1)
at ζ = z1, and must also assume this value at ζ = z2, that is:

1

f(z1)
=

1

f(z2)
exp

∫ z2

z1

f ′(ξ)

f(ξ)
dξ

and consequently

f(z2)

f(z1)
= exp

∫ z2

z1

f ′(ξ)

f(ξ)
dξ =: exp

∫
z1z2

f ′(ξ)

f(ξ)
dξ (24)

Now consider the positive closed curve with positive orientation from by travelling
along z1z2, along λ′ and λ−, which is λ with reverse orientation. Denoting this closed
curve by γ we see by Cauchy’s Theorem that

0 =

∮
γ

f ′(ξ)

f(ξ)
dξ =

∫
z1z2

f ′(ξ)

f(ξ)
dξ +

∫
λ′

f ′(ξ)

f(ξ)
dξ +

∫
λ−

f ′(ξ)

f(ξ)
dξ

=

∫
z1z2

f ′(ξ)

f(ξ)
dξ +

∫
λ′

f ′(ξ)

f(ξ)
dξ −

∫
λ

f ′(ξ)

f(ξ)
dξ

Whence, by the above

f(z2)

f(z1)
= exp

∫
λ

f ′(ξ)

f(ξ)
dξ −

∫
λ′

f ′(ξ)

f(ξ)
dξ

Implying

f(z2) exp

∫
λ′

f ′(ξ)

f(ξ)
dξ = f(z1) exp

∫
λ

f ′(ξ)

f(ξ)
dξ (25)

Step 2. Here we show uniqueness of representation, so to speak. Namely, that the
above is equal to f(z0) and hence the function is independent of chosen path. This is a
reprise of the argument above, where we may again show that

d

dζ

[
1

f(ζ)
exp

(
−
∫ ζ

z1

f ′(ξ)

f(ξ)
dξ

)]
= 0

as ζ moves from z1 to z0 on the curve λ. Then, taking ζ = z0 the result follows; i.e

f(z0) = f(z1) exp

∫
λ

f ′(ξ)

f(ξ)
dξ (26)

15
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the second equality follows from step 1.
We may now define for an interior point z0 and such a boundary point z1:

w(z0) := w(z1) +

∫
λ

f ′(z)

f(z)
dz = w(z2) +

∫
λ′

f ′(z)

f(z)
dz (27)

Ultimately, it is this uniqueness of representation that will yield continuity of this
function, which is defined on and inside Γ.

Step 3. The function w(z) is continuous where it is defined. Fix a point z0 inside Γ
and consider now a small disc centred about it contained inside the interior of Γ except
for one point where it intersects a point z1 on the boundary of Γ. Consider again an arc
λ from z1 to z0 with (z1, z0] contained in the interior of the curve. If we take z′0 near z0

then it lies inside this same disc, which is convex. Consequently for all such z′0 we may
choose a path λ′ from (z1, z

′
0]) contained inside the interior of the disc and consequently

inside the region enclosed by Γ.
We now employ a usual strategy. Consider the closed curve γ formed by traveling

along [z0, z1] → [z1, z
′
0] → [z′0, z0] where this last path is taken along the radius of the

disc. This is a closed curve (a triangle) on and inside which f is holomorphic and thus

0 =

∮
γ

f ′(ξ)

f(ξ)
dξ =

∫
λ−

f ′(ξ)

f(ξ)
dξ +

∫
λ′

f ′(ξ)

f(ξ)
dξ +

∫
[z′0,z0]

f ′(ξ)

f(ξ)
dξ (28)

Therefore,

w(z0)− w(z′0) =

∫
λ

f ′(ξ)

f(ξ)
dξ −

∫
λ′

f ′(ξ)

f(ξ)
dξ =

∫
[z′0,z0]

f ′(ξ)

f(ξ)
dξ

Now observe that since f ′(ζ) and f(ζ) are jointly holomorphic with f(ζ) 6= 0, their ratio
is continuous (even holomorphic) inside and on Γ and must achieve a maximum, say,
M ≥ 0. In any case it is bounded and we may make the following estimate for all z′0
near z0:

|w(z0)− w(z′0)| ≤M
∫ z0

z′0

dτ = M |z0 − z′0|
z′0→z0−−−−→ 0

Hence, w is continuous.
Step 4. We now show the function w(z) is holomorphic. This is really a consequence

of the introductory result, as we have already shown continuity. This concludes the proof.

�

Principle of Argument We write

1

2πi

∮
γ

f ′(z)

f(z)
dz =

1

2πi

∮
γ

d

dz
log f(z)dz

=
1

2πi
(log |z|+ iθ2 − log |z| − iθ1) =

∆θ

2

Question. How many roots of the equation z4 + 8z3 + 3z2 + 8z + 3 = 0 lie in the
right half plane? Hint: Sketch the image of the imaginary axis and apply the argument
principle to a large half disk.

We cal solve this equation with the interpretation of the argument principle above.
Let for R� 0 Γ(R) denote the half circle lying on the real axis pointing into the portion
of C with <(z) ≥ 0. Now, on the line =(z) we see for y with −R ≤ y ≤ R that:

(iy)4 + 8(iy)3 + 3(iy)2 + 8(iy) + 3 = y4 − 8iy3 − 3y2 + 8iy + 3

<(f(iy)) = y4 − 3y2 + 3, =(f(iy)) = −8y3 + 8y

16



At both iy = ±∞ it follows from

<(f(z))

=(f(z))
= O

(
1

z

)
that as R = ±∞ f(iy) goes the argument of f(z) goes from 0 to 0 so to speak. We
know that it doesn’t go to a non-zero multiple of π as it cannot wind around the origin,
for the real part <(f(z)) > 0 for all such y on this axis. We now study how the function
behaves on the arc. Parametrize it by z = Reiθ, then

f(ϕ(θ)) = R4e4iθ + 8R3e3iθ + 3R2e2iθ + 8Reiθ + 3 = 0

or,
R4e4iθ (1 +O(1/R))

consequently, we have as R → ∞ that the argument of f along this arg, as θ ∈
(−π2 ,

π
2 ) ranges by

i2π − (−i2π) = 4πi

hence, for R large, we have the total number of zeroes is 1
2πi · 4πi = 2.

Some Additional Problems

1. A classic problem in Fourier analysis is the computation of

∫ ∞
0

log x

x2 + a2
dx for

a ∈ R. We will use an indented semi circle as a contour of integration. For ε > 0
and R > 0 remove the small key-hole from the semi-circle. Now, chose a branch
of the logarithm with arg z ∈

(
− 3π

2 ,−
π
2

)
, it is wise to chose this branch because

it will include the contour and the boundaries. Note that the function

f(z) =
log z

z2 + a2

has a pole of order 1 inside the contour at the point ai. Thence, by the residue
theorem, where Γ(R, ε) is the chosen contour∮

Γ(R,ε)

f(z)dz = 2πi

(
log ai

2ai

)
=
π

a
log ai =

π

a
(log |a|+ iπ)

Now, on any semi-circle (with radius, say ρ):∣∣∣∣∣
∫
Cρ

log z

z2 + a2
dz

∣∣∣∣∣ ≤
∫
Cρ

|log z|
|z2| − a2

dz ≤
∫ 2π

0

log |z|+ π

|z2| − a2
ρdθ

= 2π
log |ρ|+ π

ρ2 − a2
ρdθ

ρ→0, ρ→∞−−−−−−−−−→ 0

Now, sending ε→ 0 and R→∞ we recover∫ ∞
−∞

log z

z2 + a2
dz =

π

a
(log |a|+ iπ)

On the other hand,∫ ∞
−∞

log z

z2 + a2
dz =

∫ 0

−∞

log z

z2 + a2
dz +

∫ ∞
0

log x

x2 + a2
dx

17
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And,∫ 0

−∞

log z

z2 + a2
dz =

∫ 0

−∞

log |z|+ iπ

z2 + a2
dz =

∫ ∞
0

log x

x2 + a2
dx+ iπ

∫ 0

−∞

1

z2 + a2
dz

Thus,

π

a
(log |a|+ iπ) = 2

∫ ∞
0

log x

x2 + a2
dx+ iπ

∫ 0

−∞

1

z2 + a2
dz

equating real and imaginary parts:∫ ∞
0

log x

x2 + a2
dx =

π

2a
log |a| (29)

We now calculate

∮
|z|=p

|dz|
|z − a|2

. We begin with the observation

∮
|z|=p

|dz|
|z − a|2

=

∫ 2π

0

∣∣pieiθdθ∣∣
(eiθ − a)(eiθ − a)

=

∫ 2π

0

∣∣pieiθdθ∣∣
(eiθ − a)(ei−θ − a)

=

∫ 2π

0

pdθ

(eiθ − a)(ei−θ − a)
=

∫ 2π

0

pdθ

(eiθ − a)(ei−θ − a)
· ie

iθ

ieiθ

= −i
∫ 2π

0

pieiθdθ

(eiθ − a)(1− eiθa)
= −i

∮
|z|=p

dz

(z − a)(1− za)

= i

∮
|z|=p

dz

(z − a)(za− 1)

18
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