
Group Theory – Selected Solutions to Exercises
Edward Chernysh

In this document we provide solutions to selected exercises from the assign-
ments of Honours Algebra III (Math 456 at McGill university). The selected exer-
cises have elegant solutions and I suspect many of these questions could appear
on the final examination. The topics covered include:

◦ Abstract groups,
◦ Cosets and group actions,
◦ Sylow’s theorems,
◦ Solvable groups,
◦ Semidirect products,
◦ Representation theory.

EXERCISE 1. A Boolean group B is a group such that g2 = e for every g ∈ B. Prove
that every boolean group is Abelian.

PROOF. We first show that every element is its own inverse. Certainly, if g = e
then the result is clear. Otherwise, gg = e so that, by uniqueness, g−1 = g. If
g, h ∈ B then it follows that

(gh) = (gh)−1 = h−1g−1 = hg.

�

EXERCISE 2. Let F and K be finite fields with F ⊆ K and let q denote |F|. Establish
each of the following:

(1) |K| = qn for some n ≥ 1;
(2) If a ∈ F then aq = a;
(3) If a ∈ K satisfies aq = a then a ∈ F.

SOLUTION. For the first part, we note that K forms a vector space over F,
indeed this is immediate from the field axioms. Since K is finite, it is finite dimen-
sional when considered over F. Let {b1, . . . , bn} be a basis for K and note that any
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vector u ∈ K has a unique representation

u :=
n

∑
j=1

αjbj, αj ∈ F.

Conversely, any such u determines a vector in K. Since there are exactly qn possi-
bilities for the n-tuples (α1, . . . , αn), it follows that |K| = qn. This establishes (1).
For the second part, we need only consider a ∈ F×. Since F×, as a group, has
order q− 1, it follows that aq−1 = 1 for every a ∈ F×. This establishes (2).

For the final part, we need only handle the case a ∈ K× since F ∩K ⊃ {0}.
Noticing that K× has order qn− 1, it becomes clear that (q− 1) divides the order of
K×. Recall that both F× and K× are cyclic groups. Now, if aq−1 = 1 then ord(a) |
(q − 1) | (qn − 1). By Lagrange’s theorem, 〈x〉 is the unique subgroup of K×

having order ord(a). But, there also exists a cyclic subgroup of F× ⊆ K× having
order precisely ord(a). By uniqueness in K×, we conclude that 〈a〉 ⊆ F×. �

EXERCISE 3. Let G and H be finite of orders n and m, respectively. Suppose further
that gcd(n, m) = 1. Prove that any group homomorphism G ! H is the trivial1 one.

SOLUTION. We argue by contradiction. Suppose there exists a non-trivial group
homomorphism f : G ! H; this means that Ker f ( G. As the kernel of a homo-
morphism, we know that Ker f C G so that G/Ker f is a well defined quotient
group. Also, G/Ker f is non-trivial. However, the first isomorphism theorem
gives the congruence

G/Ker f ∼= f (G) < H.
This means that [G : Ker f ] is also a divisor of |H|. Since [G : Ker f ] is non-trivial
and also divides the order of G, we have obtained a contradiction. �

EXERCISE 4. Let G be a finite group and p the minimal prime dividing |G|. Show
that if H is a subgroup of index p in G, then H C G.

SOLUTION. We may assume without loss of generality that H is a proper sub-
group of G. Let H < G have index p. Even if H is not normal in G, we can make
sense of G/H as the collection of left cosets of H in G. We consider the action of G
upon the elements of G/H by defining an operation

? : G× G/H, (x, gH) 7! xgH. (1)

It is easy to check that this is a well defined action. Now, this group action induces
a homomorphism

ψ : G ! Sp

1The trivial homomorphism G ! H is that which takes each g ∈ G to eH .
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since [G : H] = p. Let N := Ker ψ and note that N ⊆ H. Indeed, if n ∈ N then
ψ(n) is the identity permutation. That is, n(xH) = xH for all xH ∈ G/H. In
particular, nH = H which is only possible if n ∈ H. Therefore, N C H. The first
isomorphism theorem states that G/N is isomorphic to a subgroup of Sp. Hence,
[G : N] divides both |G| and p!. Since H 6= G, it follows that [G : N] = p. This
allows us to write

p = [G : N] =
|G|
|N| =

|G|
|H| ·

|H|
|N| = [G : H][H : N].

This implies that [H : N] = 1 whence H = N. We are done since N, as the kernel
of a homomorphism, is normal in G. �

EXERCISE 5. Let G be a finite group acting transitively upon a finite set S with more
than one element. Show that there exists an element g ∈ G without any fixed points.

SOLUTION. We argue by contradiction. As in the CFF, given g ∈ G we define

I(g) := |{s ∈ S : g ∗ s = s}| .
Assume every g ∈ G has at least one fixed point, i.e. I(g) ≥ 1 for all g. The CFF
formula then states that

|G| = ∑
g∈G

I(g) = I(e) + ∑
g 6=e

I(g) = |S|+ ∑
g 6=e

I(g).

However, since |S| > 1, this would imply that

|G| > 1 + ∑
g 6=e

I(g) ≥ 1 + ∑
g 6=e

1 = |G|

which is absurd. �

EXERCISE 6. Let G be a finite group and A a proper subgroup of G. Show that

G 6=
⋃

g∈G
gAg−1.

SOLUTION. Consider G/A: the left cosets of A in G. As in (1), define an action
of G upon G/A by left multiplication. This action is clearly transitive and G/A
consists of more than one element. By the previous exercise, we may therefore
extract an element x ∈ G with no fixed points. We claim that x /∈ gAg−1 for any
given g ∈ G. To see this, suppose for a contradiction that x ∈ gAg−1 for any fixed
g. Then, x = gag−1 for some a ∈ A whence

x ∗ (gA) = (xg)A = (gag−1g)A = gaA = gA

which is a contradiction. �
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EXERCISE 7. Let G be a group and H, K ⊆ G two subgroups of finite index. Show
that their intersection H ∩ K is also a subgroup of finite index.

SOLUTION. It is easy to verify directly that H ∩ K is a subgroup of G; the chal-
lenge is to compute [G : H ∩ K]. First, we define

S := (G/H)× (G/K).

Since both H and K have finite index in G, the set S is finite. We now let G act
upon S by component-wise left multiplication:

g ∗ (xH, xK) 7! (gxH, gxK).

Noticing that Stab(H, K) = H ∩ K, it follows that

[G : H ∩ K] = |Orb(H, K)| .
Indeed, the proof of the Orbit-Stabilizer theorem gives a bijection

G/ Stab(s) ! Orb(s), ∀s ∈ S.

Therefore, we find that Orb(s) = {(gH, gK) : g ∈ G} is finite since G/H and G/K
are both finite sets. �

EXERCISE 8. Let G be a simple group of order n. Show that if H is a subgroup of G
with [G : H] = k > 1 then k! ≥ n.

SOLUTION. As we have done multiple times, we define an action of G upon
the family of cosets G/H by left multiplication. This then induces a homomor-
phism ψ : G ! Sk whose kernel is a normal subgroup of G. Since G is simple, ei-
ther Ker ψ = {e} or Ker ψ = G. In the latter case, it would follow that g(xH) = xH
for all xH ∈ G/H and g ∈ G. Especially, gH = H so that g ∈ H. Since [G : H] > 1
this cannot be, whence ψ must be injective. This injectivity implies that k! ≥ n, as
was required. �

EXERCISE 9. The class number of a group G is the number of conjugacy classes in G.
Prove that if G is a finite group of even class number then |G| must be even.

SOLUTION. We will show the contrapositive. Suppose that G is a finite group
of odd order, we will show that the class number is odd. Since G is the disjoint
union of conjugacy classes, we may choose representatives {x1, x2, . . . , xl} such
that G =

⊔l
j=1 Conj(xj). Now, by virtue of Orbit-Stabilizer, we have

|G| =
∣∣C(xj)

∣∣ · ∣∣Conj(xj)
∣∣ , ∀j ∈ {1, . . . , l}.

Hence, every conjugacy class must have odd cardinality. Finally, since the conju-
gacy classes are disjoint and an even sum of odd number is even, the class number
must be odd. �
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EXERCISE 10. Let An be the alternating group on n-letters (for n ≥ 5) and suppose
An acts transitively upon a set S of m > 1 elements. Deduce that m ≥ n. (You may use
that An is simple for n ≥ 5).

SOLUTION. The action of An upon S grants us a homomorphism ψ : An ! Sm.
Since Ker ψ is a normal subgroup of An, either ψ is injective or trivial. If ψ were
trivial, then every element of An would have a fixed point, which is ridiculous in
our case. It follows that Ker ψ = {e}. Therefore, n! ≤ 2m!. We now claim that
n ≤ m. To see this, suppose instead that m < n. Then

n! = 1 · 2 · · ·m · (m + 1) · · · (n− 1) · n > 2m!

which is a contradiction. �

EXERCISE 11. Let G be a finite p-group and H 6= {e} a normal subgroup of G.
(1) Write a class equation for the action of G on H by conjugation;
(2) Show that H ∩ Z(G) is non-trivial, where Z(G) the center of G.

SOLUTION. For (g, h) ∈ G × H we set g ∗ h := ghg−1, which belongs to H
(since H C G). The orbit of h ∈ H is simply the set

Orb(h) = {g ∗ h : g ∈ G} =
{

ghg−1 : g ∈ G
}
= Conj(h).

It follows that H is the disjoint union of conjugacy classes. Hence, we can choose
representatives hj (finitely many, rather) such that H =

⊔
j Conj(hj). Suppose now

that h ∈ Z(G). Then, Conj(h) =
{

ghg−1 : g ∈ G
}
= {h}. Hence, for h ∈ H:

|H| = |H ∩ Z(G)|+ ∑
h repr.

h/∈Z(G)

|G|
|C(h)| (2)

where C(h) :=
{

g ∈ G : ghg−1 = h
}

. This establishes (1). For (2), we note that for
h /∈ Z(G), the set C(h) is a proper subgroup of G. Certainly, if C(h) = G then

gh = hg, ∀g ∈ G

so that h ∈ Z(G) ∩ H. Hence,

|G| ≡ ∑
h repr.

h/∈Z(G)

|G|
|C(h)| ≡ 0 (mod p)

so that |Z(G) ∩ H| ≡ 0 (mod p) as well. This means that Z(G) ∩ H contains at
least p elements. �

EXERCISE 12. Let G be a group of order p, q, r where p < q < r are primes. This
group G has a normal Sylow subgroup and, moreover, G is solvable.
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SOLUTION. Let np denote the number of p-Sylow subgroups in G and likewise
for q and q; we shall first show that at least one of these is 1. Suppose, by way of
contradiction, that np,q,r > 1. We know that nr | pq and nr ≡ 1 (mod r). Thus,

nr = 1 + kr, k ≥ 1.

If nr = p then p = 1 + kr > r, which is absurd. Likewise, nr 6= q. This means that
nr = pq. Applying Sylow’s theorems to nq, we have that

nq ≡ 1 (mod q) and nq | pr.

Thus, nq = 1+ kq for k ≥ 1 (if nq = 1 then the q-Sylow subgroup is normal). Now,
nq - p for, otherwise, we would have

p = nq = 1 + kq > q

which is absurd. This means that nq ≥ r and, likewise, np ≥ q. We note that two
distinct subgroups of prime order intersect only at the identity (by Lagrange’s
theorem). Furthermore, two subgroups whose orders are distinct primes can only
intersect at the identity (once again, by Lagrange’s theorem). Combining all these
facts, it follows from the fact that the identity belongs to each Sylow subgroup
that:

prq = |G| ≥ pq(r− 1) + r(q− 1) + q(p− 1) = pqr + rq− r− q
> pqr.

This is a contradiction. �

EXERCISE 13. Let G be a finite group and H C G. Suppose P is a p-Sylow subgroup
of G, for some prime p. Prove that H ∩ P is a maximal p-subgroup of H (where we
exceptionally say that {e} is a p-subgroup). Prove also that HP/H is a p-Sylow subgroup
of G/H.

SOLUTION. Obviously H∩P is a p-subgroup (with a possible exceptional tech-
nicality). We now show that H ∩ P is a maximal p-subgroup of H. Certainly, let
K be a maximal p-subgroup of G that contains H ∩ P. Let, also, K1 be a maximal
p-subgroup of G with K1 ⊇ K. From the proof of Sylow’s theorems we know that
P = gK1g−1 whence it follows that

P ∩ H = H ∩
[

gK1g−1
]
⊇ H ∩

[
gKg−1

]
= [gHg−1] ∩

[
gKg−1

]
.

Clearly, this means that

P ∩ H ⊇ g [H ∩ K] g−1 = gKg−1.

Since P ∩ H ⊆ K we have |P ∩ H| ≤ |K|. But the above also gives

|P ∩ H| ≥ |K| .
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Thus, P ∩ H = K which shows that P ∩ H is maximal. We now argue that HP/H
is a p-Sylow subgroup of G/H. Suppose |G| = prm and |H| = pan, where
gcd(p, n) = gcd(p, m) = 1. By Lagrange’s theorem, a ≤ r and |G/H| = pr−ad
where d = n/m. Now, HP/H has order2

|P| |H| / |H ∩ P|
|H| =

|P|
|P ∩ H| .

By the first part (the fact that H ∩ P is a p-Sylow subgroup of H), we must have
that |H ∩ P| = pa. This shows, by virtue of the above equation, that

|HP/H| = |P|
|P ∩ H| = pr−a.

�

EXERCISE 14. Let n ∈ N and a ∈ N such that gcd(n, a) = 1. Prove that the map
defined by

f : Z/nZ ! Z/nZ, x 7! ax
is an automorphism of Z/nZ. Deduce from this that Aut(Z/nZ) ∼= (Z/nZ)×.

SOLUTION. We begin by showing that f is indeed an automorphism of Z/nZ.
Clearly, if x, y ∈ Z/nZ then

f (x + y) = a(x + y) = ax + ay = f (x) + f (y);

hence f is a group homomorphism. Now, f is injective since f (x) = f (y) if and
only if ax = ay. Since gcd(a, n) = 1, a is invertible. This means that x = y. Since
f is an injective endomorphism of a finite set, it must also be an automorphism.

Now, let f ∈ Aut(Z/nZ). We will show that f is of the form f (x) = ax for
some a ∈ (Z/nZ)×. Certainly, by additivity we obtain that

f (x) = f (1 + 1 · · ·+ 1) = x f (1).

Set a := f (1) so that f (x) = xa and f (1) = a. Now, since f is an automorphism:

n = ord(1) = ord( f (1)) = ord(a).

By the formula for generators of a cyclic group, we must then have gcd(a, n) = 1.
More precisely, this follows from the fact that 1 generates Z/nZ together with the
equation

ord(a) = ord(1a) =
n

gcd(a, n)
.

Thus, f = xa for a ∈ (Z/nZ)×. We now define

Ψ : (Z/nZ)× ! Aut(Z/nZ), a 7! fa

2Note that this also follows from the second isomorphism theorem for groups.
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where fa is the automorphism of Z/nZ given by fa(x) = f (x) = ax. Let now
a, b ∈ (Z/nZ)×, then

Ψ(ab) = fab = ( fa ◦ fb).

This shows that Ψ is a group homomorphism. We have already checked that Ψ
is surjective, and so it remains only to verify injectivity. Assume Ψ(a) = Ψ(b)
whence fa = fb. This means that fa(1) = fb(1) so that a = b. �

EXERCISE 15. Find two non-isomorphic groups with the same composition factors
where only one of the groups is Abelian.

SOLUTION. Consider S3 which is of order 6 and Z/6Z. The first group is non-
Abelian while the second clearly is. Hence, they cannot be isomorphic. Moreover,
the composition factors of each group will be orders 2 and 3. Since all groups of
prime order are isomorphic, we are done. �

EXERCISE 16. Let G = N oφ B. Prove that G is Abelian if and only if N and B are
Abelian and φ is the trivial homomorphism.

SOLUTION. One direction is quite easy: if N and B are Abelian and φ is the
trivial homomorphism then N oφ B ∼= N × B, which is Abelian. Conversely, sup-
pose that N oφ B is Abelian. Then, for all (n1, b1), (n2, b2) ∈ G:

(n1φb1(n2), b1b2) = (n1, b1)(n2, b2) = (n2, b2)(n1, b1) = (n2φb2(n1), b2b1).

This clearly implies that B is Abelian. By taking b1 = b2 = e we obtain n1n2 = n2n1
whence it follows that N is also Abelian. Now, we need only check that φ must be
the trivial homomorphism B ! Aut(N). This is done by letting n = n1 = n2 be
arbitrary and using the above to obtain

n1φb1(n2) = n2φb2(n1) =⇒ φb1(n) = φb2(n).

This means that φb1 ≡ φb2 for all b1, b2 ∈ B. In particular, φb ≡ φe for all b ∈ B
whence it follows that φ is the trivial homomorphism. �

EXERCISE 17. Let G be a group and (ρ, V) an irreducible finite dimensional linear
representation of G. Then, as vector spaces,

EndG(V) ∼= C.

(Note: this is the key, final step in the proof of Schur’s lemma).

SOLUTION. Let T ∈ EndG(V); then T is an endomorphism of V that “com-
mutes” with ρ(g). More precisely,

T ◦ ρ(g) ≡ ρ(g) ◦ T, ∀g ∈ G.
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Now let λ ∈ C be an eigenvalue of T and denote by Vλ the corresponding (non-
zero) eigenspace. We first argue that (ρ|Vλ

, Vλ) is a sub-representation of (ρ, V).
Certainly, let u ∈ Vλ and observe that for each g ∈ G:

(T ◦ ρ(g))(u) = (ρ(g) ◦ T)(u) = ρ(g)(λu) = λρ(g)(u).

It follows that ρ(g)(u) ∈ Vλ for every u ∈ Vλ, i.e. ρ(g)(Vλ) ⊆ Vλ. Since (ρ, V) is
irreducible and the eigenspace is non-trivial, we must have Vλ = V. This shows
that every element of EndG(V) is λI, for some λ ∈ C. Conversely, if λ is any
complex number, the map T := λI belongs to EndG(V). Indeed, for every g ∈ G
and v ∈ V:

(T ◦ ρ(g))(v) = (λI)(ρ(g)(v) = λρ(g)(v) = ρ(g)(λv) = (ρ(g) ◦ T)(v).

This means that the mapping Γ : EndG(V) ! C given by which takes T to the
associated3 λ is a well defined bijection. To see that Γ is an isomorphism of vector
spaces, we need only note that for T, S ∈ EndG(V) there exist λ1, λ2 ∈ C such that
T = λ1 I and λ2 I whence

Γ(T + S) = Γ((λ1 + λ2)I) = (λ1 + λ2) = Γ(T) + Γ(S).

This completes the proof. �

EXERCISE 18. Let G be a finite group, (ρ, V) an irreducible finite dimensional linear
representation of G, and fix z ∈ Z(G). Show that

T := ρ(z) : V ! V

is a scalar multiple of the identity.

SOLUTION. From the solution to the previous exercise, it suffices to check that
T is an element of EndG(V). To this end, let g ∈ G be given and fix v ∈ V. Then,

(T ◦ ρ(g))(v) = (ρ(z) ◦ ρ(g))(v) = ρ(zg)(v)
= ρ(gz)(v)
= (ρ(g) ◦ ρ(z))(v)
= (ρ(g) ◦ T)(v).

As v ∈ V was taken arbitrarily, it follows that (T ◦ ρ(g)) ≡ (ρ(g) ◦ T) for each
g ∈ G. This means that T ∈ EndG(V) so that T = λI, where λ ∈ C and the
eigenvalue of T. �

3We have shown that every T ∈ EndG(V) is of the form λI for some λ ∈ C. This λ can then
be associated to T.


