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What makes modern machine learning work?
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What about reinforcement learning?

this is done
many times

Mnih et al. ‘13

Schulman et al. ’14 & ‘15

Levine*, Finn*, et al. ‘16

enormous gulf
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Can we develop data-driven RL methods?

on-policy RL off-policy RL

offline reinforcement learning

Levine, Kumar, Tucker, Fu. Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems. ‘20

big datasets
from past

interaction train for
many epochsoccasionally

get more data
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What does offline RL mean?
on-policy RL off-policy RL

offline reinforcement learning

generally not known
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How is this even possible?

1. Find the “good stuff” in a dataset full of good and bad behaviors

2. Generalization: good behavior in one place may suggest good behavior in another place

3. “Stitching”: parts of good behaviors can be recombined
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Why should we care?

this is done
many times



Learning from Past Decisions and Outcomes

In some settings there exist very good decision policies and we would like
to automate them

One idea: humans provide reward signal when RL algorithm makes
decisions

Good: simple, cheap form of supervision

Bad: High sample complexity

Alternative: imitation learning
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Reward Shaping

Rewards that are dense in time closely guide the agent. How can we
supply these rewards?

Manually design them: often brittle

Implicitly specify them through demonstrations

Learning from Demonstration for Autonomous Navigation in Complex Unstructured

Terrain, Silver et al. 2010
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Learning from Demonstrations

Expert provides a set of demonstration trajectories: sequences of
states and actions

Imitation learning is useful when it is easier for the expert to
demonstrate the desired behavior rather than:

Specifying a reward that would generate such behavior,
Specifying the desired policy directly
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Problem Setup

Input:
State space, action space
Transition model P(s 0 | s, a)
No reward function R

Set of one or more teacher’s demonstrations (s0, a0, s1, s0, . . .)
(actions drawn from teacher’s policy ⇡⇤)

Behavioral Cloning:
Can we directly learn the teacher’s policy using supervised learning?

Inverse RL:
Can we recover R?

Apprenticeship learning via Inverse RL:
Can we use R to generate a good policy?
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Behavioral Cloning

Formulate problem as a standard machine learning problem:
Fix a policy class (e.g. neural network, decision tree, etc.)
Estimate a policy from training examples (s0, a0), (s1, a1), (s2, a2), . . .

Two notable success stories:
Pomerleau, NIPS 1989: ALVINN
Summut et al., ICML 1992: Learning to fly in flight simulator
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ALVINN
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Behavioral cloning

Often behavior cloning in practice can work very well, especially if use
BCRNN

See What Matters in Learning from O✏ine Human Demonstrations
for Robot Manipulation. Mandlekar et al. CORL 2021
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Potential Problem with Behavior Cloning: Compounding
Errors

Supervised learning assumes iid. (s, a) pairs and ignores temporal structure
Independent in time errors:

Error at time t with probability <= ✏
E[Total errors] <= ✏T
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Problem: Compounding Errors

Data distribution mismatch!
In supervised learning, (x , y) ⇠ D during train and test. In MDPs:

Train: st ⇠ D⇡⇤

Test: st ⇠ D⇡✓

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online

Learning, Ross et al. 2011
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Problem: Compounding Errors

Error at time t with probability ✏
Approximate intuition: E[Total errors]
 ✏(T + (T � 1) + (T � 2) . . .+ 1) / ✏T 2

Real result requires more formality. See Theorem 2.1 in
http://www.cs.cmu.edu/~sross1/publications/

Ross-AIStats10-paper.pdf with proof in supplement:
http://www.cs.cmu.edu/~sross1/publications/

Ross-AIStats10-sup.pdf

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online

Learning, Ross et al. 2011
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DAGGER: Dataset Aggregation

Idea: Get more labels of the expert action along the path taken by
the policy computed by behavior cloning

Obtains a stationary deterministic policy with good performance
under its induced state distribution

Key limitation?
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Feature Based Reward Function

Given state space, action space, transition model P(s 0 | s, a)
No reward function R

Set of one or more expert’s demonstrations (s0, a0, s1, s0, . . .)
(actions drawn from teacher’s policy ⇡⇤)

Goal: infer the reward function R

Assume that the teacher’s policy is optimal. What can be inferred
about R?
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Linear Feature Reward Inverse RL

Recall linear value function approximation

Similarly, here consider when reward is linear over features
R(s) = wT

x(s) where w 2 Rn, x : S ! Rn

Goal: identify the weight vector w given a set of demonstrations

The resulting value function for a policy ⇡ can be expressed as

V
⇡(s0) = Es⇠⇡[

1X

t=0

�tR(st)|s0]
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Linear Feature Reward Inverse RL

Recall linear value function approximation

Similarly, here consider when reward is linear over features
R(s) = wT

x(s) where w 2 Rn, x : S ! Rn

Goal: identify the weight vector w given a set of demonstrations

The resulting value function for a policy ⇡ can be expressed as

V
⇡(s0) = Es⇠⇡[

1X

t=0

�tR(st) | s0] = Es⇠⇡[
P1

t=0 �
twT

x(st) | s0]

= w
TEs⇠⇡[

P1
t=0 �

t
x(st) | s0]

= wTµ(⇡)

where µ(⇡)(s) is defined as the discounted weighted frequency of
state features under policy ⇡, starting in state s0.
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Relating Frequencies to Optimality

Assume R(s) = wT
x(s) where w 2 Rn, x : S ! Rn

Goal: identify the weight vector w given a set of demonstrations

V
⇡ = Es⇠⇡[

P1
t=0 �

t
R
⇤(st) | ⇡] = wTµ(⇡) where

µ(⇡)(s) = discounted weighted frequency of state s under policy ⇡.

V
⇤ � V

⇡
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Relating Frequencies to Optimality

Recall linear value function approximation
Similarly, here consider when reward is linear over features

R(s) = wT
x(s) where w 2 Rn, x : S ! Rn

Goal: identify the weight vector w given a set of demonstrations

The resulting value function for a policy ⇡ can be expressed as

V
⇡ = wTµ(⇡)

µ(⇡)(s) = discounted weighted frequency of state s under policy ⇡.

Es⇠⇡⇤ [
1X

t=0

�tR⇤(st) | ⇡⇤] = V
⇤ � V

⇡ = Es⇠⇡[
1X

t=0

�tR⇤(st) | ⇡] 8⇡

Therefore if the expert’s demonstrations are from the optimal policy,
to identify w it is su�cient to find w

⇤ such that

w
⇤Tµ(⇡⇤) � w

⇤Tµ(⇡), 8⇡ 6= ⇡⇤
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Feature Matching

Want to find a reward function such that the expert policy
outperforms other policies.

For a policy ⇡ to be guaranteed to perform as well as the expert
policy ⇡⇤, su�cient if its discounted summed feature expectations
match the expert’s policy [Abbeel & Ng, 2004].

More precisely, if
kµ(⇡)� µ(⇡⇤)k1  ✏

then for all w with kwk1  1:

|wTµ(⇡)� w
Tµ(⇡⇤)|  ✏
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Ambiguity

There is an infinite number of reward functions with the same optimal
policy.

There are infinitely many stochastic policies that can match feature
counts

Which one should be chosen?
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Learning from Demonstration / Imitation Learning Pointers

Many di↵erent approaches

Two of the key papers are:
Maximumum Entropy Inverse Reinforcement Learning (Ziebart et al.
AAAI 2008)
Generative adversarial imitation learning (Ho and Ermon, NeurIPS
2016)
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Max Entropy Inverse RL

Again assume a linear reward function R(s) = wT
x(s)

Define the total feature counts for a single trajectory ⌧j as:
µ⌧j =

P
si2⌧j x(si )

Note that this is a slightly di↵erent definition that we saw earlier

The average feature counts over m trajectories is: µ̃ = 1
m

Pm
j=1 µ⌧j
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Deterministic MDP Path Distributions

Consider all possible H-step trajectories in a deterministic MDP

For a linear reward model, a policy is completely specified by its
distribution over trajectories

Which policy/distribution should we choose given a set of m
demonstrations?
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Principle of Max Entropy

Principle of max entropy: choose distribution with no additional
preferences beyond matching the feature expectations in the
demonstration dataset

max
P

�
X

⌧

P(⌧) logP(⌧)s.t.
X

⌧

P(⌧)µ⌧ = µ̃
X

⌧

P(⌧) = 1

(1)

In the linear reward case, this is equivalent to specifying the weights
w that yield a policy with the max entropy constrained to matching
the feature expectations

Ziebart et al., 2008
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Max Entropy Principle

Maximizing the entropy of the distribution over the paths subject to
the feature constraints from observed data implies we maximize the
likelihood of the observed data under the maximum entropy
(exponential family) distribution1.

P(⌧j | w) =
1

Z (w)
exp

⇣
w

Tµ⌧j

⌘
=

1

Z (w)
exp

0

@
X

si2⌧j

w
T
x(si )

1

A

Z (w , s) =
X

⌧s

exp
⇣
w

Tµ⌧s

⌘

Strong preference for low cost paths, equal cost paths are equally
probable.

1
Jaynes 1957
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Stochastic MDPs

Many MDPs of interest are stochastic

For these the distribution over paths depends both on the reward
weights and on the stochastic dynamics

P(⌧j | w ,P(s 0|s, a)) ⇡
exp

�
w

Tµ⌧j

�

Z (w ,P(s 0|s, a))
Y

si ,ai2⌧j

P(si+1|si , ai )
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Learning w

Select w to maximize likelihood of data:

w
⇤ = argmax

w
L(w) = argmax

w

X

examples

logP(⌧ | w)

The gradient is the di↵erence between expected empirical feature
counts and the learner’s expected feature counts, which can be
expressed in terms of expected state visitation frequencies

rL(w) = µ̃�
X

⌧

P(⌧ | w)µ⌧ = µ̃�
X

si

D(si )x(si )

where D(si ): state visitation frequency

Do we need to know the transition model to compute the above?
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MaxEnt IRL Algorithm
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Max Entropy IRL

Max entropy approach has been hugely influential

Provides a principled way for selecting among the (many) possible
reward functions

The original formulation requires knowledge of the transition model or
the ability to simulate/act in the world to gather samples of the
transition model

Check your understanding: was this needed in behavioral cloning?
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From IRL to Policies

Inverse RL approaches provide a way to learn a reward function

Generally interested in using this reward function to compute a policy
whose performance equals or exceeds the expert policy

One approach: given learned reward function, use with regular RL

Can we more directly learn the desired policy?
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Summary

Imitation learning can greatly reduce the amount of data need to
learn a good policy

Challenges remain and one exciting area is combining inverse RL /
learning from demonstration and online reinforcement learning

For a look into some of the theory between imitation learning and RL,
see Sun, Venkatraman, Gordon, Boots, Bagnell (ICML 2017)
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