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Overview

observation reward action

“Part of the appeal of reinforcement learning is that it is in
a sense the whole Al problem in a microcosm.”
— Sutton, 1992



http://incompleteideas.net/papers/challengeofRL.pdf

The Reward Hypothesis

“..all of what we mean by goals and purposes can be well thought of as maximization of the
expected value of the cumulative sum of a received scalar signal (reward)”
-- Sutton (2004), Littman (2017)
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http://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html
https://www.coursera.org/lecture/fundamentals-of-reinforcement-learning/michael-littman-the-reward-hypothesis-q6x0e

Reward is Enough

observation

observation

“Intelligence, and its associated abilities, can be understood as subserving the maximisation of
reward by an agent acting in its environment”

-- Silver, Singh, Precup, Sutton (2021



https://www.sciencedirect.com/science/article/pii/S0004370221000862
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Formalizing the Reward Hypothesis
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The Two Question View

[ Expression Question: Which signal can be used as a mechanism for expressing a given task? ]
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The Two Question View

[ Expression Question: Which signal can be used as a mechanism for expressing a given task? ]
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The Two Question View

[ Expression Question: Which signal can be used as a mechanism for expressing a given task? ]

v

T . e The Reward Hypothesis (formalized) .....................

9 — ? p— Given any task I and any environment Ethere is a reward
: : - function that realizes Jin E

—[ Task Question: What is a task? ] Assumption. All environments
are finite Controlled Markov

Processes (CMPs).

R(s),R(s,a),R(s,a,s’),R(s") E=(S,A,T,y,so)
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What is a Task?




Task Types: SOAPs, POs, TOs

[ Task Question: What is a task? ]

Set of Acceptable Policies Policy Ordering Trajectory Ordering (TO)
(SOAP) (PO) : :
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Task Types: SOAPs, POs, TOs

[ Task Question: What is a task? ]

Set of Acceptable Policies Policy Ordering Trajectory Ordering (TO)
(SOAP)H (PO)
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Example: Example: Example:
“Reach the goal in less than 10 “I prefer you reach the goal in 5 steps, | prefer safely reaching the goal
steps in expectation.” else within 10, else don’t bother.” and avoid lava at all costs.
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Task Realization

> The RH: Given any taskJ and any environment Ethere is a
I €{llg,Ln, L+ N} - reward function that realizes & .E

SOAP PO
............... TO .,
4 )
MD
Task P
gf E = (S, ﬂ’ T, 7/’ SO) R 1 Markov

V IIxS >R



Task Realization

> The RH: Given any taskJ and any environment Ethere is a
I €{llg,Ln, L+ N} - reward function that realizes & .E

SOAP PO
............... o
Set of Acceptable Policies Policy Ordering Trajectory Ordering (TO)
(SOAP (PO)
)HG CII LH LT,N
>

V™ (s0) > V™ (sg) V™ (s0) > V™(sp)... G(t1;80) > G(12;50) - - .



| World

AN /
state action
e, t@SK

" /ﬂ [ What is a task? }

T €{llg, L, Lo N}
: SOAP PO :

MAIN QUESTION

Given any task I and any environment E = (S, A, T, y, so),

is there a Markov reward function that realizes 9in

R
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Question 1: What Can Reward Express?

Theorem 1. For each of SOAP, PO, and TO, there exist (E, I) pairs for which no reward function realizes I in E.
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MAIN QUESTION

Given any task I and any environment E = (S, A, T, y, so),
is there a Markov reward function that realizes Jin B
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Expressivity Example 1
What kinds of SOAPs are not expressible?

f

SOAP = “Always go in the same direction”

HG = {TC(_,ﬂ.'_),. .

-}
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Expressivity Example 2
What kinds of SOAPs are not expressible?

[T = {2t M2}

XOR Problem

...Other types?
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Question 2: Can We Find the Realizing Rewards?

Definition 1. The REWARDDESIGN problem is: Given E = (S, A,T,y,s0), and a T, output a reward function
Riice that ensures T is realized in M = (E, Ryjice).

SOAP PO TOs
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Reward can express



Main Result 2: Reward Design

Definition 1. The REWARDDESIGN problem is: Given E = (S, A,T,y,s0), and a T, output a reward function
Ryiice that ensures T is realized in M = (E, Ryjice)-

Given: Output:

Environment Task or L if
E=(S,A,T,y,so0) g : R no R exists.

Theorem 2. The REwARDDESIGN problem can be solved in polynomial time, for any finite E, and any T .

Corollary 1. Given I and E, deciding whether I is expressible in E is solvable in polynomial time for any finite E.

21
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Algorithm: SOAP Reward Design

Algorithm 1 SOAP Reward Design

Ineut: E = (S, A,T,vy,s0), Ic.
Ourrur: R, or L.

@ N =

12:

13:

14:

Iginge = compute_fringe(Ilg)
for iy ; € Il do > Compute state-visitation distributions.
pg,i = compute_exp_visit(mg i, E)

for 7tf,i € Igringe do
pf,i = compute_exp_visit(ny,;, E)

Ceq = 1{} > Make Equality Constraints.
for iy ; € Il do
Ceq-add(pg,O(SO) X = Pg,i(SO) - X)

Cineq = {} > Make Inequality Constraints.

: for Tf i S Hfringe do

Cineq-add(pf,j(SO) ‘X +e< Pg,O(SO) : X)

Rout, €out = linear_programming(obj. = max €, constraints = Cineq/ Ceq) > Solve LP.
if €out > 0 then > Check if successful.
return Ry
else
return L




Recap

MAIN QUESTION

Given any task I and any environment E = (S, A, T, y, so),
is there a Markov reward function that realizes Jin R

Theorem 1. For each of SOAP, PO, and TO, there exist (E, I) pairs for which no reward function realizes I in E.

Theorem 2. The REwARDDESIGN problem can be solved in polynomial time, for any finite E, and any 7.
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Proposition 1. The “range” realization of SOAP is strictly more general than the “equal” realization.
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Other Analysis: Two Kinds of SOAP

“range” SOAP

&-C

V7 (s0) > V™ (s0)

“‘equal” SOAP

-

V™s(sg) = V™ (s0)
AND
V7™ (s0) > V™(s0)



Other Analysis

- Extensions of Main Results \

Theorem 3. There exist choices of E- = (S, A, so) and T, such that there is no (T, R, y) that realizes T in E_..

Theorem 4. The FINITE-REWARDDECISION problem is NP-hard.

- J

e Multi-Environment ™

Theorem 5. Given a task I and a finite set of CMPs, & = {E;, ..., E,}, with shared state—action space, there exists
a polynomial time algorithm that outputs one reward function that realizes the task (when possible) in all CMPs in &.

Theorem 6. Tusk realization is not closed under sets of CMPs. That is, there exist choices of T and & = {E1, ..., E,}
such that T is realizable in each E; € & independently, but there is not a single reward function that realizes I in all
E; € & simultaneously.

25
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Limitations & Assumptions

Environment.

> Finite CMPs.
> Y ispartof E.

Task.

> Tasks of interest are SOAPs,
POs, and TOs.

Task Realization.

> Start-state value determines
task realization.

> Ignore learning dynamics.

Reward Functions.

> Deterministic.

> Markov.




Experiment 1: SOAP Expressivity
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Experiment 3: Learning with SOAP Rewards (Grid)

Il

— mg,1(s)
=> mg,2(s)
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Main Result Overview

“Always go in the same direction”

> R(S,LZ,S/)

task
. Markov
o reward
function




