
Actor-critic architecture

World

Actor-Critic methods

274 CHAPTER 13. POLICY GRADIENT METHODS

13.4 REINFORCE with Baseline

The policy gradient theorem (13.5) can be generalized to include a comparison of
the action value to an arbitrary baseline b(s):

r⌘(✓) =
X

s

d⇡(s)
X

a

⇣
q⇡(s, a) � b(s)

⌘
r✓⇡(a|s, ✓). (13.8)

The baseline can be any function, even a random variable, as long as it does not vary
with a; the equation remains true, because the the subtracted quantity is zero:

X

a

b(s)r✓⇡(a|s, ✓) = b(s)r✓

X

a

⇡(a|s, ✓) = b(s)r✓1 = 0 8s 2 S.

However, after we convert the policy gradient theorem to an expectation and an
update rule, using the same steps as in the previous section, then the baseline can
have a significant e↵ect on the variance of the update rule.

The update rule that we end up with is a new version of REINFORCE that includes
a general baseline:

✓t+1 , ✓t + ↵
⇣
Gt � b(St)

⌘r✓⇡(At|St, ✓)

⇡(At|St, ✓)
. (13.9)

As the baseline could be uniformly zero, this update is a strict generalization of
REINFORCE. In general, the baseline leaves the expected value of the update un-
changed, but it can have a large e↵ect on its variance. For example, we saw in
Section 2.8 that an analogous baseline can significantly reduce the variance (and
thus speed the learning) of gradient bandit algorithms. In the bandit algorithms the
baseline was just a number (the average of the rewards seen so far), but for MDPs
the baseline should vary with state. In some states all actions have high values and
we need a high baseline to di↵erentiate the higher valued actions from the less highly
valued ones; in other states all actions will have low values and a low baseline is
appropriate.

One natural choice for the baseline is an estimate of the state value, v̂(St,w), where
w 2 Rm is a second learned weight vector learned by one of the methods presented
in previous chapters. Because REINFORCE is a Monte Carlo method for learning
the policy weights, ✓, it seems natural to also use a Monte Carlo method to learn
the state-value weights, w. A complete pseudocode algorithm for REINFORCE with
baseline is given in the box using such a learned state-value function as the baseline.

Here it would be nice to repeat experiments as in the previous section, or other
experiments, showing a nice improvement with the baseline.

Here it would also be nice to discuss the choice of the step-size parameters, ↵ and
�. The step size for values is relatively easy; we have rules of thumb. For action
values though it is much less clear. It depends on the range of variation of the
rewards, and on the policy parameterization.

REINFORCE with baseline:

Actor-Critic method:

276 CHAPTER 13. POLICY GRADIENT METHODS

One-step Actor-Critic (episodic)

Input: a di↵erentiable policy parameterization ⇡(a|s, ✓), 8a 2 A, s 2 S, ✓ 2 Rn

Input: a di↵erentiable state-value parameterization v̂(s,w), 8s 2 S,w 2 Rm

Parameters: step sizes ↵ > 0, � > 0

Initialize policy weights ✓ and state-value weights w
Repeat forever:

Initialize S (first state of episode)
I 1
While S is not terminal:

A ⇠ ⇡(·|S, ✓)
Take action A, observe S0, R
� R + � v̂(S0,w)� v̂(S,w) (if S0 is terminal, then v̂(S0,w) , 0)
w w + ��rwv̂(S,w)
✓ ✓ + ↵I �r✓ log ⇡(A|S, ✓)
I �I
S S0

state-value function as the baseline) as follow:

✓t+1 , ✓t + ↵
⇣
G(1)

t
� v̂(St,w)

⌘r✓⇡(At|St, ✓)

⇡(At|St, ✓)
(13.10)

= ✓t + ↵
⇣
Rt+1 + �v̂(St+1,w)� v̂(St,w)

⌘r✓⇡(At|St, ✓)

⇡(At|St, ✓)
. (13.11)

The natural state-value-function learning method to pair with this is semi-gradient
TD(0). Pseudocode for the complete algorithm is given in the box above. Note that
it is now a fully online, incremental algorithm, with states, actions, and rewards
processed as they occur and then never revisited.

The generalizations to the forward view of multi-step methods and then to a
�-return algorithm are straightforward. The one-step return in (13.10) is merely

replaced by G(n)
t

and G�
t respectively. The backward views are also straightforward,

using separate eligibility traces for the actor and critic, each after the patterns in
Chapter 12. Pseudocode for the complete algorithm is given in the box on the next
page.

Now we should continue with some examples showing the advantages, either con-
tinuing the small ones in examples 1 and 2, doing some larger ones like mountain car
or blackjack, or ones from the literature such as the Degris et al. paper.

�t

^

�t

^

�t

^ ^

�R̄t

A2C and A3CFinite-Horizon Methods: Advantage Actor-Critic

I A2C / A3C uses this fixed-horizon advantage estimator

I Pseudocode

for iteration=1, 2, . . . do
Agent acts for T timesteps (e.g., T = 20),

For each timestep t, compute

R̂t = rt + �rt+1 + · · · + �T�t+1rT�1 + �T�tV (st)

Ât = R̂t � V (st)

R̂t is target value function, in regression problem

Ât is estimated advantage function

Compute loss gradient g = r✓
P

T

t=1

h
� log ⇡✓(at | st)Ât + c(V (s) � R̂t)

2
i

g is plugged into a stochastic gradient descent variant, e.g., Adam.

end for

V. Mnih, A. P. Badia, M. Mirza, et al. “Asynchronous Methods for Deep Reinforcement Learning”. In: ICML (2016)

A3C results
A3C Results

Revisiting the objectiveSurrogate Objective

I Let ⌘(⇡) denote the expected return of ⇡

I We collect data with ⇡old. Want to optimize some objective to get a new
policy ⇡

I Define L⇡old
(⇡) to be the “surrogate objective”1

L(⇡) = E⇡old


⇡(a | s)

⇡old(a | s)A
⇡old(s, a)

�

r✓L(⇡✓)
��
✓old

= r✓⌘(⇡✓)
��
✓old

(policy gradient)

I Local approximation to the performance of the policy; does not depend on
parameterization of ⇡

1S. Kakade and J. Langford. “Approximately optimal approximate reinforcement learning”. In: ICML. vol. 2. 2002, pp. 267–274.

Trust Region Policy Optimization
(TRPO)

Practical Algorithm: TRPO

I Constrained optimization problem

max
⇡

L(⇡), subject to KL[⇡old, ⇡]  �

where L(⇡) = E⇡old


⇡(a | s)

⇡old(a | s)A
⇡old(s, a)

�

I Construct loss from empirical data

L̂(⇡) =
NX

n=1

⇡(an | sn)
⇡old(an | sn)

Ân

I Make quadratic approximation and solve with conjugate gradient algorithm

J. Schulman, S. Levine, P. Moritz, et al. “Trust Region Policy Optimization”. In: ICML. 2015

Proximal Policy Gradient (PPO)“Proximal” Policy Optimization

I Use penalty instead of constraint

minimize
✓

NX

n=1

⇡✓(an | sn)
⇡✓old

(an | sn)
Ân � �KL[⇡✓old

, ⇡✓]

I Pseudocode:

for iteration=1, 2, . . . do
Run policy for T timesteps or N trajectories
Estimate advantage function at all timesteps
Do SGD on above objective for some number of epochs
If KL too high, increase �. If KL too low, decrease �.

end for
I ⇡ same performance as TRPO, but only first-order optimization

ResultsPractical Algorithm: TRPO

Applied to

I Locomotion controllers in 2D

I Atari games with pixel input

J. Schulman, S. Levine, P. Moritz, et al. “Trust Region Policy Optimization”. In: ICML. 2015

Deep Deterministic Policy Gradient
(DDPG)Deep Deterministic Policy Gradient

I Incorporate replay bu↵er and target network ideas from DQN for increased
stability

I Use lagged (Polyak-averaging) version of Q� and ⇡✓ for fitting Q� (towards
Q⇡,�) with TD(0)

Q̂t = rt + �Q�0(st+1, ⇡(st+1; ✓
0))

I Pseudocode:

for iteration=1, 2, . . . do
Act for several timesteps, add data to replay bu↵er
Sample minibatch
Update ⇡✓ using g / r✓

P
T

t=1 Q(st , ⇡(st , zt ; ✓))
Update Q� using g / r�

P
T

t=1(Q�(st , at) � Q̂t)2,
end for

T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al. “Continuous control with deep reinforcement learning”. In: ICLR (2015)

DDPG results
DDPG Results

Applied to 2D and 3D robotics tasks and driving with pixel input

T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al. “Continuous control with deep reinforcement learning”. In: ICLR (2015)

The generality of policy-gradient

• Can be applied whenever we can compute the effect
of parameter changes on the action probabilities,

• E.g., has been applied to spiking neuron models

• There are many possibilities other than linear-
exponential and linear-gaussian, e.g., mixture of
random, argmax, and fixed-width gaussian; learn the
mixing weights, drift/diffusion models

• Can be applied whenever we can compute the effect of
parameter changes on the action probabilities,

⇡(a|s,✓) .
= Pr{At = a | St = s}

r(⇡)
.
= lim

n!1

1

n

nX

t=1

E⇡[Rt] =

X

s

d⇡(s)
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)r

d⇡
.
= lim

t!1
Pr{St = s}

ṽ⇡(s)
.
=

1X

k=1

E⇡[Rt+k � r(⇡) | St=s]

q̃⇡(s, a)
.
=

1X

k=1

E⇡[Rt+k � r(⇡) | St=s, At=a]

�✓t ⇡ ↵
@r(⇡)

@✓
.
= ↵rr(⇡)

rr(⇡) =
X

s

d⇡(s)
X

a

q̃⇡(s, a)r⇡(a|s,✓) (the policy-gradient theorem)

= E
⇣

q̃⇡(St, At)� v(St)

⌘r⇡(At|St,✓)

⇡(At|St,✓)

���� St ⇠ d⇡, At ⇠ ⇡(·|St,✓)

�

= E
⇣

G̃�
t � v̂(St,w)

⌘r⇡(At|St,✓)

⇡(At|St,✓)

���� St ⇠ d⇡, At:1 ⇠ ⇡

�

⇡
⇣
G̃�

t � v̂(St,w)

⌘r⇡(At|St,✓)

⇡(At|St,✓)
(by sampling under ⇡)

✓t+1
.
= ✓t + ↵

⇣
G̃�

t � v̂(St,w)

⌘r⇡(At|St,✓)

⇡(At|St,✓)

e.g., in the one-step linear case:

= ✓t + ↵
⇣
Rt+1 � R̄t +w>

t �t+1 �w>
t �t)

⌘r⇡(At|St,✓)

⇡(At|St,✓)
.
= ✓t + ↵�te(At, St)

i

