Building Knowledge with Reinforcement Learning

e Focusing on two types of knowledge:
— Procedural knowledge: skills, goal-driven behavior
— Predictive, empirical knowledge: Analogous to the laws of physics,
predicting effects of actions

e The knowledge must be:

— Expressive: able to represent many things, including abstractions like
objects, space, people, and extended actions

— Learnable: from data without labels or supervision (for scalability)

— Composable: suitable for supporting planning / reasoning by
assembling existing pieces

ICCP’'2020, Cluj-Napoca

Procedural Knowledge: Options

e An option w consists of 3 components

— An initiation set I,, C S (aka precondition)
— A policy m,, : § x A — [0, 1]

Tw(a|s) is the probability of taking a in s when following option w
— A termination condition 8, : S — [0, 1]:

B, (s) is the probability of terminating the option w upon entering s

e Eg., robot navigation: if there is no obstacle in front (I,), go forward
(m,) until you get too close to another object (5,)

e Inspired from macro-actions / behaviors in robotics / hybrid planning
and control

Cf. Sutton, Precup & Singh, 1999; Precup, 2000

ICCP’'2020, Cluj-Napoca 6

Decision-Making with Options

Time —

MDP ‘/\/\/ IState
SMDP /W

Options)'/\ /\/ —
over MDP A

Learning and planning algorithms are the same at all levels of abstraction!

ICCP’'2020, Cluj-Napoca

Options as Behavioral Programs

e (Call-and-return execution

— When called, option w is pushed onto the execution stack

— During the option execution, the program looks at certain variables
(aka state) and executes an instruction (aka action) until a termination
condition is reached

— The option can keep track of additional /ocal variables, eg counting
number of steps, saturation in certain features (e.g. Comanici, 2010)

— Options can invoke other options

e Interruption

— At each step, one can check if a better alternative has become available
— If so, the option currently executing is interrupted (special form of
concurrency)

ICCP’'2020, Cluj-Napoca 8

Option Models Provide Semantics

e Models of actions consist of immediate reward and transition probability
to next state

e Models of options consist of reward until termination and (discounted)
transition to termination state

e Models are predictions about the future and provide more benefits beyond
hierarchical behavior (cf Botvinick & Weinsteein, 2014)

=
~

steps to goal

M ——

hierarchical/saltatory

1 300

ICCP’'2020, Cluj-Napoca 9

How Should Options Be Created?

e Options can be given by a system designer (eg robotics)

e |f subgoals / secondary reward structure is given, the option policy can be
obtained, by solving a smaller planning or learning problem (cf. Precup,
2000)

— Eg. acquiring certain objects in a game
— Eg. Intrinsic motivation

o What is a good set of subgoals / options?
e This is a representation discovery problem
e Studied a lot over the last 15 years

e Bottleneck states and change point detection currently the most
successful methods

ICCP’'2020, Cluj-Napoca 10

Bottleneck States

"} A
4 N

e Perhaps the most explored idea in options construction
e A bottleneck allows “circulating” between many differenet states
e Lots of different approaches!

— Frequency of states (McGovern et al, 2001, Stolle & Precup, 2002)
— Graph partitioning / state graph analysis (Simsek et al, 2004, Menache

et al, 2004, Bacon & Precup, 2013)
— Information-theoretic ideas (Peters et al., 2010)

e People seem quite good at generating these (cf. Botvinick, 2001, Solway
et al, 2014)

e Main drawback: expensive both in terms of sample size and computation

ICCP’'2020, Cluj-Napoca 11

Random Subgoals Also Help

PFVI LAV

1.0 . . 1.0

0.8} ‘ 1 08

0.6 F 06 @ @ _

0.4F 1 04} O i

0.2F . 0.2 O @_

0.0 ¥ ' ' ' 0.0 T S
0002 04 06 08 10 "pHo 02 04 06 08 1.0

Cf. Mann, Mannor & Precup, 2015

ICCP’'2020, Cluj-Napoca

Option-Critic: Learn Options that Optimize Return

e Explicitly state an optimization objective and then solve it to find a set
of options

e Handle both discrete and continuous set of state and actions

e Learning options should be continual (avoid combinatorially-flavored
computations)

e Options should provide improvement within one task (or at least not
cause slow-down...)

ICCP’'2020, Cluj-Napoca 13

Actor-Critic Architecture

Actor
{ Po}fcy }
Gradient

Critic TD error
s)f Valu'le Qpi1
| function

Tt

()

L Environment ¥

e Clear optimization objective: average or discounted return
e Continual learning
e Handles both discrete and continuous states and actions

ICCP’'2020, Cluj-Napoca

Option-Critic Architecture

St

Behavior policy

Gradients

Critic (Qu. A
Q

U,

Tt

TD error

Environment

at

e Given a number of desired options, optimize internal policies and

termination conditions using the cumulative reward signal

ICCP’'2020, Cluj-Napoca

cf. Bacon et al, AAAI'2017

15

Some details

e The action-value over options can be expressed as

QQ(Saw) — Z Ww(a‘S)QU(Sa W, CL)

where

Qu(s,w,a) =r(s,a) + 72 P(s'|s,a)U(w,s")

S

e The last quantity is the utility from s’ onwards, given that we arrive in
s’ using w

Uw,s') = (1 = Bu(s)Qals,w) + Bu(s) Vals)
e We parameterize the internal policies by 8, as m,, ¢, and the termination

conditions by v, as 3, .,
e Note that € and v can be shared over the options!

DALI RL, April 2016 8

Main result: Gradient updates

e Suppose we want to optimize the expected return: E;), Qa(s,w)
e The gradient wrt the internal policy parameters 6 is given by:

0logmy, o(als)
E(S,W)NMEaNﬁw’g(-|S) { BY: QU(Sawa a)

This has the usual interpretation: take better primitives more often inside
the option

e The gradient wrt the termination parameters v is given by:

0PBu,u(s")
E(S,w)NMEaNﬂw,9(°|S)ES/NP(-|S,CL) {_ Oy AQ(Sla(’U)

where Aq is the advantage function
This means that we want to lengthen options that have a large advantage

DALI RL, April 2016 9

Experimental setup

e Linear function approximation for 7, o, weights initialized to 0
e (g learned simultaneously with Sarsa

e Internal policies of options parameterized by softmax

e Termination conditions for options parameterized with a logistic function

DALI RL, April 2016

10

Experiments: Pinball

15000 4.5 T T T :
‘ : — OC-SARSA(0), || = 16
10000 =-oeeerede s i i L A RN AT A0 i = OC-SARSA(0), [Q) =4 |4
E 5000 | aANAAIRA ActiA 4 /S AN E ‘ ‘
£ WA

§~ g |

S, S 5000 fr AANAY Mo N
9 Y : : \ i
o =1 ' ' B H B B i N . .
= : & H : s : 0 o - : B B : \ \
(] 2, 710000 [t] 225 : : : : ‘ ‘
. H E ; ‘ ; ‘ ‘ ‘ g : ‘ : : : ;
®oe, £ —15000 R W A AT LIV - : : : : : :
Ceoy d < : : I . L IRASAAA A e |k i L A
. goe : : :
wwww 20000 [] : i ‘ ‘ ‘ :
« @ LS ® 3 3 — OC-SARSA(0), || = 4 L ; ; ; ; ; ;
—25000 L L 1 1 I I 2 ; .
’ 0 20 40 60 80 100 120 0 20 4 0 80 100 120

Episodes Episode

e Option parameters not shared in this case
e Options specialize in different areas (e.g. around the goal)
e In the long run, options get shorter

e This is expected: optimal policy is made of primitive actions

DALI RL, April 2016

Results: Transfer in Rooms Domain
Uniformly random goal

Hallways

-+

500

400 |-

300 f-

Steps

200

100 |-

ICCP’'2020, Cluj-Napoca

Initial goal

1000 ep.

AC
Sarsa
OC 2 options

OC 4 options H

OC 6 options
OC 8 options

I
500

L
1000
Episodes

I
1500

2000

16

Quantitative and qualitative results in Atari games

2500
10000
2000
8000 ."J’\//hav‘h
o
5? 4000 1000
2000
— Option-Critic 500 — Option-Critic
0 — DQN — DQN
0 50 100 150 200 O 50 100 150 200
Epoch Epoch
(a) Asterix (b) Ms. Pacman
8000
10000f[— Option-Critic
— DQN
2000 Q W 6000 /\\«.\\ l_,v'WJ
6000 4000
4000
2000 2000
— Option-Critic
0 0 — DQN
0 50 100 150 200 0 50 100 150 200
Epoch Epoch
(c) Seaquest Time (d) Zaxxon

i e N N (1 el mw ! miw 8 2 | 1 | INEEIN | BN (/MMM NN | BN (NEEN DI 0 N AN IR

Option 0 Option 1

ICCP’'2020, Cluj-Napoca 17

Preserving Procedural Knowledge over Time

e Successful simultaneous learning of terminations and option policies

e But, as expected, options shrink over time unless additional regularization
Is imposed

Cf. time-regularized options, Mann et al, (2014)

e Intuitively, using longer options increase the speed of learning and
planning (but may lead to a worse result in call-and-return execution)

e Diverse options are useful for exploration in continual learning setting

ICCP’'2020, Cluj-Napoca 18

Bounded Rationality as Regularization

e Problem: optimizing return leads to option collapse (primitive actions
are sufficient for optimal behaviour)

e Bounded rationality: reasoning about action choices is expensive (energy
consumption and missed-opportunity cost)

Eg Russell, 1995, Lieder & Griffiths, 2018

e |dea: switching options incurs an additional cost

Time

Base MDP + Options

Deliberation Costs O O\O\‘\O o °

e Can be shown equivalent to requiring that advantage exceeds a threshold
before switching

ICCP’'2020, Cluj-Napoca 19

Effect of Deliberation Cost Regularization

Training curves Log termination rate
Amidar Asterix Amidar Asterix
102 102-5ff
800 \/\v |
10t]
600 10 ?M
400 100 :\\
10° 5.
200 - EA |
10—t]
O- 1 1 1 1 1 1 1 10_1 1 1 1 1 1 1 1
012345678 012345678
MsPacman Pong
2500 1 102 102
2000 - 10!
1 -
500 L0
1000
101 10—1
500
1 1
012345678 012345678 012345678 012345678

Yellow: no regularization; red: most regularization

ICCP’'2020, Cluj-Napoca 20

lllustration: Amidar

*

.—-Iﬁ Ifl--ll!-I fmm

I

(a) Without a deliberation cost, options ter- (b) Options are used for extended periods (c) Termination is sparse when using the
minate instantly and are used in any scenario and in specific scenarios through a trajectory, deliberation cost. The agent terminates op-

without specialization. when using a deliberation cost. tions at intersections requiring high level de-
cisions.

e Deliberation costs prevent options from becoming too short

e [erminations are intuitive

ICCP’'2020, Cluj-Napoca

21

Should All Option Components Optimize the Same
Thing?

e Deliberation cost can be viewed as associated specifically with termination
e Rewards could be optimized mainly by the internal policy of the option

e Can we generalize this idea to other optimization criteria?

ICCP’'2020, Cluj-Napoca 22

Termination-Ciritic

e Optimize the termination condition independently of the policy inside
the option

e Option termination should focus on predictability ie finding “funnelling
states”

e Interesting side effect: if each option ended at a funelling state,
expectation and distribution model would be almost identical and the
option would be almost deterministic

e Implementation: minimize the entropy of the option transition model P,

cf. Harutyunyan et al, AISTATS'2019

ICCP’'2020, Cluj-Napoca 23

lllustration: Rooms environment
ACTC

0.200
0175
0.150
0125
0.100
0.075
0.050

0.025

064
056
048
040

032

024

0.16

0.08

7000

6000

5000

4000

3
I

Steps to Goal

2000

1000

0 100 200 300 400 500 600 700 800 900
Episodes

ICCP’'2020, Cluj-Napoca

Predictive knowledge: Value Function

e Given a policy 7, a discount factor v and a reward function r, the value
function of the policy is given by:

ve(s) = E[Y r(Sk, Ak) S, =5, Apioo ~ T

||
e 10

T(Sk,Ak H ’}/|St—8 AtooN]

1=t+1

7
Il

e 1 is the signal of interest for the prediction

e - defines the time scale over which we want to make the prediction (in
a very crude way)

e Optimal value function: given a discount factor v and a reward function
r, compute v+ and 7*, the optimal policy wrt 7, r

ICCP’'2020, Cluj-Napoca 25

Focusing on value function

e Definition allows us to leverage great tools: bootstrapping (as in dynamic
programming) and sampling

e We have good ideas for how to learn value functions from data using
temporal-difference methods, off-policy learning...

e Usual objection: this is restricted to one reward function and usually a
fixed time scale (discount)

e An agent may need to make predictions about many different things and
at many different time scales

ICCP’'2020, Cluj-Napoca 26

There are many things to learn! (Adam White's thesis)

amblent light
N n m) :
. Igh2 Igh3 | MI] I *ﬁ ;
» ' L |‘ MH h " ﬁ 1 second
l] ‘ N ‘ ‘ 1] duration
l (J\ll it ™ | }‘ ran.dom
s h [,,, I “‘"‘}:} uN \L_‘ Lﬁuﬁ‘p i". I “ policy
f \ 1. N ﬂ‘ ---------------------------

extended
duration
r' random

r policy

f / W\ ﬂMH [’h’ t'::,ﬁi',wmg

policy

\
frﬂf fﬁq’\ w-y » Brownian

1 ' q
| motion

l\ policy

10 30 50 70 90 10 30 50 70 90 10 30 50 70 90
seconds seconds seconds

Sensory stream of Critterbot robot about different sensors for different policies
Can we learn about all these signals in parallel from one stream of data?

ICCP’'2020, Cluj-Napoca 27

Generalized Value Functions (GVFs)

e Given a cumulant function ¢, state-dependent continuation function ~
and policy 7, the Generalized Value Function v, , . is defined as:

00 k
UW,C,’Y(S) = E ZC(Ska Ak7 Sk—i-l) H W(SZ)|St — SaAt:oo ~ T
k=t 1=t+1

e Cumulant ¢ can output a vector (even a matrix)

e Continuation function vy maps states to [0,1] (further generalizations are
possible)

e Cf. Horde architecture (Sutton et al, 2011); Adam White's thesis;
inspiration from Pandemonium architecture

e Special case: policy is optimal wrt ¢, 7, v,
approximation (UVFA) (Schaul et al, 2015)

e No single task is required, just a multitude of cumulants and time scales!

- Universal Value Function

ICCP’'2020, Cluj-Napoca 28

GVFs as building blocks of knowledge

e Note that one can take the output of a GVF and make it an input to
another GVF

e Or, the output of a GVF could become part of the “state” for another
GVF

ICCP’'2020, Cluj-Napoca 29

Successor states and successor features are GVFs

e Successor features (Barreto et al, 2017, 2018) are a natural extension of
successor states (Dayan, 1992)

e Successor states give the expected occupancy of future states

o If states are defined by a feature vector ¢(s), successor features give the
expected, discounted sum of future feature vectors from a state.

e In GVF terms, the cumulant is ¢ = ¢, and there is a fixed policy and
discount

e Interesting property highlighted in Barreto et al:

v?T,WTC,"y (S) — WTUW,C,’Y (8)

which leads to one-shot computation of new GVFs

ICCP’'2020, Cluj-Napoca 30

Option models are GVFs

e The reward model for an option w is defined as:
ro(s) = Eu[r(Se, Ar) + (1 = Bu(St41))7w(Se41)[Se = 3]

e This means the option reward model is a GVF:

— policy is
— cumulant is the environment reward r
— continuation function is v(1 — f3,,)

e Option transition model can be similarly written as a GVF

ICCP’'2020, Cluj-Napoca

31

Many other approaches that can be expressed as GVFs

e Option-value functions (Precup, 2000; Sutton, Precup & Singh, 1999)
e Feudal networks (Dayan, 1994; Vezhnevets et al, 2017)

e Value transport (Hung et al, 2018)

e Auxilliary tasks (Jaderberg et al, 2016)

e Are GVFs just an interesting insight or can they be useful?

ICCP’'2020, Cluj-Napoca

32

GVF formulation of policy gradient

e Let my be a policy parameterised by a vector #, v be a constant
continuation function, and ¢ : SxA — R be a one-dimensional cumulant.

o Let vc~ r,(s) be the corresponding general value function

e The gradient of v, r,(s) with respect to 6 is itself a general value
function that depends on the cumulant:

c(s,a) 1= Ve y,x,(5,a)Vglog me(als).

e In other words:
VQIUC{Y,T(Q(S) — /Uéafyaﬂ-e(s)

e A case in which a GVF builds on another GVF and they can be modelled
separately

cf. Comanici et al, 2018

ICCP’'2020, Cluj-Napoca 33

Empirical example (gridworld)

0.01 0.05 0.1 0.3

g
=}

o o
o w

success rate

success rate
e e =
O v O

success rate
o I =
O v O

success rate
o o =
O U‘ O

g
o

success rate
o o
O w

=
o

success rate

o o

0.01 0.1 0.3
--I I I

0.01 0.1 0.3

0.01

0.05 3

PG learning rate

mmm Bootstrap Crt

= Bootstrap Crt+Act
mmm SF Approximation

0.5

0.5

0.5

0.5

1.0

1.0

1.0

1.0

1.0

=1

TDIr

=05

TDIr

=03

TDIr

=0.1

TDIr

= 0.05

TDIr

=0.01

TDIr

e GVF representation leads to more stable Iearning across parameter

settings (green bars)

e GVFs allow us to combine algorithms very easily!

ICCP’'2020, Cluj-Napoca

34

GVFs for synthesizing new behaviors

(MR R
L

I ®
Cumulant ¢ = Z W;C;

?

:

GPE + GPI —1T

Option-keyboard - Barreto et al, 2019, based on ideas of Rich Sutton

ICCP’'2020, Cluj-Napoca

35

Option-Keyboard for Moving Target Arena

0° B Option 1
B Option 2
. I Option 3
Combined options

w
o
|

N
u
|

N
=]
1

- OK training 270° 90°

== DPG Player

== Q-Learning Player (8)
== Q-Learning Player (6)
== Q-Learning Player (4)
== DPG

== Q-Learning + Options

=
o
|

Average return per episode
=
w

225° 135°

] | | 1 1
0 1 2 3 4 5
Steps le7 180°

General way to synthesize quickly new behavior for combinations of reward functions!

ICCP’'2020, Cluj-Napoca 36

Discussion

e Reinforcement learning suggests very powerful tools for knowledge
representation

e Options are a way to encode procedural knowledge

e \We have made great progress in learning options through gradients

e Priors can be easily built into the option construction process through
the optimization criterion

e Nice features of generalized value functions:
— versatile
— incorporate many existing algorithms as special cases
— can be combined as building blocks
— can be useful both for representation shaping and planning

e Open questions: how to generate behavior with /for such representations,
how to do discovery

e Bigger open question: how to evaluate empirically lifelong learning Al
systems

ICCP’'2020, Cluj-Napoca 37

Assessing the capability of a life-long learning agent

e There is no longer just a single task!
e Returns are important, but too simplistic

e Qualitative analysis of behavior interesting but difficult for drawing
conclusions

e How well is the agent preserving and enhancing its knowledge?

e Problem of methodology not solved simply by open-sourcing or
reproducibility

ICCP’'2020, Cluj-Napoca 38

Testing the agent in multiple ways

e Take inspiration from school - ask multiple questions
e Try to devise a “certification” system for Al agents

e Maybe more important than current definitions of interpretability (which
are akin to brain scans...)

ICCP’'2020, Cluj-Napoca 39

Hypothesis-driven evaluation of continual learning

systems
% a
Hypothesis Experiment
sC
S a Knowledge
Conclusion

e Formulate a hypothesis about what the agent should know or how it
should behave given certain knowledge

e Design an experiment to test this hypothesis

e Be patient and let the agent continue training without tinkering with the
task or the algorithm!

ICCP’'2020, Cluj-Napoca 40

