Building Knowledge with Reinforcement Learning

e Focusing on two types of knowledge:
— Procedural knowledge: skills, goal-driven behavior
— Predictive, empirical knowledge: Analogous to the laws of physics,
predicting effects of actions

e The knowledge must be:

— Expressive: able to represent many things, including abstractions like
objects, space, people, and extended actions

— Learnable: from data without labels or supervision (for scalability)

— Composable:  suitable for supporting planning / reasoning by
assembling existing pieces
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Procedural Knowledge: Options

e An option w consists of 3 components

— An initiation set I,, C S (aka precondition)
— A policy m,, : § x A — [0, 1]

Tw(a|s) is the probability of taking a in s when following option w
— A termination condition 8, : S — [0, 1]:

B, (s) is the probability of terminating the option w upon entering s

e Eg., robot navigation: if there is no obstacle in front (I,), go forward
(m,) until you get too close to another object (5,)

e Inspired from macro-actions / behaviors in robotics / hybrid planning
and control

Cf. Sutton, Precup & Singh, 1999; Precup, 2000
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Decision-Making with Options
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Learning and planning algorithms are the same at all levels of abstraction!
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Options as Behavioral Programs

e (Call-and-return execution

— When called, option w is pushed onto the execution stack

— During the option execution, the program looks at certain variables
(aka state) and executes an instruction (aka action) until a termination
condition is reached

— The option can keep track of additional /ocal variables, eg counting
number of steps, saturation in certain features (e.g. Comanici, 2010)

— Options can invoke other options

e Interruption

— At each step, one can check if a better alternative has become available
— If so, the option currently executing is interrupted (special form of
concurrency)
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Option Models Provide Semantics

e Models of actions consist of immediate reward and transition probability
to next state

e Models of options consist of reward until termination and (discounted)
transition to termination state

e Models are predictions about the future and provide more benefits beyond
hierarchical behavior (cf Botvinick & Weinsteein, 2014)
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How Should Options Be Created?

e Options can be given by a system designer (eg robotics)

e |f subgoals / secondary reward structure is given, the option policy can be
obtained, by solving a smaller planning or learning problem (cf. Precup,
2000)

— Eg. acquiring certain objects in a game
— Eg. Intrinsic motivation

o What is a good set of subgoals / options?
e This is a representation discovery problem
e Studied a lot over the last 15 years

e Bottleneck states and change point detection currently the most
successful methods
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Bottleneck States

"} A
4 N

e Perhaps the most explored idea in options construction
e A bottleneck allows “circulating” between many differenet states
e Lots of different approaches!

— Frequency of states (McGovern et al, 2001, Stolle & Precup, 2002)
— Graph partitioning / state graph analysis (Simsek et al, 2004, Menache

et al, 2004, Bacon & Precup, 2013)
— Information-theoretic ideas (Peters et al., 2010)

e People seem quite good at generating these (cf. Botvinick, 2001, Solway
et al, 2014)

e Main drawback: expensive both in terms of sample size and computation
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Random Subgoals Also Help
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Cf. Mann, Mannor & Precup, 2015
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Option-Critic: Learn Options that Optimize Return

e Explicitly state an optimization objective and then solve it to find a set
of options

e Handle both discrete and continuous set of state and actions

e Learning options should be continual (avoid combinatorially-flavored
computations)

e Options should provide improvement within one task (or at least not
cause slow-down...)
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Actor-Critic Architecture

Actor
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e Clear optimization objective: average or discounted return
e Continual learning
e Handles both discrete and continuous states and actions
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Option-Critic Architecture
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e Given a number of desired options, optimize internal policies and

termination conditions using the cumulative reward signal
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Some details

e The action-value over options can be expressed as

QQ(Saw) — Z Ww(a‘S)QU(Sa W, CL)

where

Qu(s,w,a) =r(s,a) + 72 P(s'|s,a)U(w,s")

S

e The last quantity is the utility from s’ onwards, given that we arrive in
s’ using w

Uw,s') = (1 = Bu(s)Qals,w) + Bu(s) Vals)
e We parameterize the internal policies by 8, as m,, ¢, and the termination

conditions by v, as 3, .,
e Note that € and v can be shared over the options!

DALI RL, April 2016 8



Main result: Gradient updates

e Suppose we want to optimize the expected return: E; ), Qa(s,w)
e The gradient wrt the internal policy parameters 6 is given by:

0logmy, o(als)
E(S,W)NMEaNﬁw’g(-|S) { BY: QU(Sawa a)

This has the usual interpretation: take better primitives more often inside
the option

e The gradient wrt the termination parameters v is given by:

0PBu,u(s")
E(S,w)NMEaNﬂw,9(°|S)ES/NP(-|S,CL) {_ Oy AQ(Sla(’U)

where Aq is the advantage function
This means that we want to lengthen options that have a large advantage

DALI RL, April 2016 9



Experimental setup

e Linear function approximation for 7, o, weights initialized to 0
e (g learned simultaneously with Sarsa

e Internal policies of options parameterized by softmax

e Termination conditions for options parameterized with a logistic function

DALI RL, April 2016
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Experiments: Pinball
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e Option parameters not shared in this case
e Options specialize in different areas (e.g. around the goal)
e In the long run, options get shorter

e This is expected: optimal policy is made of primitive actions

DALI RL, April 2016



Results: Transfer in Rooms Domain
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Quantitative and qualitative results in Atari games
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Preserving Procedural Knowledge over Time

e Successful simultaneous learning of terminations and option policies

e But, as expected, options shrink over time unless additional regularization
Is imposed

Cf. time-regularized options, Mann et al, (2014)

e Intuitively, using longer options increase the speed of learning and
planning (but may lead to a worse result in call-and-return execution)

e Diverse options are useful for exploration in continual learning setting

ICCP’'2020, Cluj-Napoca 18



Bounded Rationality as Regularization

e Problem: optimizing return leads to option collapse (primitive actions
are sufficient for optimal behaviour)

e Bounded rationality: reasoning about action choices is expensive (energy
consumption and missed-opportunity cost)

Eg Russell, 1995, Lieder & Griffiths, 2018

e |dea: switching options incurs an additional cost

Time

Base MDP + Options

Deliberation Costs O O\O\‘\O o °

e Can be shown equivalent to requiring that advantage exceeds a threshold
before switching
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Effect of Deliberation Cost Regularization

Training curves Log termination rate
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Yellow: no regularization; red: most regularization
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lllustration: Amidar
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(a) Without a deliberation cost, options ter- (b) Options are used for extended periods (c) Termination is sparse when using the
minate instantly and are used in any scenario  and in specific scenarios through a trajectory, deliberation cost. The agent terminates op-

without specialization. when using a deliberation cost. tions at intersections requiring high level de-
cisions.

e Deliberation costs prevent options from becoming too short

e [erminations are intuitive

ICCP’'2020, Cluj-Napoca
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Should All Option Components Optimize the Same
Thing?

e Deliberation cost can be viewed as associated specifically with termination
e Rewards could be optimized mainly by the internal policy of the option

e Can we generalize this idea to other optimization criteria?

ICCP’'2020, Cluj-Napoca 22



Termination-Ciritic

e Optimize the termination condition independently of the policy inside
the option

e Option termination should focus on predictability ie finding “funnelling
states”

e Interesting side effect: if each option ended at a funelling state,
expectation and distribution model would be almost identical and the
option would be almost deterministic

e Implementation: minimize the entropy of the option transition model P,

cf. Harutyunyan et al, AISTATS'2019
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lllustration: Rooms environment
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Predictive knowledge: Value Function

e Given a policy 7, a discount factor v and a reward function r, the value
function of the policy is given by:

ve(s) = E[Y r(Sk, Ak) S, =5, Apioo ~ T

||
e 10

T(Sk,Ak H ’}/|St—8 AtooN ]

1=t+1

7
Il

e 1 is the signal of interest for the prediction

e - defines the time scale over which we want to make the prediction (in
a very crude way)

e Optimal value function: given a discount factor v and a reward function
r, compute v+ and 7*, the optimal policy wrt 7, r

ICCP’'2020, Cluj-Napoca 25



Focusing on value function

e Definition allows us to leverage great tools: bootstrapping (as in dynamic
programming) and sampling

e We have good ideas for how to learn value functions from data using
temporal-difference methods, off-policy learning...

e Usual objection: this is restricted to one reward function and usually a
fixed time scale (discount)

e An agent may need to make predictions about many different things and
at many different time scales

ICCP’'2020, Cluj-Napoca 26



There are many things to learn! (Adam White's thesis)
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Sensory stream of Critterbot robot about different sensors for different policies
Can we learn about all these signals in parallel from one stream of data?

ICCP’'2020, Cluj-Napoca 27



Generalized Value Functions (GVFs)

e Given a cumulant function ¢, state-dependent continuation function ~
and policy 7, the Generalized Value Function v, , . is defined as:

00 k
UW,C,’Y(S) = E ZC(Ska Ak7 Sk—i-l) H W(SZ)|St — SaAt:oo ~ T
k=t 1=t+1

e Cumulant ¢ can output a vector (even a matrix)

e Continuation function vy maps states to [0,1] (further generalizations are
possible)

e Cf. Horde architecture (Sutton et al, 2011); Adam White's thesis;
inspiration from Pandemonium architecture

e Special case: policy is optimal wrt ¢, 7, v,
approximation (UVFA) (Schaul et al, 2015)

e No single task is required, just a multitude of cumulants and time scales!

- Universal Value Function

ICCP’'2020, Cluj-Napoca 28



GVFs as building blocks of knowledge

e Note that one can take the output of a GVF and make it an input to
another GVF

e Or, the output of a GVF could become part of the “state” for another
GVF
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Successor states and successor features are GVFs

e Successor features (Barreto et al, 2017, 2018) are a natural extension of
successor states (Dayan, 1992)

e Successor states give the expected occupancy of future states

o If states are defined by a feature vector ¢(s), successor features give the
expected, discounted sum of future feature vectors from a state.

e In GVF terms, the cumulant is ¢ = ¢, and there is a fixed policy and
discount

e Interesting property highlighted in Barreto et al:

v?T,WTC,"y (S) — WTUW,C,’Y (8)

which leads to one-shot computation of new GVFs
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Option models are GVFs

e The reward model for an option w is defined as:
ro(s) = Eu[r(Se, Ar) + (1 = Bu(St41))7w(Se41)[Se = 3]

e This means the option reward model is a GVF:

— policy is
— cumulant is the environment reward r
— continuation function is v(1 — f3,,)

e Option transition model can be similarly written as a GVF

ICCP’'2020, Cluj-Napoca
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Many other approaches that can be expressed as GVFs

e Option-value functions (Precup, 2000; Sutton, Precup & Singh, 1999)
e Feudal networks (Dayan, 1994; Vezhnevets et al, 2017)

e Value transport (Hung et al, 2018)

e Auxilliary tasks (Jaderberg et al, 2016)

e Are GVFs just an interesting insight or can they be useful?

ICCP’'2020, Cluj-Napoca
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GVF formulation of policy gradient

e Let my be a policy parameterised by a vector #, v be a constant
continuation function, and ¢ : SxA — R be a one-dimensional cumulant.

o Let vc~ r,(s) be the corresponding general value function

e The gradient of v, r,(s) with respect to 6 is itself a general value
function that depends on the cumulant:

c(s,a) 1= Ve y,x,(5,a)Vglog me(als).

e In other words:
VQIUC{Y,T(Q(S) — /Uéafyaﬂ-e(s)

e A case in which a GVF builds on another GVF and they can be modelled
separately

cf. Comanici et al, 2018
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Empirical example (gridworld)
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e GVF representation leads to more stable Iearning across parameter

settings (green bars)

e GVFs allow us to combine algorithms very easily!
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GVFs for synthesizing new behaviors
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Option-keyboard - Barreto et al, 2019, based on ideas of Rich Sutton

ICCP’'2020, Cluj-Napoca

35



Option-Keyboard for Moving Target Arena
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General way to synthesize quickly new behavior for combinations of reward functions!
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Discussion

e Reinforcement learning suggests very powerful tools for knowledge
representation

e Options are a way to encode procedural knowledge

e \We have made great progress in learning options through gradients

e Priors can be easily built into the option construction process through
the optimization criterion

e Nice features of generalized value functions:
— versatile
— incorporate many existing algorithms as special cases
— can be combined as building blocks
— can be useful both for representation shaping and planning

e Open questions: how to generate behavior with /for such representations,
how to do discovery

e Bigger open question: how to evaluate empirically lifelong learning Al
systems
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Assessing the capability of a life-long learning agent

e There is no longer just a single task!
e Returns are important, but too simplistic

e Qualitative analysis of behavior interesting but difficult for drawing
conclusions

e How well is the agent preserving and enhancing its knowledge?

e Problem of methodology not solved simply by open-sourcing or
reproducibility
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Testing the agent in multiple ways

e Take inspiration from school - ask multiple questions
e Try to devise a “certification” system for Al agents

e Maybe more important than current definitions of interpretability (which
are akin to brain scans...)
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Hypothesis-driven evaluation of continual learning

systems
% a
Hypothesis Experiment
sC
S a Knowledge
Conclusion

e Formulate a hypothesis about what the agent should know or how it
should behave given certain knowledge

e Design an experiment to test this hypothesis

e Be patient and let the agent continue training without tinkering with the
task or the algorithm!
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