Sequential decision making
Wrap-up of policy evaluation
Control: MC control, Sarsa, Q-learning



Recall: DP Policy Evaluation
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Recall: Simple Monte Carlo

V(S,) < V(S)+a|G, - V(S,))]




Recall: Simplest TD Method (TD(0))
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Recall: TD Prediction

Policy Evaluation (the prediction problem):
for a given policy m, compute the state-value function vy

Recall: Simple every-visit Monte Carlo method:

V(S1) « V(S) + |G = V(Sy)]

target: the actual return after time ¢

The simplest temporal-difference method TD(0):

V(Sy) 4 V(S:) | Rt +7V (Seva) = V(S)
|

target: an estimate of the return




Random Walk Example
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TD and MC on the Random Walk
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Batch Updating in TD and MC methods

Batch Updating: train completely on a finite amount of data,
e.g., train repeatedly on 10 episodes until convergence.

Compute updates according to TD or MC, but only update
estimates after each complete pass through the data.

For any finite Markov prediction task, under batch updating,
TD converges for sufficiently small a.

Constant-oo MC also converges under these conditions, but to
a different answer!



Random Walk under Batch Updating

BATCH TRAINING

RMS error, .15
averaged
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After each new episode, all previous episodes were treated as a batch,
and algorithm was trained until convergence. All repeated 100 times.



You are the Predictor

Suppose you observe the following 8 episodes:

A,0,B,0
B, 1

, A

vviivvilivvilvvilive

, A

B,0

V(B)?
V(A)?

Assume Markov states, no discounting (y = 1)



You are the Predictor

V(A)?




You are the Predictor

@ The prediction that best matches the training data is V(A)=0
@ This minimizes the mean-square-error on the training set
@ This 1s what a batch Monte Carlo method gets

@ If we consider the sequentiality of the problem, then we
would set V(A)=.75

@ This 1s correct for the maximum likelihood estimate of a
Markov model generating the data

@ 1i.e,1f we do a best fit Markov model, and assume it is
exactly correct, and then compute what it predicts (how?)

@ This is called the certainty-equivalence estimate
@ This 1s what TD gets



Application of TD
Dopamine neuron activity modelling

Empirical Data Complete Serial Compound
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Cf. Shultz, Dayan et al, 1996; and lots of follow-up work including MNI, Psych.



Summary so far

> Introduced one-step tabular model-free TD methods

» These methods bootstrap and sample, combining aspects of

DP and MC methods

> TD methods are computationally congenial

» If the world is truly Markov, then TD methods will learn
faster than MC methods

» MC methods have lower error on past data, but higher error

on future data



Unified View
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n-step TD Prediction

1-step TD co-step TD
and TD(0) 2-stepTD  3-step TD n-step TD and Monte Carlo
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Mathematics of n-step TD Returns/Targets

@ Monte Carlo: Gy = Ryy1 +yRiyo + v Res+ -+~ 1Ry

@ I'D: Gﬁl) = Riy1 +vVi(Se+1)

@ Use V; to estimate remaining return

@ n-step TD:
@ 2 step return: G\ = Ry1 +YRis2 +7*Vi(Siy2)

@ n-step return: G\ = Ry 1 +YRiyo + 42 + - + 9" Risn + 7" Vi(Sitn)

with G =G, ift+n>T



Forward View

@ Look forward from each state to determine update from
future states and rewards:

o

1R



n-step TD

@ Recall the n-step return:

G,gn) = Rip1+7Riqpo+-- -+7"_1Rt+n+7”‘/§5+n_1(St+n), n>1,0<t<T—n

@ Of course, this 1s not available until time 7+n

@ The natural algorithm is thus to wait until then:

W—I—n(st) = V;ﬁ—l—n—l(st) + « G§n) — V;H—n—l(st) 3 0<t<T

@ This 1s called n-step TD
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n-step TD for estimating V =~ v,

Initialize V (s) arbitrarily, s € §
Parameters: step size a € (0, 1], a positive integer n
All store and access operations (for S; and R;) can take their index mod n

Repeat (for each episode):
Initialize and store Sy # terminal
T < oo
Fort=0,1,2,...:
| Ift < T, then:
| Take an action according to m(+|.S¢)
| Observe and store the next reward as R;1; and the next state as Sy
| If S¢yq is terminal, then T < ¢t + 1
| 7+ t—n+1 (7 is the time whose state’s estimate is being updated)
|
|
|
|

If > 0:
G «— Z;m:-l—:l—i_n 1) i_T_lR@'
If 7+n<T,then: G+ G+ "V (Srin) (ng))

V(S7) < V(S:) + a|G -V (S:)]
Until t=717 -1




Random Walk Examples

0 0 0 0 0 1
B—®—E—00=—0-——C—0

start

@ How does 2-step TD work here?
@ How about 3-step TD?
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A Larger Example — 19-state Random Walk

0.55 ¢~ .
0.5+ W/
n-step TD
Average 0.45 -
RMS error results
over 19 states 04
and first 10
episodes %[

03 F

0'25 - 1 1 1 1 1 )
0 0.2 04 06 0.8 1

@ An intermediate « 1s best
@ An intermediate n 1S best

@ Do you think there 1s an optimal n? for every task?
M



Conclusions Regarding n-step Methods (so far)

@ Generalize Temporal-Difference and Monte Carlo learning
methods, sliding from one to the other as n increases

en=11sTD(0) n=o1s MC
@ an intermediate 7 1s often much better than either extreme
@ applicable to both continuing and episodic problems
@ There 1s some cost in computation
@ need to remember the last n states
@ learning is delayed by n steps

@ per-step computation 1s small and uniform, like TD
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How to do control? GPI!

Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement,
independent of their granularity.

evaluation

m

U V

7~ greedy (V)

improvement

i)



Monte Carlo Estimation of Action Values

Estimate gr for the current policy

| RN\ R/ Re
(Sf} s, O S, 050 (5) S
Q(Sta Ar) <« Q(Sp Az) + G(Gt — Q(Sp Ar))

T—t
where G, = ) yY*"'R,,,
k=1

and T is the time of entering terminal state



Monte Carlo Estimation of Action Values (Q)

1 gx(s,a) - average return starting from state s and action a
following m

1 Converges asymptotically if every state-action pair is
visited

1 Exploring starts: Every state-action pair has a non-zero
probability of being the starting pair



On-policy Monte Carlo Control

O On-policy: learn about policy currently executing
1 How do we get rid of exploring starts?
= The policy must be eternally soft:
—m(als) > 0 for all s and a

= ¢.g. e-soft policy:
AL O T AR
non-max  max (greedy)

— probability of an action =

1 Similar to GPI: move policy fowards greedy policy
(e.g., e-greedy)
1 Converges to best g-soft policy



On-policy MC Control

Initialize, for all s € §, a € A(s):
Q(s,a) < arbitrary
Returns(s,a) < empty list
m(a|s) <= an arbitrary e-soft policy

Repeat forever:
(a) Generate an episode using 7
(b) For each pair s, a appearing in the episode:
(G < return following the first occurrence of s, a
Append G to Returns(s,a)
Q(s,a) < average(Returns(s,a))
(c) For each s in the episode:
A* + argmax, Q(s,a)
For all a € A(s):
l—e+¢/|A(s)] ifa=A"
m(als) <_{ e/|A(s)] [ if a4 A"
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TD-Style Learning for Action-Values

Estimate gr for the current policy

Rt+1 m Rt+2 m Rt+3
- — S, —o St ® A\ ° (Sis p—o— - - -
t St,At " St+1’At+l w Sl‘+2;At+2 " St+3,At+3

After every transition from a nonterminal state, S, , do this:

0(S,.A) < 0O(S,,A)+a| R, +70(S,,.A4,)-0(,.A)]
If S,,, 1s terminal, then define Q(S,,,A,,,) =0

+1°



Sarsa: On-Policy TD Control

Turn this into a control method by always updating the
policy to be greedy with respect to the current estimate:

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize .S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
Q(S,4) < Q(S, 4) + a[R+7Q(5", 4") — Q(S, A)]
S« S A A

until S is terminal




Windy Gridworld

s G +

standard
moves

Wind: O O O 1 1 1 2 2 1 0

undiscounted, episodic, reward = —1 until goal



Results of Sarsa on the Windy Gridworld
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Q-Learning: Off-Policy TD Control

One-step Q-learning:

Q(St, At) + Q(St, Ar) + {Rtﬂ + 7y max Q(Si+1,a) — Q(Sy, At)} /%\

Initialize Q(s,a),Vs € §,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S, A) + a[R + ymax, QS a) — Q(S, A)]
S« S

until S is terminal




Cliffwalking

R=-1|) > safe path
> optimal path
S The Cliff G
R PW)W
e—greedy, € =0.1
Sarsa
=25-
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Expected Sarsa

@ Instead of the sample value-of-next-state, use the expectation!

Q(St, A) + Q(St, Ay) + :Rt—l—l + YE[Q(St+1, At+1) | St+1] — Q(Sy, At)}

— QS Ar) + o :Rt+1 +7>_ m(a|S11)Q(Sk41,a) - Q(St,At)}

! !
A\ /N

Q-learning Expected Sarsa

@ Expected Sarsa’s performs better than Sarsa (but costs more)



van Seijen, van Hasselt, Whiteson, & Wiering 2009

Performance on the Cliff-walking Task
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Off-policy Expected Sarsa

@ Expected Sarsa generalizes to arbitrary behavior policies u

@ 1n which case it includes Q-learning as the special case in
which 5t is the greedy policy

Q(St, Ar) < Q(St, At) + « :Rt+1 +YE[Q(St+1, At41) | Sev1] — Q(St, At)}
— QS Ar) + o :Rt+1 +7>_ m(a|S11)Q(St41,0) — Q(S:, At)}

e ] !
A /N

Nothing
changes
here

Q-learning Expected Sarsa

@ This idea seems to be new



Maximization Bias Example
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Tabular Q-learning:  Q(St, Ay) + Q(St, Ar) + « [Rtﬂ + 7 max Q(St11,a) — Q(St, Ay)



Hado van Hasselt 2010
Double Q-Learning
Train 2 action-value functions, Q1 and Q>
Do Q-learning on both, but
® never on the same time steps (1 and (> are indep.)
® pick Q1 or (> at random to be updated on each step
If updating Q1, use Q> for the value of the next state:

Q1(St, Ar) < Q1(St, Ar) ‘|‘04(Rt—|—1 + Q2 (St+1, argmax Q1(S¢11, Cl)) —Q1(S;, At))

Action selections are (say) e-greedy with respect to the sum
of 01 and 0>



Hado van Hasselt 2010

Double Q-Learning

Initialize Q1(s,a) and Q2(s,a),Vs € 8,a € A(s), arbitrarily
Initialize Q1 (terminal-state,-) = Qs (terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @1 and Qs (e.g., e-greedy in Q1 + Q2)
Take action A, observe R, S’
With 0.5 probabilility:

Q1(8,4) « Qu(S, 4) + a(R+7Qs (8", argmax, Q1 (5", a)) — Qu(S, 4))
else:

Q2(S, A) < Q2(S, A) + Oé(R + Q1 (9, argmax, Q2(S',a)) — Q2(S, A))
S« 5’

until S is terminal




Example of Maximization Bias
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Double Q-learning;
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Summary

> Introduced one-step tabular model-free TD methods

» These methods bootstrap and sample, combining aspects of

DP and MC methods

» TD methods are computationally congenial
o If the world 1s truly Markov, then TD methods will learn

faster than MC methods

» MC methods have lower error on past data, but higher error

on future data

> Extend prediction to control by employing some form of GPI

@ On-policy control: Sarsa, Expected Sarsa

@ Off-policy control: Q-learning, Expected Sarsa

» Avoiding maximization bias with Double Q-learning



