Sequential decision making
Monte Carlo Policy Evaluation
Temporal-Difference Learning

Recall: Agent-Environment Interface

'_l Agent J
state reward action

St Rt At
Rt+1 [
S.. | Environment J<

\.

Agent and environment interact at discrete time steps: #=10,1,2,3,...

Agent observes state at stept: S, €8
produces action at step 7 : A, € A(S,)
gets resulting reward: R, € R C R

and resulting next state: §,,, € §*

r+1

Recall: Policy Evaluation

Policy Evaluation: for a given policy 7, compute the
state-value function vy

Recall: State-value function for policy

o
k
E Y Rt+k—|—1
k=0

ve(s) = EfGy | Se=s] = E;

St_S]

Recall: Bellman equation for v,
vr(s) = D mlals) 3 p(s',7ls, 0) |7+ y0e(s)]

—a system of ISl simultaneous equations

Iterative Methods

Vo —V1 —2 =2V —2 Vgt —2 " —2 Ugp

a “sweep”)

A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:

VEa1(s) = Zﬂ(a\s) Zp(s’, r|s,a) [7“ + ’yvk(sl)} Vs e d

Dynamic Programming Policy Evaluation

V(S) < E,[R,, +7V(S,)] =D m@l$) > p(s', 1S, a)lr + 4V ()]

/

o o o
O O ‘< ./
balindbe A}

\

\

N\

/
/

From Planning to Learning

1 DP requires a probability model (as opposed to a
generative or simulation model)

1 We can interact with the world, learning a model (rewards
and transitions) and then do DP

1 This approach is called model-based RL
1 Full probability model may hard to learn though

1 Today: direct learning of the value function from
interaction

1 Still focusing on evaluating a fixed policy

Simple Monte Carlo

V(S,) < V(S)+a|G, - V(S,))]

Monte Carlo Methods

1 Monte Carlo methods are learning methods
Experience — values, policy

1 Monte Carlo methods can be used in two ways:
" model-free: No model necessary and still attains optimality
» simulated: Needs only a simulation, not a full model

1 Monte Carlo methods learn from complete sample returns
= Defined for episodic tasks (in the book)

1 Like an associative version of a bandit method

Backup diagram for Monte Carlo

1 Entire rest of episode included O

1 Only one choice considered at O
each state (unlike DP) C

= thus, there will be an ®
explore/exploit dilemma C

/

/

™ Does not bootstrap from

) [
successor states’s values
(unlike DP)
1 Time required to estimate one ®

state does not depend on the
total number of states

terminal state

Monte Carlo Policy Evaluation

1 Goal: learn v, (s)
1 Given: some number of episodes under st which contain s

1 Idea: Average returns observed after visits to s

A Every-Visit MC: average returns for every time s is visited
In an episode

A First-visit MC: average returns only for first time s 1s
visited 1n an episode

1 Both converge asymptotically

First-visit Monte Carlo policy evaluation

Initialize:
m <— policy to be evaluated
V < an arbitrary state-value function
Returns(s) < an empty list, for all s € §

Repeat forever:
Generate an episode using 7
For each state s appearing in the episode:
G < return following the first occurrence of s
Append G to Returns(s)
V(s) <+ average(Returns(s))

MC vs supervised regression

1 Target returns can be viewed as a supervised label (true
value we want to fit)

1 State is the input

1 We can use any function approximator to fit a function
from states to returns! Neural nets, linear, nonparametric...

A Unlike supervised learning: there is strong correlation
between inputs and between outputs!

1 Due to the lack of iid assumptions, theoretical results from
supervised learning cannot be directly applied

Blackjack example

1 Object: Have your card sum be greater than the dealer’s
without exceeding 21.

[States (200 of them):
= current sum (12-21) i
= dealer’s showing card (ace-10) ET‘\
= do I have a useable ace? =

1 Reward: +1 for winning, O for a draw, -1 for losing

1 Actions: stick (stop receiving cards), hit (receive another
card)

1 Policy: Stick if my sum is 20 or 21, else hit
1 No discounting (y = 1)

Learned blackjack state-value functions

After 10,000 episodes After 500,000 episodes

T ——

ace 76

No
usable
ace

Simplest TD Method

V(S,) < V(S)+a|R

r+1

SO

/ \

O
AT T I

+yV(S,,)-V(S)]

TD methods bootstrap and sample

@ Bootstrapping: update involves an estimate
@ MC does not bootstrap
@ DP bootstraps
@ TD bootstraps
@ Sampling: update does not involve an
expected value
@ MC samples
@ DP does not sample
@ TD samples

TD Prediction

Policy Evaluation (the prediction problem):
for a given policy m, compute the state-value function vy

Recall: Simple every-visit Monte Carlo method:

V(S1) « V(S) + |G = V(Sy)]

target: the actual return after time ¢

The simplest temporal-difference method TD(0):

V(Sy) 4 V(S:) | Rt +7V (Seva) = V(S)
|

target: an estimate of the return

Example: Driving Home

FElapsed Time Predicted Predicted

State (minutes) Time to Go Total Time
leaving office, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43

arrive home 43 0 43

Driving Home

Changes recommended by Changes recommended
Monte Carlo methods (a=1) by TD methods (a=1)

45
___actual outcome ____ actual
‘ outcome
) 40 . 4
Predicted Predicted
total total
travel 55 travel
time time
30 1
T T T T T T T T T T T T
leaving reach exiting 2ndary home arrive leaving reach exiting 2ndary home arrive
office car highway road street home office car highway road street home

Situation Situation

Advantages of TD Learning

@ TD methods do not require a model of the environment,
only experience

@ TD, but not MC, methods can be fully incremental
@ You can learn before knowing the final outcome
@ Less memory
@ Less peak computation
@ You can learn without the final outcome
@ From incomplete sequences

@ Both MC and TD converge (under certain assumptions to
be detailed later), but which 1s faster? - Answer next time!

