Wrap-up of Bandits
Sequential decision making
Markov Decision Processes

Gradient-Bandit Algorithms

* Let H:(a) be a learned preference for taking action a
. et
Pridi=a} = SOy eHe(d) = m(a)

Note that this allows us to work with unnormalized preferences and turn
them into probabilities!

Same idea as using potentials in graphical models

Softmax (Boltzmann) Exploration

* Let H:(a) be a learned preference for taking action a
. et
Pridi=a} = SOy eHe(d) = m(a)

Consider H/(a) = Q(a)/T
This is Boltzmann or softmax exploration!
If the temperature T is very large (towards infinity) - same as uniform

If temperature T goes to 0, same as greedy

Derivation of gradient-bandit algorithm

In exact gradient ascent:

OF [Ri]

Ht-l—l(a) = Ht(a) + 8Ht(a) y (1)

where:

E[R:] = Z m¢(b)q«(b),
b

OE[R:] O
OH:(a) OH:(a)

where X; does not depend on b, because) _, gzzgsg = 0.

OE[R:] 0 m(b)
(a) ~ 20)aHt(a)

O
= L r(b)a-(b)aHtE i/wt()

=K ((t) - Xt) 867;5(/4)) /Wt(At)]
— B[(R R) T)]

where here we have chosen X; = R; and substituted R; for g.(A;),
which is permitted because E[R;:|At] = g.(A¢).

For now assume: g:,igsg = 7¢(b)(1a=p — me(a)). Then:
=E|[(R: — Rt)ﬂ't(At)(la:At — m¢(a)) /me(Ar)]
=E[(R: — Re) (1aza, — me(a))] -

Hep1(a) = He(a) + (Re — Re) (1a—p, — me(a)), (from (1), QED)

Thus it remains only to show that

0 m(b)
OH:(a)

= 7¢(b) (]-a:b — ﬂt(a)).

Recall the standard quotient rule for derivatives:

%, [f(x)] _ Adg(x) — f(x) 5
Ox | g(x) |

Using this, we can write...

8f(><) ag(x)
Quotient Rule: 88 [f(x)] _ g(x) — f(X)
X

g(x) g(x)?
aﬂ't(b))
9H:(a) ~ oHe(a) "t P
9 oHe(b)
8Ht(a) Sk eti(e)
HeHt(b) c (b) O eHt(c)
8Ht(a) Zc 1 th() — e’ (5) Z Ht(a)

- 5 (Q.R.)
(Zlc(:l th(C))

B la:ber(a) Zlc(:l oHi(c) _ gHi(b) gHe(a) o -

— 9er _
(Zlc(:l th(C))2

He (b) eHe(b) gHe(2)

la:be

Sk eth(a) (Zlé:l th(c))2

= 1,_pm(b) — me(b)me(a)
= 7¢(b) (La=p — m(a)). (Q.E.D.)

Summary Comparison of Bandit Algorithms

' UCB greedy with
optimistic
initialization

o =0.1

1.4}

Average ;|

e-greedy _— |
reward .\
: gradient\
over first ol bandit
1000 steps
1.1+
1-

1/128 1/64 1/32 1/16 1/

e/ a/c/ Qo

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
LBayesian Bandits

Probability Matching

m Probability matching selects action a according to probability
that a is the optimal action

m(a| he) =P [Q(a) > Q(a'),Va' # a | he

m Probability matching is optimistic in the face of uncertainty
m Uncertain actions have higher probability of being max

m Can be difficult to compute analytically from posterior

Lecture 9: Exploration and Exploitation
L Multi-Armed Bandits
LBayesian Bandits

Thompson Sampling

m Thompson sampling implements probability matching
w(a | h) =P [Q(a) > Q(a).Va #a | h]

= Egjp, [1(a = argmax Q(a))
acA

Use Bayes law to compute posterior distribution p[R | h¢]

n
m Sample a reward distribution R from posterior
m Compute action-value function Q(a) = E [R,]
n

Select action maximising value on sample, a; = argmax Q(a)
acA

m Thompson sampling achieves Lai and Robbins lower bound!

FIU

[]
FLORIDA INTERNATIONAL UNIVERSITY
Miami’s public research university

= Asimple natural Bayesian heuristic
= Maintain a belief(distribution) for the unknown
parameters
= Each time, pull arm a and observe a reward r

" |nitialize priors using belief distribution
= Fort=1:T:
= Sample random variable X from each arm’s belief
distribution
= Select the arm with largest X
= QObserve the result of selected arm
= Update prior belief distribution for selected arm

[1] Agrawal S, Goyal N. Analysis of Thompson sampling for the multi-armed bandit problem[J]. arXiv preprint arXiv:1111.1797,
2011.

Simple Example

= Coin toss: x ~ Bernoulli(8)
Let’s assume that
= O~ Beta(ay, ar

)| Beta distribution

= P(6) x %1 (1 — g)r—1

« P(OIX) =" LH&T ©
/\ 7]
Posterior

Prior

The prior is conjugate!

R

)

FLORIDA INTERNATIONAL UNIVERSITY
Miami’s public research university

LA,
-

Thompson Sampling MPIU
Using Beta belief distribution

= Theorem [Emilie et al. 2012]
" |nitially assumes arm i with prior Beta(1,1) on u;
= S; = #“Success”, F;= #“Failure”

Algorithm 1: Thompson Sampling for Bernoulli bandits

S,j - 0 F,j = ().
foreacht=12.....do
Foreacharmi =1,..., N, sample 6;(t) from the Beta(S; + 1, F; + 1) distribution.

Play arm i(t) := arg max; 0;(t) and observe reward r;.
I[fr=1thenS;=8;+1,else F; =F; + 1.
end

Thompson Sampling
Using Beta belief distribution

= |nitialization

Beta(1,1) Beta(1,1) Beta(1,1)

Thompson Sampling
Using Beta belief distribution

UDA INTERNATIONAL U VERSIT
amzspubl

§.’T1

= For each round:
= Sample random variable X from each arm’s Beta

Distribution
0.7 0.2 0.4
Beta(1,1) Beta(1,1) Beta(1,1)

N &N

Thompson Sampling ;DFIU
Using Beta belief distribution

= For each round:
= Sample random variable X from each arm’s Beta
Distribution
= Select the arm with largest X

0.7 0.2 0.4
Beta(1,1) Beta(1,1) Beta(1,1)

s e

Thompson Sampling M%’FIU
Using Beta belief distribution

= For each round:
= Sample random variable X from each arm’s Beta
Distribution
= Select the arm with largest X
= Observe the result of selected arm

Success!
0.7 0.2 0.4
Beta(1,1) Beta(1,1) Beta(1,1)

s e

Thompson Sampling MFIU
Using Beta belief distribution

= For each round:
= Sample random variable X from each arm’s Beta
Distribution
= Select the arm with largest X
= QObserve the result of selected arm
= Update prior Beta distribution for selected arm

Success!
0.7 0.2 0.4
Beta(2,1) Beta(1,1) Beta(1,1)

N |

Problem space

Single State Associative

Instructive
feedback

Evaluative
feedback

Problem space

Single State Associative

Instructive
feedback

Evaluative Bandits
1i{={=1e 0tz 1ed.€ | (Function optimization)

Problem space

Single State Associative

Instructive Supervised
feedback learning

Evaluative Bandits
1i{={=1e 0tz 1ed.€ | (Function optimization)

Problem space

Single State Associative

L an=l Averaging Supervised
(l=lelorz(e ¢ | (IMitiation) learning

Evaluative Bandits
1i{={=1e 0tz 1ed.€ | (Function optimization)

Problem space

Single State Associative

LsdlmiNs Averaging Supervised
(l=lelorz(e ¢ | (IMitiation) learning

Evaluative Bandits Contextual
1i{={=1e 0tz 1ed.€ | (Function optimization) bandits

The Agent-Environment Interface

'_l Agen’[JI

state reward

Rt+1 ("

\.

Environment J<

action
A,

Agent and environment interact at discrete time steps: #=10,1,2,3,...

Agent observes state at stept: S, €8

produces action at step 7 : A, € A(S,)

gets resulting reward: R, € R C R

and resulting next state: S

e 8t

r+1

14

Trajectory and History

1 A sequence of states, actions and rewards

rl\ ‘RH]KS;\l .RHZ@ .Rt+3<St 3) ° . . .
U At U At+l UAI+2 ' At+3

3 We will sometimes use the notation 7;; = $;A;R;;|...S;

1 We will use the term history to refer to the trajectory prior
to the current time step

1 In general, next states and rewards can depend on the
history since the beginning of time

15

Markov Property

1 An assumption about the environment

1 Next state and reward depend only on the previous state and
action, and noting else that happened in the past

P S =8 Ry =r|S,=s5,A=a)=p(S;;, =5 R ,=r|S,=s,A=a,r1),Vr,

1 The assumption is useful to develop, analyze and
understand algorithms

1 It does NOT mean it has to always hold

16

Markov Decision Processes

1 If a reinforcement learning task has the Markov Property, it is
basically a Markov Decision Process (MDP).

1 If state and action sets are finite, it is a finite MDP.
1 To define a finite MDP, you need to give:
= state and action sets

" one-step “dynamics”

p(s',rls,a) =Pr{S;1=5,Ri1=7r|Si=s, Ai=a}

p(s'|s,a) = Pr{Sip1=5"| Si=s,4y=a} = Zp(s',r|s,a)

reR

T(S,CL) =]E’[Rt—l—l ‘ StzsaAt:a] — y:ry:p(slaﬂsaa)

rcR s'ES§

17

The Agent Learns a Policy

Policy atstept = 7, =

t

a mapping from states to action probabilities

7, (als)= probability that A =a when §, = s

Special case - deterministic policies:
77 (s) = the action taken with prob=1 when §;=s

1 Reinforcement learning methods specify how the agent
changes its policy as a result of experience.

1 Roughly, the agent’s goal is to get as much reward as it can
over the long run.

18

An Example Finite MDP

Recycling Robot

1 At each step, robot has to decide whether it should (1) actively
search for a can, (2) wait for someone to bring it a can, or (3)
g0 to home base and recharge.

1 Searching is better but runs down the battery; if runs out of
power while searching, has to be rescued (which 1s bad).

1 Decisions made on basis of current energy level: high, low.

1 Reward = number of cans collected

19

Recycling Robot MDP

S = {high, low} Iearen = €Xpected no. of cans while searching
A(high) = {search, wa j_t} r.... = expected no.of cans while waiting
HAQow) = {search, wait, recharge} Fsearch = Tyait
1, Twait l—ﬁ , -3
B y I'search
wait search
1,0 recharge
® low
search
1, Twai
A, Tsearch l-0, Tsearcn wait

20

The Markov Property

1 By “the state” at step ¢, the book means whatever information is
available to the agent at step ¢ about its environment.

1 The state can include immediate “sensations,” highly processed
sensations, and structures built up over time from sequences of
sensations.

1 Ideally, a state should summarize past sensations so as to retain
all “essential” information, 1.e., it should have the Markov
Property:

Pr{Rt—I—l =T, St—i—l — S, ‘ SO; A07 Rla I St—17 At—17 Rt7 StaAt} =
p(s,7|s,a) = Pr{Ry1 = 1,541 = 5" [St, At}

 for all ¢ € $*,r € ®, and all histories Sy, Ao, Ry, ..., Si—1, Ai_1, Ry, Si, Ay

21

The Meaning of Life

(goals, rewards, and returns)

Goals and Rewards

1 Is a scalar reward signal an adequate notion of a goal?—
maybe not, but it 1s surprisingly flexible.

1 A goal should specify what we want to achieve, not how
we want to achieve it.

1 A goal must be outside the agent’s direct control —thus
outside the agent.

1 The agent must be able to measure success:
= explicitly;

» frequently during its lifespan.

23

The reward hypothesis

1 That all of what we mean by goals and purposes can be well
thought of as the maximization of the cumulative sum of a
received scalar signal (reward)

1 A sort of null hypothesis.

= Probably ultimately wrong, but so simple we have to
disprove it before considering anything more
complicated

24

Rewards and returns

The objective in RL is to maximize long-term future reward

That is, to choose A; so as to maximize R;i1, Rii2, Rit3, ...

But what exactly should be maximized?

The discounted return at time t:

the discount rate

Gy = Riy1 +YRip2 + v’ Rigs + Y Regu + -+ v €10,1)
Y Reward sequence Return

O.5(or any) 1000...

0.5 002000...

0.9 002000...

0.5 -12632000...

4 value functions

state action

______________________ values i values
prediction U dr
control Uy g«

» All theoretical objects, mathematical ideals (expected values)

e Distinct from their estimates:

Vils) Qi(s,a)

Values are expected returns

e The value of a state, given a policy:
Vre(s) =E{G: | St = s, Ap.oo ~ 1} Ve S = R

The value of a state-action pair, given a policy:
g=(s,a) =E{G; | St =5, A =a,Ait1.00~T} ¢r: 8 X AR

The optimal value of a state:

V. (8) = max v, (s) Ve 1S — R

The optimal value of a state-action pair:

g« (S,a) = max qr(s,a) g« : S XA —> R

Optimal policy: m, is an optimal policy if and only if
7« (a|s) > 0 only where ¢.(s,a) = max q«(s,b) VseS

e in other words, 7 is optimal iff it is greedy wrt g,

A V\q\k fh\ ! (\j (3 D?JW“‘CI\?

R ety

R- R‘\ﬂ\ﬁ (- Othen

¥ ¥-0¢
It ¥=.99

\

IRNARA

28

Return

Suppose the sequence of rewards after step ¢ 1s:
R ,R._.R

t+1° T 420 T 4390 0

What do we want to maximize?

At least three cases, but in all of them,

we seek to maximize the expected return, £ {Gt } on each step .

e Total reward, G; = sum of all future reward in the episode

e Discounted reward, G; = sum of all future discounted reward

e Average reward, G; = average reward per time step

29

Episodic Tasks

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze

In episodic tasks, we almost always use simple roral
reward.

G =R

r+1

+Rt+2 -+ R,

where 7 1s a final time step at which a terminal state is reached,
ending an episode.

30

Continuing Tasks

Continuing tasks: interaction does not have natural episodes, but
just goes on and on...

In this class, for continuing tasks we will always use discounted
return:

0

Rt+1 +)/R +2 + y Rt+3 = E)/kRHkH’

k=0
where y,0 <y <1, is the discount rate.

G, =

shortsighted 0 <y — 1 farsighted

Typically, ¥ =0.9

31

An Example: Pole Balancing

Avoid failure: the pole falling beyond
| a critical angle or the cart hitting end of

/ track
— od —

As an episodic task where episode ends upon failure:
reward = +1 for each step before failure

=> return = number of steps before failure

As a continuing task with discounted return:
reward = -1 upon failure; O otherwise

= return = -y, for k steps before failure

In either case, return is maximized by
avolding failure for as long as possible.

32

Another Example: Mountain Car

Get to the top of the hill
as quickly as possible.

o
/|
reward = -1 for each step where not at top of hill

= return = - number of steps before reaching top of hill

Return 1s maximized by minimizing
number of steps to reach the top of the hill.

33

A Trick to Unify Notation for Returns

1 In episodic tasks, we number the time steps of each episode
starting from zero.

1 We usually do not have to distinguish between episodes, so
instead of writing j for states in episode j, we write just S,

1 Think of each episode as ending in an absorbing state that
always produces reward of zero:

. () () Rs5=0

t+k+1°

3 We can cover all cases by writing G, = E v R
k=0

where y can be 1 only if a zero reward absorbing state is always reached.

34

Value Functions

1 The value of a state is the expected return starting from
that state; depends on the agent’s policy:
S, = s}

1 The value of an action (in a state) is the expected return
starting after taking that action from that state; depends on
the agent’s policy:

State - value function for policy 7 :

Vn(S) = Eyr {Gt | St = S} = En {iykRHkH
k=0

Action - value function for policy 7 :

QJ'[(S’a) = En {Gt | St = S’At = CZ} = En {iykRHkH

k=0

S =5,A = a}

35

Gridworld

1 Actions: north, south, east, west; deterministic.

1 If would take agent off the grid: no move but reward = —1

1 Other actions produce reward = 0, except actions that move
agent out of special states A and B as shown.

A By
\

+5

+10) B’

+

Actions

3.3

8.8

4.4

5.3

1.5

1.5

3.0

2.3

1.9

0.5

0.1

0.7

0.7

0.4

-0.4

-1.0

-0.4

-0.4

-0.6

-1.2

-1.9

-1.3

-1.2

1.4

-2.0

(b)

State-value function
for equiprobable
random policy;
vy=0.9

36

Bellman Equation for a Policy n

The basic 1dea:

Gt = Rt+1 +)/Rt+2 + yth+3 tY 3I€t+4+
= Rt+1 +)/ (Rt+2 + y Rt+3 +)/ 2I€t+4+”.)
= Rt+1 + y Gt+1

So: v,(5)=E,{G,|S, = s}

St=s}

Or, without the expectation operator:

v (8) = Z (als) Zp(s’, rls,a) [7“ + fyvﬁ(s’)}

= En {Rt+1 + }/vn (St+1)

37

More on the Bellman Equation

U (s) = Z m(als) Zp(s’, r|s,a) {7“ + Wvﬁ(s’)}

This 1s a set of equations (in fact, linear), one for each state.
The value function for m 1s its unique solution.

Backup diagrams:

\) S,d

38

Iterative Policy Evaluation — One array version

Input 7, the policy to be evaluated
Initialize an array V(s) = 0, for all s € 8
Repeat
A 0
For each s € &:
v <+ V(s)
V(s) = 3, mwlals) X, p(s's7ls, @)1 + 7V ()]
A < max(A, v — V(s)|)
until A < @ (a small positive number)
Output V =~ v,

Gridworld

1 Actions: north, south, east, west; deterministic.

1 If would take agent off the grid: no move but reward = —1

1 Other actions produce reward = 0, except actions that move
agent out of special states A and B as shown.

A By
\

+5

+10) B’

+

Actions

3.3

8.8

4.4

5.3

1.5

1.5

3.0

2.3

1.9

0.5

0.1

0.7

0.7

0.4

-0.4

-1.0

-0.4

-0.4

-0.6

-1.2

-1.9

-1.3

-1.2

1.4

-2.0

(b)

State-value function
for equiprobable
random policy;
vy=0.9

40

