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Gradient-Bandit Algorithms
• Let           be a learned preference for taking action aHt(a)
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of one action over another is important; if we add 1000 to all the preferences there is
no e↵ect on the action probabilities, which are determined according to a soft-max
distribution (i.e., Gibbs or Boltzmann distribution) as follows:

Pr{At =a} .
=

eHt(a)

P
k

b=1 eHt(b)

.
= ⇡t(a), (2.9)

where here we have also introduced a useful new notation ⇡t(a) for the probability of
taking action a at time t. Initially all preferences are the same (e.g., H1(a) = 0, 8a)
so that all actions have an equal probability of being selected.

There is a natural learning algorithm for this setting based on the idea of stochastic
gradient ascent. On each step, after selecting the action At and receiving the reward
Rt, the preferences are updated by:

Ht+1(At)
.
= Ht(At) + ↵

�
Rt � R̄t

��
1 � ⇡t(At)

�
, and

Ht+1(a)
.
= Ht(a) � ↵

�
Rt � R̄t

�
⇡t(a), 8a 6= At,

(2.10)

where ↵ > 0 is a step-size parameter, and R̄t 2 R is the average of all the rewards
up through and including time t, which can be computed incrementally as described
in Section 2.3 (or Section 2.4 if the problem is nonstationary). The R̄t term serves
as a baseline with which the reward is compared. If the reward is higher than the
baseline, then the probability of taking At in the future is increased, and if the reward
is below baseline, then probability is decreased. The non-selected actions move in
the opposite direction.

Figure 2.4 shows results with the gradient-bandit algorithm on a variant of the
10-armed testbed in which the true expected rewards were selected according to a
normal distribution with a mean of +4 instead of zero (and with unit variance as
before). This shifting up of all the rewards has absolutely no a↵ect on the gradient-
bandit algorithm because of the reward baseline term, which instantaneously adapts
to the new level. But if the baseline were omitted (that is, if R̄t was taken to be
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Figure 2.4: Average performance of the gradient-bandit algorithm with and without a
reward baseline on the 10-armed testbed with E[q(a)] = 4.

Note that this allows us to work with unnormalized preferences and turn 
them into probabilities!

Same idea as using potentials in graphical models



Softmax (Boltzmann) Exploration
• Let           be a learned preference for taking action aHt(a)
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Consider 

This is Boltzmann or softmax exploration!

If the temperature T is very large (towards infinity) - same as uniform

If temperature T goes to 0, same as greedy

Ht(a) = Qt(a)/T



Derivation of gradient-bandit algorithm
In exact gradient ascent:

Ht+1(a)
.
= Ht(a) + ↵

@ E [Rt ]

@Ht(a)
, (1)

where:
E[Rt ]

.
=

X

b

⇡t(b)q⇤(b),
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@
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"
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#
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�
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�@ ⇡t(b)
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,

where Xt does not depend on b, because
P

b

@ ⇡t(b)
@Ht(a)

= 0.
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�@ ⇡t(At)

@Ht(a)
/⇡t(At)

�
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�
,

where here we have chosen Xt = R̄t and substituted Rt for q⇤(At),
which is permitted because E[Rt |At ] = q⇤(At).

For now assume: @ ⇡t(b)
@Ht(a)

= ⇡t(b)
�
1a=b � ⇡t(a)

�
. Then:

= E
⇥�
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�
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�
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�
/⇡t(At)
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� ⇡t(a)
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.

Ht+1(a) = Ht(a) + ↵
�
Rt � R̄t

��
1a=At

� ⇡t(a)
�
, (from (1), QED)



Thus it remains only to show that

@ ⇡t(b)

@Ht(a)
= ⇡t(b)

�
1a=b � ⇡t(a)

�
.

Recall the standard quotient rule for derivatives:

@

@x


f (x)

g(x)

�
=

@f (x)
@x g(x)� f (x)@g(x)@x

g(x)2
.

Using this, we can write...
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Summary Comparison of Bandit Algorithms
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Lecture 9: Exploration and Exploitation

Multi-Armed Bandits

Bayesian Bandits

Probability Matching

Probability matching selects action a according to probability
that a is the optimal action

π(a | ht) = P
[
Q(a) > Q(a′), ∀a′ 6= a | ht

]
Probability matching is optimistic in the face of uncertainty

Uncertain actions have higher probability of being max

Can be difficult to compute analytically from posterior



Lecture 9: Exploration and Exploitation

Multi-Armed Bandits

Bayesian Bandits

Thompson Sampling

Thompson sampling implements probability matching

π(a | ht) = P
[
Q(a) > Q(a′), ∀a′ 6= a | ht

]
= ER|ht

[
1(a = argmax

a∈A
Q(a))

]
Use Bayes law to compute posterior distribution p [R | ht ]
Sample a reward distribution R from posterior

Compute action-value function Q(a) = E [Ra]

Select action maximising value on sample, at = argmax
a∈A

Q(a)

Thompson sampling achieves Lai and Robbins lower bound!



Thompson	Sampling

§ A	simple	natural	Bayesian	heuristic
§ Maintain	a	belief(distribution)	for	the	unknown	

parameters
§ Each	time,	pull	arm	a and	observe	a	reward	𝑟

§ Initialize	priors	using	belief	distribution
§ For	t=1:T:

§ Sample	random	variable	X	from	each	arm’s	belief	
distribution

§ Select	the	arm	with	largest	X
§ Observe	the	result	of	selected	arm
§ Update	prior	belief	distribution	for	selected	arm

[1]	Agrawal	S,	Goyal	N.	Analysis	of	Thompson	sampling	for	the	multi-armed	bandit	problem[J].	arXiv preprint	arXiv:1111.1797,	
2011.



Simple	Example

§ Coin	toss:	x			̴	Bernoulli(𝜃)
§ Let’s	assume	that	

§ 𝜃			̴	Beta(𝛼£, 𝛼2)	
§ P(𝜃)	∝ 𝜃¥¦�(	(1 − 𝜃)¥K�(

§ 𝑃 𝜃 𝑋 = ¨ 𝑋 𝜃 ¨(©)
∑ ¨(ª|©)�
«

Posterior

Prior

The	prior	is	conjugate!

Beta	distribution



Thompson	Sampling
Using	Beta	belief	distribution
§ Theorem	[Emilie	et	al.	2012]

§ Initially	assumes	arm	𝒊 with	prior	Beta(1,1)	on	𝝁𝒊
§ 𝑆® =		#“Success”,	𝐹®=	#“Failure”



Thompson	Sampling
Using	Beta	belief	distribution

Arm	1 Arm	2 Arm	3

Beta(1,1) Beta(1,1) Beta(1,1)

§ Initialization



Thompson	Sampling
Using	Beta	belief	distribution

Arm	1 Arm	2 Arm	3

Beta(1,1) Beta(1,1) Beta(1,1)

X																				0.7																																							0.2																																				0.4

§ For	each	round:
§ Sample	random	variable	X	from	each	arm’s	Beta	

Distribution



Thompson	Sampling
Using	Beta	belief	distribution

Arm	1 Arm	2 Arm	3

Beta(1,1) Beta(1,1) Beta(1,1)

X																				0.7																																							0.2																																				0.4

§ For	each	round:
§ Sample	random	variable	X	from	each	arm’s	Beta	

Distribution
§ Select	the	arm	with	largest	X



Thompson	Sampling
Using	Beta	belief	distribution

Arm	1 Arm	2 Arm	3

Beta(1,1) Beta(1,1) Beta(1,1)

X																				0.7																																							0.2																																				0.4

§ For	each	round:
§ Sample	random	variable	X	from	each	arm’s	Beta	

Distribution
§ Select	the	arm	with	largest	X
§ Observe	the	result	of	selected	arm

Success!



Thompson	Sampling
Using	Beta	belief	distribution

Arm	1 Arm	2 Arm	3

Beta(2,1) Beta(1,1) Beta(1,1)

X																				0.7																																							0.2																																				0.4

§ For	each	round:
§ Sample	random	variable	X	from	each	arm’s	Beta	

Distribution
§ Select	the	arm	with	largest	X
§ Observe	the	result	of	selected	arm
§ Update	prior	Beta	distribution	for	selected	arm
Success!
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Agent and environment interact at discrete time steps:  t = 0, 1, 2,K
     Agent observes state at step t:    St ∈
     produces action at step t :   At ∈ (St )
     gets resulting reward:    Rt+1 ∈

     and resulting next state:  St+1 ∈

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1
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Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)
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R

! = s0, a0, s1, a1, . . .

The other random variables are a function of this sequence. The transitional
target rt+1 is a function of st, at, and st+1. The termination condition �t,
terminal target zt, and prediction yt, are functions of st alone.

R(n)
t = rt+1 + �t+1zt+1 + (1� �t+1)R

(n�1)
t+1

R(0)
t = yt

R�
t = (1� �)

1X

n=1

�n�1R(n)
t

⇢t =
⇡(st, at)

b(st, at)

�wo↵(!) = �won(!)
1Y

i=1

⇢i

�wt = ↵t(CtR
�
t � yt)rwyt

�wt = ↵t(R̄
�
t � yt)rwyt
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44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent
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Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R, and
finds itself in a new state, St+1.3 Figure 3.1 diagrams the agent–environment
interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.
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Trajectory and History

❐ A sequence of states, actions and rewards

❐ We will sometimes use the notation 
❐ We will use the term history to refer to the trajectory prior 

to the current time step
❐ In general, next states and rewards can depend on the 

history since the beginning of time

τij = SiAiRi+1…Sj
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At
Rt+1St At+1

Rt+2St+1 At+2

Rt+3St+2 At+3
St+3. . . . . .



Markov Property

❐ An assumption about the environment
❐ Next state and reward depend only on the previous state and 

action, and noting else that happened in the past

❐ The assumption is useful to develop, analyze and 
understand algorithms

❐ It does NOT mean it has to always hold

16

p(St+1 = s′￼, Rt+1 = r |St = s, At = a) = p(St+1 = s′￼, Rt+1 = r |St = s, At = a, τt), ∀τt
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Markov Decision Processes

❐ If a reinforcement learning task has the Markov Property, it is 
basically a Markov Decision Process (MDP).

❐ If state and action sets are finite, it is a finite MDP. 
❐ To define a finite MDP, you need to give:

! state and action sets
! one-step “dynamics” 

! there is also:
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A particular finite MDP is defined by its state and action sets and by the
one-step dynamics of the environment. Given any state and action s and a,
the probability of each possible pair of next state and reward, s

0
, r, is denoted

p(s0
, r|s, a) = Pr{St+1 =s

0
, Rt+1 = r | St =s, At =a}. (3.6)

These quantities completely specify the dynamics of a finite MDP. Most of the
theory we present in the rest of this book implicitly assumes the environment
is a finite MDP.

Given the dynamics as specified by (3.6), one can compute anything else
one might want to know about the environment, such as the expected rewards
for state–action pairs,

r(s, a) = E[Rt+1 | St =s, At =a] =
X

r2R

r

X

s02S

p(s0
, r|s, a), (3.7)

the state-transition probabilities,

p(s0|s, a) = Pr{St+1 =s
0 | St =s, At =a} =

X

r2R

p(s0
, r|s, a), (3.8)

and the expected rewards for state–action–next-state triples,

r(s, a, s
0) = E[Rt+1 | St =s, At =a, St+1 = s

0] =

P
r2R rp(s0

, r|s, a)

p(s0|s, a)
. (3.9)

In the first edition of this book, the dynamics were expressed exclusively in
terms of the latter two quantities, which were denote Pa

ss0 and Ra

ss0 respectively.
One weakness of that notation is that it still did not fully characterize the
dynamics of the rewards, giving only their expectations. Another weakness is
the excess of subscripts and superscripts. In this edition we will predominantly
use the explicit notation of (3.6), while sometimes referring directly to the
transition probabilities (3.8).

Example 3.7: Recycling Robot MDP The recycling robot (Example
3.3) can be turned into a simple example of an MDP by simplifying it and
providing some more details. (Our aim is to produce a simple example, not
a particularly realistic one.) Recall that the agent makes a decision at times
determined by external events (or by other parts of the robot’s control system).
At each such time the robot decides whether it should (1) actively search for
a can, (2) remain stationary and wait for someone to bring it a can, or (3) go
back to home base to recharge its battery. Suppose the environment works
as follows. The best way to find cans is to actively search for them, but this
runs down the robot’s battery, whereas waiting does not. Whenever the robot
is searching, the possibility exists that its battery will become depleted. In
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Policy at step t = π t =

               a mapping from states to action probabilities
               π t (a | s) =  probability that At = a when St = s

The Agent Learns a Policy

❐ Reinforcement learning methods specify how the agent 
changes its policy as a result of experience.

❐ Roughly, the agent’s goal is to get as much reward as it can 
over the long run.

Special case - deterministic policies:
  πt (s) = the action taken with prob=1 when St = s
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Recycling Robot 

An Example Finite MDP

❐ At each step, robot has to decide whether it should (1) actively 
search for a can, (2) wait for someone to bring it a can, or (3) 
go to home base and recharge. 

❐ Searching is better but runs down the battery; if runs out of 
power while searching, has to be rescued (which is bad).

❐ Decisions made on basis of current energy level: high, low.
❐ Reward = number of cans collected
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Recycling Robot MDP

= high,low{ }
(high) = search, wait{ }
(low) = search, wait,recharge{ }

rsearch =  expected no. of cans while searching
rwait =  expected no. of cans while waiting
                     rsearch > rwait

search

high low
1,  0

 1–! ,   –3

search

recharge

wait

wait

search1–" ,  R

! ,  R  search

", R search

1,  R wait

1,  R wait

3.6. MARKOV DECISION PROCESSES 59

s s0 a p(s0|s, a) r(s, a, s0)
high high search ↵ rsearch
high low search 1� ↵ rsearch
low high search 1� � �3
low low search � rsearch
high high wait 1 rwait
high low wait 0 rwait
low high wait 0 rwait
low low wait 1 rwait
low high recharge 1 0
low low recharge 0 0.

Table 3.1: Transition probabilities and expected rewards for the finite MDP
of the recycling robot example. There is a row for each possible combination
of current state, s, next state, s0, and action possible in the current state,
a 2 A(s).

is S = {high, low}. Let us call the possible decisions—the agent’s actions—
wait, search, and recharge. When the energy level is high, recharging would
always be foolish, so we do not include it in the action set for this state. The
agent’s action sets are

A(high) = {search, wait}
A(low) = {search, wait, recharge}.

If the energy level is high, then a period of active search can always be
completed without risk of depleting the battery. A period of searching that
begins with a high energy level leaves the energy level high with probability
↵ and reduces it to low with probability 1�↵. On the other hand, a period of
searching undertaken when the energy level is low leaves it low with probability
� and depletes the battery with probability 1��. In the latter case, the robot
must be rescued, and the battery is then recharged back to high. Each can
collected by the robot counts as a unit reward, whereas a reward of �3 results
whenever the robot has to be rescued. Let rsearch and rwait, with rsearch > rwait,
respectively denote the expected number of cans the robot will collect (and
hence the expected reward) while searching and while waiting. Finally, to keep
things simple, suppose that no cans can be collected during a run home for
recharging, and that no cans can be collected on a step in which the battery
is depleted. This system is then a finite MDP, and we can write down the
transition probabilities and the expected rewards, as in Table 3.1.

A transition graph is a useful way to summarize the dynamics of a finite
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Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)
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Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)
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The Markov Property

❐ By “the state” at step t, the book means whatever information is 
available to the agent at step t about its environment.

❐ The state can include immediate “sensations,” highly processed 
sensations, and structures built up over time from sequences of 
sensations. 

❐ Ideally, a state should summarize past sensations so as to retain 
all “essential” information, i.e., it should have the Markov 
Property:

❐ for all                      and all histories  
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defined only by specifying the complete probability distribution:

Pr{Rt+1 = r, St+1 = s
0 | S0, A0, R1, . . . , St�1, At�1, Rt, St, At}, (3.4)

for all r, s
0, and all possible values of the past events: S0, A0, R1, ..., St�1,

At�1, Rt, St, At. If the state signal has the Markov property, on the other
hand, then the environment’s response at t + 1 depends only on the state and
action representations at t, in which case the environment’s dynamics can be
defined by specifying only

p(s0
, r|s, a) = Pr{Rt+1 = r, St+1 = s

0 | St, At}, (3.5)

for all r, s
0, St, and At. In other words, a state signal has the Markov property,

and is a Markov state, if and only if (3.5) is equal to (3.4) for all s
0, r, and

histories, S0, A0, R1, ..., St�1, At�1, Rt, St, At. In this case, the environment
and task as a whole are also said to have the Markov property.

If an environment has the Markov property, then its one-step dynamics
(3.5) enable us to predict the next state and expected next reward given the
current state and action. One can show that, by iterating this equation, one
can predict all future states and expected rewards from knowledge only of the
current state as well as would be possible given the complete history up to the
current time. It also follows that Markov states provide the best possible basis
for choosing actions. That is, the best policy for choosing actions as a function
of a Markov state is just as good as the best policy for choosing actions as a
function of complete histories.

Even when the state signal is non-Markov, it is still appropriate to think
of the state in reinforcement learning as an approximation to a Markov state.
In particular, we always want the state to be a good basis for predicting
future rewards and for selecting actions. In cases in which a model of the
environment is learned (see Chapter 8), we also want the state to be a good
basis for predicting subsequent states. Markov states provide an unsurpassed
basis for doing all of these things. To the extent that the state approaches the
ability of Markov states in these ways, one will obtain better performance from
reinforcement learning systems. For all of these reasons, it is useful to think of
the state at each time step as an approximation to a Markov state, although
one should remember that it may not fully satisfy the Markov property.

The Markov property is important in reinforcement learning because de-
cisions and values are assumed to be a function only of the current state. In
order for these to be e↵ective and informative, the state representation must
be informative. All of the theory presented in this book assumes Markov state
signals. This means that not all the theory strictly applies to cases in which
the Markov property does not strictly apply. However, the theory developed

=
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The Meaning of Life
(goals, rewards, and returns)
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Goals and Rewards

❐ Is a scalar reward signal an adequate notion of a goal?—
maybe not, but it is surprisingly flexible.

❐ A goal should specify what we want to achieve, not how 
we want to achieve it.

❐ A goal must be outside the agent’s direct control—thus 
outside the agent.

❐ The agent must be able to measure success:
! explicitly;
! frequently during its lifespan.
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The reward hypothesis

❐ That all of what we mean by goals and purposes can be well 
thought of as the maximization of the cumulative sum of a 
received scalar signal (reward)

❐ A sort of null hypothesis.
! Probably ultimately wrong, but so simple we have to 

disprove it before considering anything more 
complicated



Rewards and returns
• The objective in RL is to maximize long-term future reward


• That is, to choose      so as to maximize 


• But what exactly should be maximized? 


• The discounted return at time t:

At Rt+1, Rt+2, Rt+3, . . .

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+4 + · · · � 2 [0, 1)

Reward sequence
1 0 0 0…

Return
1

0 0 2 0 0 0…
0.5(or any)

0.5 0.5
0.9 0 0 2 0 0 0… 1.62
0.5 -1 2 6 3 2 0 0 0… 2

�

the discount rate



4 value functions

• All theoretical objects, mathematical ideals (expected values)


• Distinct from their estimates:

state

values

action 
values

prediction

control q⇤v⇤

v⇡ q⇡

Vt(s) Qt(s, a)



Values are expected returns
• The value of a state, given a policy:


• The value of a state-action pair, given a policy:


• The optimal value of a state:


• The optimal value of a state-action pair:


• Optimal policy:       is an optimal policy if and only if


• in other words,      is optimal iff it is greedy wrt

v⇡(s) = E{Gt | St = s,At:1⇠⇡} v⇡ : S ! <

q⇡(s, a) = E{Gt | St = s,At = a,At+1:1⇠⇡} q⇡ : S⇥A ! <

v⇤(s) = max
⇡

v⇡(s) v⇤ : S ! <

⇡⇤(a|s) > 0 only where q⇤(s, a) = max
b

q⇤(s, b)

⇡⇤

⇡⇤ q⇤

8s 2 S

q⇤(s, a) = max
⇡

q⇡(s, a) q⇤ : S⇥A ! <



optimal policy example

28
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Return

Suppose the sequence of rewards after step t  is:
                         Rt+1, Rt+2 , Rt+3,K
What do we want to maximize?

At least three cases, but in all of them, 
we seek to maximize the expected return, E Gt{ }, on each step t.

• Total reward, Gt = sum of all future reward in the episode

• Discounted reward, Gt = sum of all future discounted reward

• Average reward, Gt = average reward per time step

. . .



Episodic Tasks

30

Episodic tasks: interaction breaks naturally into 
episodes, e.g., plays of a game, trips through a maze

In episodic tasks, we almost always use simple total 
reward:

Gt = Rt+1 + Rt+2 +L + RT ,

where T is a final time step at which a terminal state is reached, 
ending an episode.

...



31

Continuing Tasks

Continuing tasks: interaction does not have natural episodes, but 
just goes on and on...  

In this class, for continuing tasks we will always use discounted 
return:

            Gt = Rt+1 + γ Rt+2 + γ
2Rt+3 +L = γ kRt+k+1,

k=0

∞

∑
where γ , 0 ≤ γ ≤1,  is the discount rate.

shortsighted  0 ←γ → 1  farsighted

Typically, γ = 0.9

...
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An Example: Pole Balancing

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of
track

reward  = +1 for each step before failure
⇒   return =  number of steps before failure

As an episodic task where episode ends upon failure:

As a continuing task with discounted return:
reward  = −1 upon failure;  0 otherwise

⇒   return =  −γ k ,  for k steps before failure

In either case, return is maximized by 
avoiding failure for as long as possible.
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Another Example: Mountain Car

Get to the top of the hill
as quickly as possible. 

reward  = −1 for each step where not at top of hill
⇒   return =  − number of steps before reaching top of hill

Return is maximized by minimizing 
number of steps to reach the top of the hill. 



R1 = +1S0 S1
R2 = +1 S2

R3 = +1 R4 = 0
R5 = 0. . .

❐ In episodic tasks, we number the time steps of each episode 
starting from zero.

❐ We usually do not have to distinguish between episodes, so 
instead of writing       for states in episode j, we write just

❐ Think of each episode as ending in an absorbing state that 
always produces reward of zero:

❐ We can cover all cases by writing

34

A Trick to Unify Notation for Returns

StSt , j

                                                                Gt = γ kRt+k+1,
k=0

∞

∑
where γ  can be 1 only if a zero reward absorbing state is always reached.
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Value Functions

State - value function for policy π :

vπ (s) = Eπ Gt St = s{ } = Eπ γ kRt+k+1 St = s
k=0

∞

∑
%
&
'

(
)
*

Action - value function for policy π :

qπ (s,a) = Eπ Gt St = s,At = a{ } = Eπ γ kRt+k+1 St = s,At = a
k=0

∞

∑
%
&
'

(
)
*

❐ The value of a state is the expected return starting from 
that state; depends on the agent’s policy:

❐ The value of an action (in a state) is the expected return 
starting after taking that action from that state; depends on 
the agent’s policy:
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Gridworld

❐ Actions: north, south, east, west; deterministic.
❐ If would take agent off the grid: no move but reward = –1
❐ Other actions produce reward = 0, except actions that move 

agent out of special states A and B as shown.

State-value function 
for equiprobable 
random policy;
γ = 0.9
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Bellman Equation for a Policy π

Gt = Rt+1 + γ Rt+2 + γ
2Rt+3 + γ

3Rt+4L
= Rt+1 + γ Rt+2 + γ Rt+3 + γ

2Rt+4L( )
= Rt+1 + γGt+1

The basic idea: 

So: vπ (s) = Eπ Gt St = s{ }
= Eπ Rt+1 + γ vπ St+1( ) St = s{ }

Or, without the expectation operator: 

...+

...+

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

i
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More on the Bellman Equation

This is a set of equations (in fact, linear), one for each state.
The value function for π  is its unique solution.

Backup diagrams:

for vπ for qπ

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

i
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Iterative Policy Evaluation – One array version
86 CHAPTER 4. DYNAMIC PROGRAMMING

Input ⇡, the policy to be evaluated
Initialize an array V (s) = 0, for all s 2 S+

Repeat
� 0
For each s 2 S:

v  V (s)
V (s) 

P
a
⇡(a|s)

P
s0,r p(s0

, r|s, a)
⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number)
Output V ⇡ v⇡

Figure 4.1: Iterative policy evaluation.

Another implementation point concerns the termination of the algorithm.
Formally, iterative policy evaluation converges only in the limit, but in practice
it must be halted short of this. A typical stopping condition for iterative policy
evaluation is to test the quantity maxs2S |vk+1(s)�vk(s)| after each sweep and
stop when it is su�ciently small. Figure 4.1 gives a complete algorithm for
iterative policy evaluation with this stopping criterion.

Example 4.1 Consider the 4⇥4 gridworld shown below.

actions

r  =  !1

on all transitions

1 2 3

4 5 6 7

8 9 10 11

12 13 14

R

The nonterminal states are S = {1, 2, . . . , 14}. There are four actions pos-
sible in each state, A = {up, down, right, left}, which deterministically
cause the corresponding state transitions, except that actions that would take
the agent o↵ the grid in fact leave the state unchanged. Thus, for instance,
p(6|5, right) = 1, p(10|5, right) = 0, and p(7|7, right) = 1. This is an undis-
counted, episodic task. The reward is �1 on all transitions until the terminal
state is reached. The terminal state is shaded in the figure (although it is
shown in two places, it is formally one state). The expected reward function is
thus r(s, a, s

0) = �1 for all states s, s
0 and actions a. Suppose the agent follows

the equiprobable random policy (all actions equally likely). The left side of
Figure 4.2 shows the sequence of value functions {vk} computed by iterative
policy evaluation. The final estimate is in fact v⇡, which in this case gives for
each state the negation of the expected number of steps from that state until
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Gridworld

❐ Actions: north, south, east, west; deterministic.
❐ If would take agent off the grid: no move but reward = –1
❐ Other actions produce reward = 0, except actions that move 

agent out of special states A and B as shown.

State-value function 
for equiprobable 
random policy;
γ = 0.9


