Lecture 9: Exploration and Exploitation
I—Multi-Armed Bandits
|—Regret

Regret

The action-value is the mean reward for action a,
QR(a) = E[r|a]
m The optimal value V* is

V*=Q(a") = max Q(a)

m The regret is the opportunity loss for one step
l =E[V" — Q(a;)]
m The total regret is the total opportunity loss

t
Le=E|) V*-Q(ar)
=1

m Maximise cumulative reward = minimise total regret
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Counting Regret

m The count N¢(a) is expected number of selections for action a

m The gap A, is the difference in value between action a and
optimal action a*, A, = V* — Q(a)
m Regret is a function of gaps and the counts

> ovr- Q(aT)}
=) E[N:(a)] (V* - Q(a))

acA

=) E[N(a)] A,

acA

Lt:]E

m A good algorithm ensures small counts for large gaps
m Problem: gaps are not known!
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Linear or Sublinear Regret

greedy
e-greedy

Total regret
decaying e-greedy

Time-steps

m |f an algorithm forever explores it will have linear total regret
m |f an algorithm never explores it will have linear total regret

m s it possible to achieve sublinear total regret?
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Greedy Algorithm

m We consider algorithms that estimate Q:(a) ~ Q(a)

m Estimate the value of each action by Monte-Carlo evaluation

m [ he greedy algorithm selects action with highest value

at = argmax Q(a)
acA

m Greedy can lock onto a suboptimal action forever

m = Greedy has linear total regret
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e-Greedy Algorithm

m [he e-greedy algorithm continues to explore forever

m With probability 1 — ¢ select a = argmax Q(a)
ac A
m With probability € select a random action

m Constant € ensures minimum regret

m = e-greedy has linear total regret
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Optimistic Initialisation

m Simple and practical idea: initialise Q(a) to high value
m Update action value by incremental Monte-Carlo evaluation
m Starting with N(a) > 0

N\

Qi(ar) = Qt—l +

Nt(at) (”t — Qt—l)

Encourages systematic exploration early on

O
m But can still lock onto suboptimal action

m = greedy + optimistic initialisation has linear total regret
O

= e-greedy + optimistic initialisation has linear total regret
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Decaying e;-Greedy Algorithm

m Pick a decay schedule for €1, e, ...

m Consider the following schedule

c >0

d= min A;
a|A;>0

. c| Al
€+ = Mmin , ﬂ

m Decaying €;-greedy has logarithmic asymptotic total regret!
m Unfortunately, schedule requires advance knowledge of gaps

m Goal: find an algorithm with sublinear regret for any
multi-armed bandit (without knowledge of R)
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L ower Bound

m The performance of any algorithm is determined by similarity
between optimal arm and other arms

m Hard problems have similar-looking arms with different means

m This is described formally by the gap A, and the similarity in
distributions KL(R?||R?x)

Theorem (Lai and Robbins)

Asymptotic total regret is at least logarithmic in number of steps

lim Lt

> logt
LS gt ) KL(R3||R3)
a|A;>0
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Optimism in the Face of Uncertainty

Qa) Qa)

Q(a)

1.6 1.2 0.8 0.4 0 0.4 0.8 1.2 1.6 2 24 2.8 3.2 3.6 4 4.4 4.8 52 5.6

m Which action should we pick?
m The more uncertain we are about an action-value
m [he more important it is to explore that action

m |t could turn out to be the best action



Lecture 9: Exploration and Exploitation
I—Multi-Armed Bandits
|—Upper Confidence Bound

Optimism in the Face of Uncertainty (2)

_—

m After picking blue action
m We are less uncertain about the value
m And more likely to pick another action

m Until we home in on best action
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Upper Confidence Bounds

m Estimate an upper confidence U,(a) for each action value
m Such that Q(a) < Q:(a) + U:(a) with high probability
m This depends on the number of times N(a) has been selected

m Small N;(a) = large qt(a) (estimated value is uncertain)
m Large Ni(a) = small U;(a) (estimated value is accurate)

m Select action maximising Upper Confidence Bound (UCB)

ar = argmax Q¢(a) + Us(a)
acA
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Hoeffding's Inequality

Theorem (Hoeffding's Inequality)

Aet Xi,...,Xt be i.i.d. random variables in [0,1], and let
X: = %Zizl X, be the sample mean. Then

P[E[X] > X+ u] < e 2%

m We will apply Hoeffding's Inequality to rewards of the bandit

m conditioned on selecting action a

P [Q(a) > CA?t(a) + Ut(a)} < e_2Nt(a)Ut(a)2
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Calculating Upper Confidence Bounds

Pick a probability p that true value exceeds UCB

m Now solve for U;(a)

e—2Nt(a) Ut(a)2 — p

—log p
Ut(a) — \/ZNt(a)

m Reduce p as we observe more rewards, e.g. p =t~ *

m Ensures we select optimal action as t — o©

Ut(a) = \/ illto(i)t
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UCB1

m This leads to the UCB1 algorithm

2logt
a; = argmax Q(a) +
‘ ac A (3) N¢(a)

Theorem

The UCB algorithm achieves logarithmic asymptotic total regret

im L <8logt » A,

t— 00
a|A;>0



