Policy-Based Reinforcement Learning

> Previously we approximated paramateric value functions

Vi ($) = vz (s)
qw(s, a) = qx(s, a)

> A policy can be generated from these values (e.g., greedy)

» In this lecture we directly parametrise the policy directly

mg(als) = p(als, 0)

» This lecture, we focus on model-free reinforcement learning

(o)

Value-based and policy-based RL: terminology

» Value Based
> Learn values

» Implicit policy (e.g. e-greedy) Value Function

> Policy Based

» No values
Value-Based Actor

> Learn policy Critic
» Actor-Critic
> Learn values

> Learn policy

P

licy

Policy-Based

(o)

Advantages and disadvantages of policy-based RL

Advantages:
» True objective
> Easy extended to high-dimensional or continuous action spaces
» Can learn stochastic policies

> Sometimes policies are simple while values and models are complex
> E.g., complicated dynamics, but optimal policy is always “move forward”

Disadvantages:
» Could get stuck in local optima

> Obtained knowledge can be specific, does not always generalise well

> Does not necessarily extract all useful information from the data
(when used in isolation)

(o)

Policy Learning Objective

(o)

Policy Objective Functions

> Goal: given policy my(s, @), find best parameters 6
» How do we measure the quality of a policy mg?
> In episodic environments we can use the average total return per episode

> In continuing environments we can use the average reward per step

(o)

Policy Objective Functions: Episodic

> Episodic-return objective:

i ')’th+1

t=0
= Esy~dy,m[Gol
= Eso~d[Erg[Gr | St = Sol]
= Esy~do[Vrg (S0)]

where dj is the start-state distribution This objective equals the expected value of the
start state

JG(O) = IES(]Nd(),ﬂ'g

(o)

Policy Objective Functions: Average Reward

> Average-reward objective

Jr(6) = Exy [Re41]
= ES,~dyy [EA~mo(s0) [Res1 | S]]

= D dny(s) Y mo(s.a)) p(r | s.a)r

where d(s) = p(S; = s | 7) is the probability of being in state s in the long run
Think of it as the ratio of time spent in s under policy 7

(o)

Policy Gradients

(o)

Policy Optimisation

» Policy based reinforcement learning is an optimization problem
> Find 6 that maximises J(6)

> We will focus on stochastic gradient ascent, which is often quite efficient
(and easy to use with deep nets)

» Some approaches do not use gradient
> Hill climbing / simulated annealing

> Genetic algorithms / evolutionary strategies

(o)

Policy Gradient

> Idea: ascent the gradient of the objective J(6)
AO = aVyJ(6)
> Where VgJ(0) is the policy gradient

3J(0)
30,

0J(0)
a0,

» and « is a step-size parameter

> Stochastic policies help ensure J(8) is smooth
(typically/mostly)

Gradients on parameterized policies

> How to compute this gradient Vg J(6)?
> Assume policy mg is differentiable almost everywhere (e.g., neural net)

» For average reward

VoJ(0) = VoE,[R].
» How does E[R] depend on 6?

(o)

Contextual Bandits Policy Gradient

> Consider a one-step case (a contextual bandit) such that J(6) = E.,[R(S, A)].
(Expectation is over d (states) and 7 (actions))
(For now, d does not depend on)

> We cannot sample R;;; and then take a gradient:
R;+1 is just a number and does not depend on 6!

> Instead, we use the identity:
VoEx,[R(S, A)] = Ex,[R(S, A)Vg log m(A|S)] .
(Proof on next slide)

» The right-hand side gives an expected gradient that can be sampled
» Also known as REINFORCE (Williams, 1992)

(o)

The score function trick

Letrgy = E[R(S,A) | S =5,A = 5]

VoEr,[R(S, A)] =

Vo Z d(s) Z mo(als) ra
= Z d(s) Z sa Voma(als)
Vomg(als)
= 2,400 2 e molals) 00
= Z d(s) Z mo(als) rya Vo log m(als)

= Ed 7y [R(S, A) Vg log mg(A|S)]

(o)

Contextual Bandit Policy Gradient

VoE[R(S, A)] = E[Vg log m(A|S)R(S, A)]

v

This is something we can sample

v

Our stochastic policy-gradient update is then

0141 =60; + @R 1 Vglogmg, (A:[S;) .

v

In expectation, this is the following the actual gradient

v

So this is a pure (unbiased) stochastic gradient algorithm

v

Intuition: increase probability for actions with high rewards

(see previous slide)

(o)

Policy gradients: reduce variance

> Note that, in general

E[bVelogn(As|S,)] = E

2, m(al$)bVe logn<a|st>]

a

bV) n<a|st>‘

= E [bVe1] =0

=E

» This is true if b does not depend on the action (but it can depend on the state)

> Implies we can subtract a baseline to reduce variance
0:11 = 6; + a(R;11 — b(S;))Vg log mg, (As]S;) .

> We will also use this fact in proofs below

(o)

Example: Softmax Policy

> Consider a softmax policy on action preferences h(s, @) as an example

> Probability of action is proportional to exponentiated weight

eh(s,a)
(als) = <
7o 3, D)
» The gradient of the log probability is
Vologmo(A/lS)) = Voh(S,A) =) me(alS,)Veh(S,,a)
%/_/ a

gradient of preference
expected gradient of preference

(o)

Policy Gradient Theorem

(o)

Policy Gradient Theorem

» The policy gradient approach also applies to (multi-step) MDPs
> Replaces reward R with long-term return G, or value ¢, (s, a)
» There are actually two policy gradient theorems (Sutton et al., 2000):

average return per episode & average reward per step

(o)

Policy gradient theorem (episodic)

Theorem
For any differentiable policy mg(s, a), let dy be the starting distribution over states in which we
begin an episode. Then, the policy gradient of J(0) = E[Gq | Sy ~ dp] is

T
VHJ(H) = [Eﬂ'e Z thm (St’ At)VQ log ﬂO(At|St) | SO ~ dO

=0
where

%r(s’ a) =Ex[G; | S; = 5,A; = a]
= Ex[Ris1 + Yqr(St41, A1) | St =5, A = a]

(o)

Policy gradients on trajectories

» Policy gradients do not need to know the MDP dynamics

> Kind of surprising; shouldn’t we know how the policy influences the states?

(o)

Episodic policy gradients: proof
> Consider trajectory T = Sg, Ao, R1, S1, A1, R1, Sa, . . . with return G(7)

VoJo() = VE [G(7)] = E[G(T)Vg log p(T)] (score function trick)

Vg log p(1) = Vg log [P(So)ﬂ(Aolso)P(SﬂSo, Ag)m(Aq]S1) -+

= Vg [log p(So) + log (Ao|So) + log p(S1[So, Ao) + log (A1[S1) + - - -

= Vg | log m(Ap|So) + log m(A1[S1) + -+

So:
T
VoJo(r) = Ex[G(r)Vg) log(A,1S:)]

t=0

(o)

Episodic policy gradients: proof (continued)

T
Ex[G(r)) Vg logm(A;|S;)]
=0

VogJg(n) =

Z G(7)Vglog m(Ar]S))]
t=0
T

=Ex [Z Z 7kRk+1) Vg log m(A;|S1)]

k=0

T
> y"Rkﬂ) Ve log m(A;S;)]
k=t

T
' Z Vk_[RkH) Vg log m(As]St)]
= k=t

S I IS

= g (y G;) Vo log m(As|S:)]

T
= Exl) ¥ qu(S1, AV log m(Ar])]

=0

(o)

Episodic policy gradients algorithm

T
VoJo(r) = Exl)" ¥'qx(Si, Ar)Volog m(4/S))]
t=0

> We can sample this, given a whole episode

» Typically, people pull out the sum, and split up this into separate gradients, e.g.,
Ab; = y'G,Vglog n(A|S;)
such that [En[Zz AH,] = Vg.]g(ﬂ')
> Typically, people ignore the y’ term, use A@; = G,Vglog n(A,|S;)

» This is actually okay-ish — we just partially pretend on each step that we could have
started an episode in that state instead
(alternatively, view it as a slightly biased gradient)

(o)

Policy gradient theorem (average reward)

Theorem
For any differentiable policy mg(s, a), the policy gradient of J(0) = E[R |] is

VoJ(0) = Ex[qr,(St, Ar) Vo log mo(As]S)]
where

qn(s,a) = Ex[Rrs1 — p + qn(St+1, Ari1) | St = 5, A = a
0 = Ex[Rr41] (Note: global average, not conditioned on state or action)

(Expectation is over both states and actions)

(o)

Policy gradient theorem (average reward)

Alternatively (but equivalently):

Theorem
For any differentiable policy mg(s, a), the policy gradient of J(0) = E[R |] is

VoJ(8) = Ex[Ris1) Vologmo(As—n|Si-n)]

n=0

(Expectation is over both states and actions)

(o)

Actor Critics

(o)

Policy gradients: reduce variance

v

Recall E,[b(S;)V log m(A;|S;)] = 0, for any b(S;) that does not depend on A,

A common baseline is v, (S;)

v

VoJo(r) = E | > ¥'(qx(S, Ar) = vx(S:)) Vo log T(A,1S:)

t=0

v

Typically, we estimate vy, (s) ~ v, (s) explicitly, and sample
4(S1, Ar) = G,

> We can minimise variance further by bootstrapping, e.g., Gy = Ry41 + YV (St4+1)

v

More on these techniques in the next lecture

(o)

Critics

» A critic is a value function, learnt via policy evaluation:
What is the value v, of policy mg for current parameters 6?

» This problem was explored in previous lectures, e.g.
> Monte-Carlo policy evaluation

» Temporal-Difference learning

> n-step TD

(o)

Actor-Critic

Critic Update parameters w of v,, by TD (e.g., one-step) or MC
Actor Update @ by policy gradient
function ONE-STEP ACTOR CRITIC
Initialise s, 6
fort=0,1,2,... do
Sample A; ~ 7g(Sy)

Sample R;4+1 and S;4+1

0t = Riv1 + yvip (Se41) — vip (St) [one-step TD-error, or advantage]
w—w+ B Vv (Sr) [TD(0)]
0 — 0+ ad Vglogng(As | St) [Policy gradient update (ignoring ! term)]

(o)

Policy gradient variations

> Many extensions and variants exist
» Take care: bad policies lead to bad data

» This is different from supervised learning
(where learning and data are independent)

(o)

Increasing robustness with trust regions

v

One way to increase stability is to regularise

v

A popular method is to limit the difference between subsequent policies

v

For instance, use the Kullbeck-Leibler divergence:

ng(a | S) da

) = | [t 5)os LG da]

(Expectation is over states)

v

A divergence is like a distance between distributions

v

Then maximise J(6) — nKL(mo14||79), for some hyperparameter 1
c.f. TRPO (Schulman et al. 2015), PPO (Abbeel & Schulman 2016), MPO (Abdolmaleki et al. 2018)

(o)

Continuous action spaces

(o)

Continuous actions

> Pure value-based RL can be non-trivial to extend to continuous action spaces
> How to approximate g(s, a)?

> How to compute max ¢(s, a)?
a
» When directly updating the policy parameters, continuous actions are easier
> Most algorithms discussed today can be used for discrete and continuous actions

> Note: exploration in high-dimensional continuous spaces can be challenging

(o)

Example: Gaussian policy

vV v. vy

As example, consider a Gaussian policy
E.g., mean is some function of state ug(s)
For simplicity, lets consider fixed variance of o2 (can be parametrized as well)

Policy is Gaussian, A; ~ N (ug(S;), o2)
(here ug is the mean — not to be confused with the behaviour policy!)

The gradient of the log of the policy is then

A — po(Sr)

Vg log mg(s, a) = 2 Vig(s)

This can be used, for instance, in REINFORCE / actor critic

(o)

Example: Policy gradient with Gaussian policy

> Gaussian policy gradient update:

0111 = 6; + B(G; —v(S;))Ve log mg(A;|S:)

= 0, + GGy~ v(s) LI g s,

» Intuition: if return was high, move ug(S;) toward A;

(o)

Gradient ascent on value

> Policy gradients work well, but do not strongly exploit the critic

» If values generalise well, perhaps we can rely on them more?
1. Estimate gy = qr, e.8., with Sarsa

2. Define deterministic actor: A; = mg(St)
3. Improve actor (policy improvement) by gradient ascent on the value:

. 90x(5,0) _ 00x(s, 7(S))) O(S:)

A8
90 dng(St) 90

> Known under various names:
“Action-dependent heuristic dynamic programming” (ADHDP; Werbos 1990, Prokhorov & Wunsch 1997)
“Gradient ascent on the value” (van Hasselt & Wiering 2007)
These days, mostly know as: “Deterministic policy gradient” (DPG; Silver et al. 2014)

> It’s a form of policy iteration

(o)

Continuous actor-critic learning automaton (Cacla)

We can also define the error in action space, rather than parameter space

1. a; = Actorg(S;) (get current (continuous) action proposal)
2. Ay ~n(:|Sp,ar) (eg., Ay ~ N(ay, X))

3. 0t = Res1 + yvw(St+1) — v (Sh)

4. Update vy, (S;) (e.g., using TD)

5. If §; > 0, update Actorg(S,) towards A, (policy improvement)

0;+1 — 0, + IB(AI - at)VgtACtorot (St)

6. If 6; < 0, do not update Actory
Note: update magnitude does not depend on the value magnitude

Note: don’t update ‘away’ from ‘bad’ actions

(compute TD error)

(policy evaluation)

(o)

	Introduction
	Finite Difference Policy Gradient
	Monte-Carlo Policy Gradient
	Likelihood Ratios

