
COMP322: Assignment 4- Winter 2013
Due at 11:30pm EST, 15th April 2013

1 Introduction

In this assignment, you will implement two things:

1. A new data type TwoWayVector which is similar to the vector class except it will allow
for negative indexing as well.

2. An iterator to traverse this collection and make it compatible with the algorithms in
the stl library. You will provide 2 versions of this: One to let someone traverse an array
in a read only fashion, and one to allow write access.

For this assignment, you are not allowed to use vector or any other stl library class, since
the point is you are trying to make a guess for how it is represented!

Part 1: TwoWayVector.cc

A TwoWayVector will represent the notion of an array, but it will do so in a way that hides
most of the details of the array from the user of the type. It will be a container that can
hold any type of data. To do this, you should make your type templates as outlined in the
course notes as well as at http://www.cplusplus.com/doc/tutorial/templates/.

Define a class TwoWayVector which is templated and has the following functionality:

1. A constructor which initializes any necessary private properties

2. A destructor which frees any memory that was dynamically allocated (i.e. with the
new operator) throughout the class

3. A method push back which adds an element given as input to the end of the vector
(and returns void)

4. A method pop back which removes an element from the end of the vector (and returns
the element that was removed)

5. A method size which returns an int representing how many elements are in the col-
lection

6. The operator [] should be overloaded in the following manner to take as input an int
index

(a) If index is a positive number within the bounds of the array (between 0 and
size()), you method should return the element at that position

(b) If index is a negative number with absolute value less than or equal to size(),
your method should return the element at that position but COUNTING FROM
THE END. For example, array[-1] should return the LAST element of the array.

1

(c) If index is any other value, your method should throw an exception. For simplicity
you may simply throw a string with an error message that includes the index. (You
may choose to throw a different type of exception if you prefer)

(d) A method begin which returns a TwoWayVectorIterator (see part 2) to the start
of the collection.

(e) A method end which returns a TwoWayVectorIterator (see part 2) to the element
one past the end of the collection.

(f) A method const begin which returns a TwoWayVectorConstIterator (see part
3) to the start of the collection.

(g) A method const end which returns a TwoWayVectorConstIterator (see part 3)
to the element one past the end of the collection.

Methodology: The way you will solve this problem is by internally maintaining three
private properties:

1. T* data where T is the type being used for the template. This is a pointer to an array.
In the constructor, you should initialize this pointer to store the address of an array
with 10 values in it. When the method push back is called, the data will be added
to the array data. (Remember that you can use [] notation with pointers and arrays
interchangeably.) In the case that there is no room in the array, because too many
elements have been added already, you should allocate space for a larger array with
a size double the current size, copy the elements from data into your new array, and
finally store into data the new array’s address. This must be done in such a way that
any arbitrary size array can be created.

2. int capacity This property stores how large the array data is.

3. int nextFree This property stores the next free position of data.

Your solution must obey proper memory management and thus shouldn’t create any
memory leaks. You can test your TwoWayIterator as you are going by separately adding a
main function although the main function is not required for this part of the assignment.

Part 2: Implementing an iterator (write access)

Now we will implement an iterator to traverse a TwoWayVector in a fashion that allows for
writing to elements while iterating. The iterator will also be a templated type, since it will
have different types depending on the sort of TwoWayVector it is iterating over.

Define a new type TwoWayVectorIterator. A TwoWayVectorIterator should have the
following properties:

1. TwoWayVector<T> * vector. This property is a pointer to the vector that is being
iterated over.

2

2. int currentPosition. This property represents where in the array the iterator is
currently at.

With these 2 properties, the iterator maintains the state necessary to traverse the collec-
tion. An iterator that is at the beginning of the collection would have currentPosition set
to be 0. An iterator that is at the last element in the collection would have currentPosition
set to be vector.size() - 1, and an iterator with any other value is outside the range of
the collection.

You should define the following methods on the iterator by overloading several operators:

1. Define a constructor which takes as input the address of a TwoWayVector as well as an
initial position. It should set the 2 properties of the iterator accordingly.

2. Define == to check whether the vector is the same as well as if currentPosition is
the same.

3. Define != to compare two iterators (opposite of ==)

4. Define ++ to increment the position by one. You should do this for both pre and post
fix notation. (i.e. ++x vs x++)

5. Define = to assign one iterator to another. This function should assign values to the
iterator being assigned to AND return the iterator being assigned to in order to allow
statements like (x = y = z)

6. Define + to take as input an int and add a value to the current position.

7. Define - to take as input an int and subtract a value from the current position.

8. Define < to take as input another iterator and check whether one iterator is less than
the other. < is determined based only on the value of currentPosition

9. Define * operator to get the value that the iterator is currently “pointing” at. For this
iterator, because it is possible to use the iterator to write values, you should return a
reference (simply add a & in the method header after the return type)

The trick to getting this correct is to think of all the weird cases one might use these
symbols with other types and try to match the usage. For example, if x is an int, the state-
ments x++; and ++x; do the exact same thing by themselves. However, int y = x++; and
int y = ++x; do slightly different things (the first one stores x into y before incrementing).
With equals, the most common case is x = y, but one could also write something like : z =

x = y which means “Store into z the result of the expression x = y.” The expression x = y

does something (stores y into x) and also returns a value.
You can then write the begin() and the end() methods for the TwoWayVector class

so that they return TwoWayVectorIterators with properties such that they represent the
beginning and end of the container respectively.

You can test your method by doing something like the following:

3

TwoWayVector<int> numbers;

numbers.push_back(3);

numbers.push_back(2);

for (TwoWayVectorIterator current = numbers.begin();

current != numbers.end();

current++)

{

cout << *numbers;

}

You can also see that you’ll be able to use your type with methods such as find if that
is part of the algorithms.h file.

Part 3: Implementing a vector with read only access

This last part is very short once you have implemented the last two parts. Now you will
implement a type TwoWayVectorConstIterator which is a read only iterator. The point is to
see that read only is determined not based on any sort of keyword, but rather based on what
operators you are allowed to use for your iterator. The code for TwoWayVectorConstIterator
should be exactly the same as TwoWayVectorIterator except the * operator should not
return a reference to the data. It should return a copy of the data. You can do this by
removing the & from the header.

Now that you’ve done this, you can finish the TwoWayVector class by adding the const begin

and const end methods. You can test the difference by trying to use your iterator to change
the value of your container. For example:

TwoWayVector<int> numbers;

numbers.push_back(3);

numbers.push_back(2);

for (TwoWayVectorIterator current = numbers.begin();

current != numbers.end();

current++)

{

*numbers = *numbers * 2;

}

will work. But if you use the other type, it will not.

2 Submitting your assignment

What To Submit

TwoWayVector.cc

TwoWayVectorIterator.cc

TwoWayVectorConstIterator.cc

4

Any other files needed for compiling (e.g. header files

CompileCommand.txt : In this file you should put the exact command you used
to compile your program with g++. This will vary depending on exactly how
you connected your files together and will let the TA run your code more easily.
Confession.txt (optional) In this file, you can tell the TA about any issues you
ran into doing this assignment. If you point out an error that you know occurs in
your problem, it may lead the TA to give you more partial credit. On the other
hand, it also may lead the TA to notice something that otherwise he or she would
not.

5

