
THE TOPOLOGY OF METRIC SPACES

DANA BERMAN

In the study of analysis, one often begins with the study of continuous
functions over the real numbers before generalizing to continuous function
on metric spaces. By doing so, we gain generality while simultaneously
simplifying our underlying assumptions. In this same spirit, we would like
to simplify our model for continuous functions even further. This is where
Topology will come into play. Before elaborating on this subject any further,
we remind the reader of a few definitions.

Definition 1. A non-empty set X with a function d : X → [0,∞) is called
a metric space if for all x, y, z ∈ X it holds that

(1) d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x), (Reflexivity)
(3) d(x, z) ≤ d(x, y) + d(y, z). (The triangle inequality)

The function d is called the metric on X.

Definition 2. Suppose that X and Y are metric spaces with metrics dX
and dY respectively. A function f : X → Y is said to be continuous at a
point x0 ∈ X if for every ε > 0, there exists δ > 0 such that

dY (f(x0), f(x)) < ε whenever dX (x0, x) < δ

Furthermore, for metric spaces X,Y , we say that a function f : X → Y is
continuous if f is continuous at every x ∈ X. We now turn to the definition
of an open set. A subset O of X is said to be open if for every x ∈ O, there
exists ε > 0 such that

B(x, ε) = {y ∈ X : dX(x, y) < ε} ⊆ O.

It is vacuous truth that the empty set is open. Furthermore, a set is said
to be closed if it’s complement is open. We now turn our attention to a
fundamental observation.

Theorem 3. Suppose X and Y are metric spaces with metrics dX and dY
respectively. A function f : X → Y is continuous at x if and only if the
pre-image for every open set O ⊆ Y containing f(x), there exists an open
set S ⊆ X containing x such that S ⊆ f−1(O).

Proof. Suppose first that f is continuous and let O be an open set containing
f(x). By definition of open sets, we may find ε > 0 such that

B (f(x), ε) ⊆ O
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Then, by continuity, there exists δ > 0 such that

dY (f(x), f(y)) < ε whenever dX (x, y) < δ

Thus, we define S = B(x, δ) which is an open set containing x for which it
holds that

f (S) ⊆ O ⇐⇒ S ⊆ f−1(O).

Conversely, fix ε > 0 and note that B(f(x), ε) is an open set in Y . By
assumption, there exists an open set S ⊆ X containing x such that

f (S) ⊆ B(f(x), ε).

In particular, by definition of an open set we may find δ > 0 such that

B(x, δ) ⊆ S

But then,
f (B(x, δ)) ⊆ B(f(x), ε)

which is precisely the statement that

dY (f(x), f(y)) < ε whenever dX (x, y) < δ.

This shows that f is continuous which concludes the proof. □
While the above theorem allows us to define continuity at a point, a more

interesting result is given below.

Theorem 4. Suppose X and Y are metric spaces with metrics dX and dY
respectively. A function f : X → Y is continuous if and only if the pre-
image of every open set is open. That is, for every open set O ⊆ Y , the set
f−1(O) is also open.

Proof. Suppose first that f : X → Y is continuous and let O be an arbitrary
open set in Y . If O is disjoint from the image of f then f−1(O) = ∅ which is
indeed open, whence we are done. Otherwise, f−1(O) is non-empty. In order
to show that f−1(O) is an open set, pick an arbitrary element x ∈ f−1(O).
Now, if y = f(x) then y ∈ O and so we may find ε > 0 such that

B(y, ε) ⊆ O

By continuity of f (at x), there exists δ > 0 be such that

f (B(x, δ)) ⊆ B(y, ε) ⊆ O

Thus,
B(x, δ) ⊆ f−1(O)

Since x was an arbitrary element of f−1(O), we conclude that the set is
open. The converse direction follows from the previous theorem. □

From the above theorems, we see that in order to define continuity we
only need information about the open sets. This will lead us to the definition
of a topological space.

A topological space (which will be defined shortly) is a tuple (X, T ) where
X is a non-empty set and T is a collection of subsets of X called the open
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sets. There are two core set operations: unions and intersections. In a
metric space, we make the following observations about the open set;

(1) An arbitrary union of open sets is open,
(2) A finite intersection of open sets is again open,
(3) The infinite intersection of open sets is not necessarily open.

The proof of the above facts is left as an exercise. Furthermore, if X is a
metric space then X and the empty set are themselves open.

The above observations lead us to a rigorous definition of a topological
space.

Definition 5. A non-empty set X with a collection of subsets T is said to
be a topological space if

(1) ∅, X ∈ T ,
(2) T is closed under arbitrary unions,
(3) T is closed under finite intersections.

In this case, we say that T is a topology on X.

If (X, T ) is a topological space, then we call the sets in T the open sets
of X. If S ⊆ X is such that Sc is open the S is said to be closed.

A metric space X with the collection open sets in the sense of a metric
space is called the metric space topology on X. We note a few properties
concerning the relationship between the open balls and open sets in a metric
space X. First note that the metric space topology (X, T ) is given by

T = {O ⊆ X : ∀x ∈ O, ∃ open ball B s.t. x ∈ B ⊆ O}
Furthermore, every open set is the union of open balls. Indeed, if O is open
then for each x ∈ O there exists εx > 0 such that B(x, εx) ⊆ O. But then,

O =
∪
x∈O

B(x, εx)

Conversely, it is clear that any arbitrary union of open balls is again open.
Note also that for every x ∈ X, there exists an open ball B such that x ∈ B.
If B1, B2 are balls and x ∈ B1∩B2 then there exists an open ball B ⊆ B1∩B2

with x ∈ B.
The above observations lead us to the following definitions;

Definition 6. Given a non-empty set X, a collection B of subsets of X is
called a basis if

(1) For all x ∈ X, there exists B ∈ B such that x ∈ B,
(2) If x ∈ B1∩B2 for some B1, B2 ∈ B then there exists B ∈ B satisfying

x ∈ B ∈ B1 ∩B2.

Furthermore, if (X, T ) is a topological space then B is said to induce the
topology T if every open set (i.e. set in T ) can be written as a union of
elements in B.

A few basic results are now in order.
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Proposition 7. If X is a non-empty set and B is a basis on X then the
collection of subsets

T = {O : O is the union of elements of B}

is a topology on X. We call this the topology generated by B.

Proof. We first notice that ∅, X ∈ T . By convention, the empty union is
precisely the empty set. Furthermore, since B is a basis, for every x ∈ X
there exists Bx ∈ B such that x ∈ Bx. Then

X =
∪
x∈X

{x} =
∪
x∈X

Bx

whence X ∈ T .
Now, it is clear that T is closed under arbitrary unions. It remains to

show closure under finite intersections. To this end, we pick two arbitrary
set O1, O2 ∈ T . By assumption, we may write

O1 =
∪
i∈I

Ai, and O2 =
∪
j∈J

Bj ,

where {Ai}i , {Bj}j ⊆ B. We may therefore write

O1 ∩O2 =
∪
i,j

Ai ∩Bj

Now, since B is a basis, for each x ∈ Ai ∩ Bj we may find Cij(x) ∈ B such
that

x ∈ Cij(x) ⊆ Ai ∩Bj

It is then clear that

O1 ∩O2 =
∪
i,j

∪
x∈Ai∩Bj

Cij(x)

We conclude that O1 ∩O2 ∈ T as desired. □

Corollary 8. If X is a non-empty set and B a basis on X then the topology
generated by B is the minimal topology containing B.

In a metric space, the open balls were our basis. Recall that given the
open balls, we had two distinct ways of defining the open sets. First as any
arbitrary union of open balls. Equivalently, we say that a set O is open if for
every x ∈ O there exists an open ball B such that x ∈ B ⊆ O. The below
proposition shows that this equivalence still holds in the more general case
where X is any non-empty set and B a basis for X.

Proposition 9. Let X be a non-empty set and B a basis. We claim that
the topology generated by B is precisely

T = {O ⊆ X : ∀x ∈ O, ∃B ∈ B such that x ∈ B ⊆ O}
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Proof. We will show that every set in T is a union of elements of B and
conversely that every union of elements of B is in particular in T .

Suppose first that O is an arbitrary element of T . Then for each x ∈ O,
let Bx ∈ B be such that x ∈ Bx ⊆ O. Then it is clear that

O =
∪
x∈O

Bx

Conversely, suppose that
O = {i ∈ I}Bi

for some {Bi}i ⊆ B. Then for every x ∈ O, there exists i ∈ I such that
x ∈ Bi. So we have x ∈ Bi ⊆ O which shows that O ∈ T . □


