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Abstract

Assessing software quality is fundamental in the software developing field. Most

software quality characteristics cannot be measured before a certain period of use of

the software product. However, they can be predicted or estimated based on other

measurable quality attributes. Software quality estimation models are built and used

extensively for this purpose. Most such models are constructed using statistical or

machine learning techniques. However, in this domain it is very hard to obtain data

sets on which to train such models; often such data sets are proprietary, and the

publicly available data sets are too small, or not representative. Hence, the accuracy

of the models often deteriorates significantly when they are used to classify new data.

This thesis explores the use of genetic algorithms for the problem of optimizing

existing rule-based software quality estimation models. The main contributions of

this work are two evolutionary approaches to this optimization problem. In the first

approach, we assume the existence of several models, and we use a genetic algorithm

to combine them, and adapt them to a given data set. The second approach optimizes

a single model. The core concept of this thesis is to consider existing models that have

been constructed on one data set and adapt them to new data. In real applications,

this can be seen as adapting already existing software quality estimation models that

have been constructed on data extracted from common domain knowledge to context-

specific data. Our technique maintains the white-box nature of the models which can

be used as guidelines in future software development processes.



Résumé

L’évaluation de la qualité de logiciel s’avère d’une importance fondamentale dans le

domaine de développement de logiciel. La plupart des qualités ne peuvent, cependant,

pas être mesurées d’avance (à priori), c’est-à-dire avant que le logiciel ne soit utilisé

pour une certaine période de temps. Cependant, ces qualités peuvent être estimées

à partir de propriétés qui sont mesurables. Dans ce but, sont construits les modèles

d’estimation de la qualité de logiciel, qui trouvent un grand usage. La plupart de ces

modèles sont construits à partir de techniques statistiques ou d’apprentissage automa-

tique. Toutefois, dans ce domaine, il est difficile d’obtenir des ensembles de données

pouvant être utilisés pour produire de tels modèles. En effet, la plupart du temps,

ces ensembles de données sont des propriétés privées et ceux qui sont publics sont

de tailles très limitées ou non représentatifs. Ceci implique une détérioration assez

importante dans la prédiction que les modèles performent sur des données nouvelles.

Cette thèse explore l’utilisation des algorithmes génétiques pour résoudre le problème

d’optimisation des modèles, à base de règles, d’estimation de la qualité de logiciel.

La contribution principale de cette oeuvre consiste en deux approches évolutionnistes

à ce probléme d’optimisation. La première consiste à combiner différents modèles

existants, et de les adapter à un ensemble de données. La deuxième consiste à opti-

miser un seul modèle. L’idée principale de cette thèse est de prendre des modèles qui

existent, ayant été déjà construits à partir d’un certain ensemble de données, et de les

adapter à d’autres données. En pratique, ceci pourrait être vu comme l’adaptation

de modèles, construits à partir des données générales, à des données reliées à un

contexte bien spécifique. Notre technique maintient la nature ”bôıte blanche” des
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modèles, ces derniers pouvant être utilisés comme normes dans des procédures fu-

tures de développement de logiciel.
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CHAPTER 1

Introduction

Assessing software quality is fundamental in the software developing field as it helps

reduce costs, time and effort. However, certain important quality characteristics (such

as maintainability, reliability, reusability, etc.) cannot be measured before the system

is used for a certain period of time. Nonetheless, they can be estimated based on

software attributes which can be measured during the design and implementation

process (e.g. cohesion, coupling, etc.). Many metrics have been proposed in the

literature for this purpose. Software quality estimation models are built to estimate

unmeasurable characteristics based on measurable attributes.

Many software quality estimation models have been built and used by companies

such as NASA and HP. However, they all suffer from degradation of their predictions

when they are applied to new data. This is largely due to the lack of representative

samples that can be drawn from available data in the domain of software quality.

Unlike other fields where public repositories abound with data, software quality data

is usually scarce, because it takes a lot of effort to produce labelled data sets in which

a person has annotated the data with the labels corresponding to the unmeasurable

characteristics. Moreover, data is often system-specific, and there is a lot of variability

in the metrics and labelling produced for different software elements. Also, building a

measurement program incurs high costs and many companies are not willing to share

the data once it has been collected. Because software quality estimation models are
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typically built from data using machine learning or statistical techniques, it becomes

hard to build estimation models that maintain their accuracy (or remain close to it)

when used to make predictions for new data.

In this thesis, we attempt to solve this problem by proposing a strategy that

allows existing software quality estimation models to adapt in order to provide better

predictions on new data. The main contribution of this thesis is a genetic algorithm-

based strategy to adapt one or more software quality estimation models built on one

data set to another set. We propose two approaches:

• Combining and adapting different software quality estimation models to a

set of data.

• Adapting a software quality estimation model to a set of data.

In practice, the first approach can be seen as combining the expertise of several soft-

ware quality estimation models, built from common domain knowledge, and adapting

the combined models to context-specific data. The second can be seen as taking an

already-existing model, built from common domain knowledge (for example) and

adapting it to a specific context. In both approaches, the initial model(s) is (are)

already existent and the goal is to transfer the knowledge already acquired into the

new adapted model(s).

The rest of this chapter is organized as follows: in Section 1, we define software

quality. In Section 2, we describe how software quality is evaluated. Section 3 intro-

duces software quality estimation models. Section 4 describes the problem tackled

in this thesis. Section 5 describes the contributions of our work. Section 6 gives the

statement of originality of the work, and Section 7 gives the organization of the thesis.

1. Software Quality

Before discussing software quality estimation, perhaps the first question to ad-

dress is what exactly is software quality? Galin gives two definitions for the phrase

[Galin, 2004]. The first is the IEEE definition [IEEE, 1991]:

2
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Software quality is:

1. The degree to which a system, component, or process meets specified

requirements.

2. The degree to which a system, component, or process meets customer

or user needs or expectations.

The second definition is in reference to Pressman [Pressman, 1997]:

Software quality is:

Conformance to explicitly stated functional and performance requirements,

explicitly documented development standards, and implicit characteristics

that are expected of all professionally developed software.

While these definitions are slightly different, they agree on the point that software

quality is not one specific characteristic of a software artifact, but a combination of

characteristics.

2. Evaluation of Software Quality

The quality of a software system is evaluated in terms of characteristics such as

maintainability, reusability, reliability, etc. Below, we define these terms as this will

help us understand more what quality is about.

According to Pressman [Pressman, 1997], maintainability is “ the ease with

which a program can be corrected if an error is encountered, adapted if its environ-

ment changes, or enhanced if the customer desires a change in requirements.” In

[Krueger, 1992], reusability or software reuse is defined as “ the process of using

existing software artifacts instead of building them from scratch. [Ghezzi et al., 2003]

adopt the definition of reliability as “the probability that the software will operate

as expected over a specified time interval.” ISO/IEC 9126 offers a framework for the

3
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evaluation of software quality. It defines six product quality characteristics and a sug-

gestion of dividing them into quality subcharacteristics. Namely, these characteristics

are: functionality, reliability, usability, efficiency, maintainability and portability. Be-

low, we give the definitions of these characteristics as found in [ISO/IEC9126, 1991].

functionality: the capability of the software to provide functions which

meet stated and implied needs when the software is used under specified

conditions.

reliability: the capability of the software to maintain its level of per-

formance when used under specified conditions.

usability: the capability of the software to be understood, learned, used

and liked by the user, when used under specified conditions.

efficiency: the capability of the software to provide the required perfor-

mance, relative to the amount of resources used, under stated conditions.

maintainability: the capability of the software to be modified. Modifica-

tions may include corrections, improvements or adaptation of the software

to changes in environment, and in requirements and functional specifica-

tions.

portability: the capability of software to be transferred from one envi-

ronment to another.

Most of these characteristics cannot be measured before the system is used for a

certain period of time. However, there exist some software attributes that can be

measured during the software development cycle, and which can be used as indicators

4
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of them. Examples include cohesion and coupling. Cohesion is characterized by how

closely the local methods are related to the local instance variables of the class in an

object-oriented system [Fenton and Pfleeger, 1997]. In other words, it is the degree to

which the elements within the same class are linked. Coupling refers to the degree

of interdependence among the classes of a software system [Briand et al., 1997]. In

[Chidamber and Kemerer, 1994], it is defined as “any evidence of a method of one

object using methods or instance variables of another object”. To illustrate how

certain software quality attributes can be indicators of some quality characteristics,

we take the example of the reusability of a software component (a class in an object-

oriented system, for example). Assessing the reusability of a software product is

very important because it helps produce high quality software more quickly [Basili et

al., 1996]. It is not possible to directly measure reusability. However, the complexity

(measured in terms of the complexity of the underlying algorithm or the complexity of

the problem to solve, for example) and volume (amount of computer storage necessary

for a uniform binary encoding [Fenton and Pfleeger, 1997]) of a software component

can be a good indicator of its reusability. As a matter of fact, some studies have

shown that highly reused components tend to have complexity and volume measures

lower than those of less reused components [Mao et al., 1998]. Hence, it makes

sense to use the complexity of a component or its volume to estimate its reusability.

Complexity is a directly measurable quality. Reusability is not. This underlines the

importance of metrics. The IEEE Standard Glossary of Software Engineering Terms

[IEEE, 1993] defines metric as “a quantitative measure of the degree to which a

system, component, or process possesses a given attribute.” According to El-Emam,

software product metrics are objective measures of the structure of software artifacts

in the sense that repeated measurements of the same (unchanged) software artifact

yield the same values [Erdogmus and Tanir, 2002]. In his well-cited book, Software

Engineering: A Practitioner’s Approach, Pressman also stresses the objectivity that

measurement gives to the evaluation process [Pressman, 1997]:

5
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If you don’t measure, judgement can be based only on subjective

evaluation. With measurement, trends (either good or bad) can be

spotted, better estimates can be made, and true improvement can be

accomplished over time.

Metrics have been proposed and used to measure software elements and develop-

ment processes. In our discussion, we are interested in the metrics used for software

elements.

Several works have proposed metrics to measure the quality of software in object-

oriented design. The most popular, to date, remain the CK metrics proposed by

Chidamber and Kemerer [Chidamber and Kemerer, 1994]. These were intended to

capture cohesion, complexity, coupling and depth of inheritance in object-oriented

design. In object-oriented design, classes can be derived from others. In this con-

text, a tree can be drawn where inheriting classes appear as children of the classes

from which they inherit. These trees are called inheritance trees. [Basili et al.,

1996] found that most of the CK metrics were useful for predicting fault-proneness

of classes during the design phase (fault-proneness indicates a high maintainability

cost). Similarly, [Briand et al., 1999] investigate the usefulness of coupling and co-

hesion metrics in estimating the fault-proneness of a class. [Demeyer and Ducasse,

1999] show that inheritance and size metrics are good indicators of stability but not

reliable for problem detection. In [Briand et al., 1996] and [Briand et al., 1997], the

authors define metrics that capture different types of coupling. In [Martin-Albo et

al., 2003], an initial version of a classification model for metrics of software compo-

nents (CQM-Component Quality Model) is proposed. Other metrics were proposed

in [Henderson-Sellers, 1991], [Henderson-Sellers, 1996], [Li and Henry, 1993b], [Li and

Henry, 1993a], [Coppick and Cheatham, 1992], [Barnes and Swim, 1993] and [Lorenz

and Kidd, 1994]. A good survey on metrics and how to measure is [Riguzzi, 1996].

Below, we give a very brief table with the description of a few of these metrics for the

mere purpose of de-mistifying what is meant by a software quality metric.

6
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Name Description Definition
DIT Depth of Inheritance Tree Length of the longest path from the root

to the class in the inheritance tree.
NOC Number of Children Number of classes that inherit from a particular

class.
NOA Number of Ancestors Number of ancestor classes that a particular

class has.

Table 1.1. Three object-oriented metrics and their definition.

3. Software Quality Estimation Models

Building a software quality estimation model consists of building a relationship

between what is directly measurable (complexity, for example) and other qualities

that are not directly measurable (reusability, for example)1. Many software quality

estimation models have been proposed in the literature, and companies have largely

adopted them in order to improve their software development process [Sahraoui et al.,

2000a]. These take different forms: statistical models, decision trees, rule sets, etc. In

all cases, they are used to predict the value of a variable, called dependent variable,

based on the value of one or more other variables, called independent variables.

We are interested in rule-based software quality estimation models because of their

white-box nature and their ease to understand as we will describe later.

For example, consider the task of estimating the fault-proneness of a class in an

object-oriented system. Assume that the task consists of estimating whether a class

is fault-prone or not. Let us denote by 0 the fact that a given class is fault-prone

and by 1 the fact that it is not. These are called classification labels. Suppose,

furthermore, that the estimation is based on three metrics: NOC (Number of Classes

that inherit from the specified class), NOM (Number of Methods in the class) and

DIT (Depth in Inheritance tree). A rule-based estimation model for this task can

look like the following:

1We are not claiming that this relationship between the two is of the if-then type. We are stating
that one can be used as an indicator of the other.

7
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Rule1 : NOM ≤ 3 ∧NOC > 2→ 1

Rule2 : NOM > 4 ∧DIT > 2→ 0

Default class: 1

Briefly, the estimation model shown above consists of two rules and a default classi-

fication label. The first rule estimates that if a class, in an object-oriented system,

contains 3 methods or fewer and the number of classes that inherit from it is more

than 2 then it is not fault-prone. The second one estimates that if a class contains

more than 4 methods, and it is at a depth level more than 2 in the inheritance tree,

then it is fault-prone. For all classes that do not satisfy any of the rules, they are

estimated to be not fault-prone (default class 1).

Now, consider that this estimation model is used to estimate the fault-proneness

of the following three classes:

class 1 has: NOM = 2, NOC = 3 and DIT = 3

class 2 has: NOM = 5, NOC = 1 and DIT = 3

class 3 has: NOM = 4, NOC = 2 and DIT = 1

When presented with the classes, the estimation model starts with the first one, class

1, which satisfies the two conditions in Rule 1; hence the rule assigns to it its label (1)

and the model estimates this class not to be fault-prone. class 2 is then presented to

the estimation model, the class fails to satisfy the first condition of Rule 1 (NOM = 5

hence, the condition NOM ≤ 3 is false) so it is immediately passed on to Rule 2. The

class satisfies both conditions of Rule 2 and hence, it is estimated to be fault-prone

(label 0). Finally, class 3 is presented to the model, it fails to satisfy any of the rules

and hence the estimation model attributes to it the default label (1) and the class is

estimated not to be fault-prone.
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As one can see, such estimation models are easy to interpret by human experts. In

fact, they allow to better find where to restructure the software to improve its quality.

This has earned them a wide use in the field of software quality. In Chapter 2, we

give a review of the work that has been done in building software quality estimation

models, in general, and rule-based software quality estimation models, in particular.

We also cover the work that has been done in optimizing software quality estimation

models. In the same chapter, we describe the process of building rule-based quality

estimation models (and we describe the machine learning algorithm C4.5 [Quinlan,

1993] used to construct such models). Often, these models leave much room for

improvement in their accuracy (percentage of correctly classified classes) especially

when the models are used to classify new unseen data (we will focus more on this

issue in Chapter 2). Improving this aspect will be a core concern of this thesis.

4. Problem Statement and Objective

The problem tackled in this thesis is the improvement of already existing software

quality estimation models in order to use them to classify new, unseen data. The lack

of data from which a representative sample can be drawn, in the domain of software

quality, makes the process of building a representative software quality estimation

model difficult. This is mainly due to the fact that collecting the data is costly in

terms of time and money and hence, such data bases become proprietary. As a result,

the estimation accuracy of software quality estimation models built from one data set

(taken from a specific domain or context) deteriorates as these are used to classify

new, unseen data (taken from another domain)2. [Sahraoui et al., 2001] show that

this is due to the threshold values included in the models being too specific to the

learning sample.

Ideally, we want to build models from available data and use them to classify

new data. The accuracy of the models, when predicting the new data should not

drop significantly. The importance of the reuse of existing models emerges from two

2For a detailed explanation of how estimation models are built, the user can refer to Chapter 2,
Section 1.
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different facts. First, it saves the time needed to collect data from which the models

are initially built. Second, it allows the incorporation of the knowledge acquired at

the time the models were built into the new models.

The questions that motivate this thesis are the following:

• How can several software quality estimation models be combined in a way

that gives one or more better3 models when used to classify a different data

set?

• How can a software quality estimation model (built from one data set) be

adapted to classify a new data set with a high accuracy?

Both situations can emerge in practice and in both cases, the core idea is to keep

the expertise of the original model(s) acquired at the time they were built. Since

the search space is very large and exhaustive search or local search methods are

not efficient in such situations, we present a genetic algorithm-based technique that

considers two approaches:

• Using a genetic algorithm to combine several rule sets and adapt them to

a new data set.

• Using a genetic algorithm to adapt an existing rule set to a new set of data.

In both cases, the objective is to obtain a rule set that is more accurate than the

initial rule sets.

5. Contributions

The main contribution of this thesis is a genetic algorithm-based technique to

optimize software quality estimation models. The technique is tested and validated

on three real data sets. Two of them are used to estimate stability of classes in

object-oriented software systems (defined in Chapter 4, Section 4) and one to estimate

fault-proneness (defined in Chapter 4, Section 2) in C++ classes.

Our technique uses rule-based predictive models and the end result is of the same

form. The advantage of this approach is the white-box nature of the model. The rule

3Better in terms of prediction accuracy.
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set has a double utility. It can be used to assess the desired software quality as well

as to provide practitioners with guidelines to follow at the design stage.

Our technique allows the incorporation of past knowledge learnt from one data set

into software quality estimation models that are used on a different data set. This is

particularly useful in a field like software quality where data from which representative

samples can be drawn is not readily-available. Our approach can also be used to take

rule sets built from common domain knowledge and adapt them to specific context

data.

Although assessed on data from the object-oriented paradigm, our technique

remains general and can be easily adapted to apply to other software systems as

well. Also, it is a general technique that is not tied to any specific type of rules or

attributes.

6. Statement of Originality

Portions of the results published in this thesis have appeared in [Sahraoui and

Azar, 1999], [Azar et al., 2002] and [Bouktif et al., 2004]. In particular, the algorithm

and the results in Chapter 4, Section 2 have appeared previously in [Sahraoui and

Azar, 1999]. An initial version of the algorithm described in Chapter 5 has appeared

in [Azar et al., 2002] and [Bouktif et al., 2004]. These two papers contain results

not published in this thesis (the latter contains an improvement of the algorithm).

They also compare our approach that adapts a single model to a new data set to

an independent work done by Sahraoui, Bouktif and Kégl, which aims at combining

different models. The two papers have been co-authored with them.

7. Thesis Organization

The remainder of the thesis is organized as follows. In Chapter 2, we present

background material and previous work in building software quality estimation mod-

els. In Chapter 3, we give an overview of genetic algorithms. Chapters 4 and 5 contain

our main contributions. In Chapter 4, we design and evaluate genetic algorithms that

11
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take several rule sets, combine them and adapt them to a new data set. The genetic

algorithm described in Chapter 5 works on a single rule set and adapts it to a new

data set. In Chapter 6, we conclude the thesis with final remarks and future work.

12



CHAPTER 2

Background

In this chapter, we describe previous work done in building and optimizing software

quality estimation models. Such models have been used extensively, and most such

models are built using machine learning techniques. Some machine learning tech-

niques allow building models that are easy to interpret, such as decisions trees or rule

sets. This is in contrast with some statistical techniques, such as regression, which

yield models that are harder to inspect. Interpretability is of major importance in

software quality models, because we want such models to provide guidelines that are

useful in the software development stage. In this thesis, we will focus specifically on

rule-based models, which are easy to interpret.

The chapter is organized as follows. In sections 1 and 2, we give an overview of

inductive learning and define the measures that are used to evaluate software quality

estimation models. In Section 3, we review previous work that has been done in

building software quality estimation models, focusing on work that compares different

types of models. In Section 4, we describe rule-based models, the kinds of models

that we will focus on in this thesis. Sections 5 and 6 describe decision trees and

the algorithm C4.5, a state-of-art algorithm for constructing them. We describe the

way in which decisions trees can be transformed into rule sets, because such rule sets

will be used later in our experiments. In Section 7, we describe previous work using



2.1 INDUCTIVE LEARNING

decision trees and rule-based models for software quality estimation. In Section 8, we

describe existing work on optimizing rule-based software quality estimation models.

1. Inductive Learning

In his book Machine Learning, Tom Mitchell defines learning to include any

computer program that improves its performance at some task through experience

[Mitchell, 1997]. One paradigm of learning is inductive learning which consists

of finding a general description of a concept based on a set of examples [Carbonell,

1990]. Examples are usually described by a set of attributes and the learning task

consists of predicting a label based on the values of the attributes for each example.

Consider, for example, the task of predicting whether a class in an object-oriented

system is fault-prone or not. Suppose, for the sake of simplicity, that this depends on

three attributes of the class namely, the number of classes that inherit from this class,

the depth of inheritance of the class and the number of methods in this class. The

three metrics that measure these three characteristics are: NOC, DIT and NOM

respectively. Table 2.1 shows a set of examples of classes described by the values

that they have for these attributes. Each row in the table describes a class in an

object-oriented system or a case. Each entry in a row, except the last one, is a value

that the class has for the corresponding attribute and the last entry indicates the

label of the class (whether it is fault-prone or not).

NOC DIT NOM fault-prone

3 2 4 No
4 3 15 Yes
3 3 5 No
5 6 10 Yes

Table 2.1. Examples for the learning task Is the class fault-prone?.

The learning task consists of learning from these examples to predict under what

circumstances a class in an object-oriented system is more likely to be fault-prone.

14
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When the label is discrete (as is the case in the example above), the task is known as

a classification task; when it is continuous, the problem is called regression. Our

focus in this thesis is on classification tasks.

Classification models can be built using statistical methods [Hunt, 1975] or ma-

chine learning-based methods. In the latter case, models can take many different

forms, e.g. decision trees, rule-based models, neural networks, instance-based classi-

fiers, etc. We will focus on rules and decision trees in this thesis because such models

are easy to inspect and translate into guidelines for software development. Among

the algorithms that construct rules or decision trees are NEWID [Boswell, 1990], CN2

[Clark and Niblett, 1989], C4.5 [Quinlan, 1993] and FOIL [Quinlan, 1990], to name

a few. The first three algorithms use an attribute-value-based description language

(similar to Table 2.1) to construct classification models. In other words, they al-

low tests involving comparisons of the individual attributes and their possible values.

FOIL is the only system that allows relationships between attributes as well. While

the expressive power of FOIL remains higher than the other algorithms, preparing

the data for the algorithm is more complex. For more detail on these and other

machine-learning algorithms, we refer the reader to [Mitchell, 1997].

2. Evaluation Criteria and Definitions

In most classification tasks, the evaluation criteria depend on the percentage of

the examples (cases) that are correctly classified in the set of all examples. Below, we

define the evaluation criteria that are commonly used when building software quality

estimation models and the criteria that we will use in this thesis.

Definition 2.1. The real classification label of a case is the label that has been

recorded during data collection (through an automated process or by human experts).

Definition 2.2. The predicted classification label of a case is the label pre-

dicted by the classification model.

15



2.2 EVALUATION CRITERIA AND DEFINITIONS

Definition 2.3. The confusion matrix of a classification model, M , computed

on a data set D, is an n×n table, T , where each number nij in entry T (i, j) indicates

the number of cases in D with a real classification label i and predicted classification

label j.

predicted label

c1 c2 . . . ck

c1 n11 n12 . . . n1k

real c2 n21 n22 . . . n2k

label
...

...
...

...
...

ck nk1 nk2 . . . nkk

Note that the diagonal elements in this matrix indicate how many examples are

classified correctly whereas off-diagonal elements indicate mistakes.

Definition 2.4. The accuracy, C(M), of a classification model M , computed

on a data set D, is the percentage of cases in D correctly classified by M .

C(M) =

∑k

i=1
nii∑k

i=1

∑k

j=1
nij

. (2.1)

Definition 2.5. The error rate, E(M), of a classification model M computed

on a data set D is the percentage of cases in D incorrectly classified by M .

E(M) = 1− C(M). (2.2)

Most classification algorithms are designed to maximize accuracy. However, in the

case in which one classification label appears much more frequently than the others,

accuracy is not a good indicator of performance. For instance, suppose that 97 out of

100 cases are of class 1, then, the majority classifier, which assigns to new examples

the most frequent label from the training set, will have very high accuracy although

it is only doing a good job for one class. This problem is especially important if

misclassifications for the less frequent classes are more costly. An alternative measure

aimed at capturing such situations is J index [Youden, 1998].
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Definition 2.6. The J index, J(M), of a classification model M computed on

a data set D is the average accuracy of M per class label.

J(M) =
1

k

k∑

i=1

nii∑k

j=1
nij

. (2.3)

3. Previous Work in Building Software Quality Estimation

Models

The software engineering literature is rich with work that proposes different tech-

niques for building software quality estimation models. In particular, [Jorgensen,

1995] and [Briand et al., 1993] use machine learning algorithms to build models that

estimate corrective maintenance cost. Corrective maintenance has to do with the

removal of residual errors that are present in the product when it is delivered, as well

as errors introduced into the software during its maintenance. Jorgensen compares

three approaches: regression, feed-forward neural networks with back-propagation

[Mitchell, 1997] and pattern recognition (with the Optimal Set Reduction Method

from [Briand et al., 1992]). He considers the task of constructing a predictive model

of the cost of corrective maintenance, based on one metric, LOC (Line of Code).

This metric does not reflect most of the tasks that are involved in maintaining the

system, but at the time, the only other metric available was function points, which

is not a meaningful predictor on some small maintenance tasks. Pattern recogni-

tion proved to be more accurate than neural networks and regression. Also, this

technique gives some insight into the maintenance process while models produced by

neural networks and regression are black-box: they give the classification label only

without allowing the inspection of the concept learned. Inspection is very important

as it allows experts to draw guidelines that can be incorporated in future develop-

ment procedures. These guidelines will help reduce undesired quality characteristics.

In [Briand et al., 1993], logistic regression is compared to Optimized Set Reduction

(OSR). The work investigates the use of both techniques to build models that can

help identify “high risk” components in several Ada systems. Systems were evaluated
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according to their correctness (percentage of correct classifications when a component

is classified as high risk) and completeness (percentage of high risk components that

are classified as such by the model). OSR achieved a higher average correctness and

completeness than logistic regression. Similar to our work, there is a strong emphasis

on the ability to interpret the obtained classification models (OSR models are eas-

ily interpretable whereas logistic regression models lack this characteristic). In the

same vein, [De Almeida et al., 1999] analyze five public domain machine learning

algorithms: C4.5, C4.5rule, CN2 [Clark and Niblett, 1989], NewID [Boswell, 1990]

and FOIL [Quinlan, 1990] . The algorithms are compared on the task of predict-

ing the difficulty to correct faulty Ada programs. The testbed of the experiments is

data collected on corrective maintenance activities for the Generalized Support Soft-

ware reuse asset library located at the Flight Dynamics Division of NASA’s Goddard

Space Flight Center (GSFC). FOIL showed a higher overall accuracy than the other

algorithms. Also, FOIL has better expressive capabilities than the other algorithms

since it allows relations between different attributes (as opposed to C4.5, for example,

which establishes relations between attributes and values). However, preparing the

data for FOIL remains much more complicated than preparing it for C4.5. In [Shep-

perd and Kadoda, 2001], three prediction techniques are compared namely, stepwise

regression, rule induction and case-base reasoning [Mitchell, 1997] using simulated

data. The work shows that the results depend on the characteristics of the dataset

(size of the training set, number of metrics, type of distribution, etc.). It suggests

that such characteristics should be taken into account when choosing a particular

technique.

In [Lanubile and Visaggio, 1996], a comparative empirical study was conducted

to assess the performance of several techniques for predicting the quality of software

components (in this work, a software component refers to a functional abstraction of

code such as a procedure, a function or the main program). The techniques consid-

ered were discriminant analysis, logistic regression, C4.5, layered neural networks and

holographic networks. In addition to these models, discriminant analysis and logistic
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regression were combined with principal component analysis. Each model was trained

to produce a binary classification of software quality as high-risk or low-risk. Similarly

to [Shepperd and Kadoda, 2001], the authors discussed the fact that the predictive

power of any model is first of all dependent on the quality of the training data set.

The techniques under consideration were compared against each other according to

the following performance characteristics: completeness (percentage of high-risk soft-

ware components that have been actually classified as such by the model), Type 1

misclassification rate (ratio of high-risk software components that were classified as

low risk to the total number of components) and Type 2 misclassification rate (ratio

of low-risk components classified as high-risk to the total number of components). Fi-

nally, verification cost was measured by two criteria: Inspection Cost (percentage of

software components classified as high-risk and thus sent for inspection) and Wasted

Inspection (percentage of components that were classified as high risk but were in-

deed low-risk). Among the models that were not combined with principal component

analysis, the classification models (obtained with C4.5) and holographic networks

achieved the best results in terms of completeness (47.37%) while the former also had

a lower rate of Type 2 misclassification rate. These two models also had the lowest

Wasted Inspection cost. The performance of other models was around 5% lower in

terms of Completeness. The best performance in terms of completeness was achieved

by the combination of the principal component analysis and logistic regression1 fol-

lowed by the combination of principal component analysis and discriminant analysis

(73.68% and 68.42% respectively). However, high completeness of the two combined

models was achieved only because these models classified many software components

as high-risk resulting in relatively high Wasted Inspection cost and a very high Type

2 misclassification rate.

In [Cohen and Devanbu, 1997], two inductive logic programming (ILP) methods,

FOIL and FLIPPER [Cohen, 1995] were used for predicting fault density in C++

classes. Both of them learn function-free Prolog predicate definitions from examples.

1Principle component analysis was first applied to reduce the complexity of the feature space from
11 to 3 (11 attributes were grouped into 3 components).
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FLIPPER was found to achieve lower error rates than FOIL, especially when there

is noise in the data (verified on some artificial datasets). Observed performance

differences between the two ILP systems were attributed mainly to differences in

pruning strategies (defined in Section 5).

Other techniques have also been used to build software quality estimation models

such as Dempster-Shafer belief networks [Guo et al., 2003], unsupervised learning

[Zhong et al., 2004], etc. but the majority of the work done in this arena relied on

supervised learning.

4. Rule-Based Classification Models

Rule-based classification models are among the easiest to interpret by human

experts. For this, they have acquired a wide popularity in the domain of software

quality estimation. A rule-based classification model or a rule set is a list of rules

with, sometimes, a default classification label. A rule has the form L → R where

the left hand side (L) is a conjunction of attribute tests (one or more attribute tests

that are combined with the logical operator AND) and the right-hand side, R, is a

classification label. To illustrate, we repeat the example given in Chapter 1, Section 3,

of classifying classes in an object-oriented system as being fault-prone or not. The

attributes in this example are: NOC (Number of Classes that inherit from the class),

NOM (Number of Methods in the class) and DIT (Depth in the Inheritance tree).

The rule set looks as follows:

Rule1 : NOM ≤ 3 ∧NOC > 2→ 1

Rule2 : NOM > 4 ∧DIT > 2→ 0

Default class: 1

We say that a rule fires on a case or classifies a case if the latter satisfies the

left hand side of the rule (i.e. it satisfies all the conditions in the left hand side
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of the rule). There are two possible schemes that a rule set can follow in order to

classify a case. In the sequential scheme, the rules in the rule set are considered

in a top-down sequential order and the top-most rule whose left hand side matches a

case fires. If no rule fires, the rule set classifies the case by the default classification

label. In the voting scheme, the classification label of all rules that match a case is

considered and the case is classified by the label that receives the majority vote from

all the rules. Here, also, the default classification of the rule set is applied when no

rules in the rule set fire. Variations of the voting scheme allow votes to be weighted.

The sequential scheme has the advantage of being faster since not all rules have to

be matched with a case. The advantage of the voting scheme is that the order of the

rules in the rule set does not matter and there is no bias against rules that appear

towards the bottom of the rule set.

There are many algorithms that can be used to construct rule-based classification

models. One such approach is to first construct decision trees then convert them into

rules. We describe this approach in detail in the next section.

5. Decision Trees

A decision tree is a classifier that has the structure of a tree where each internal

node is a test involving one attribute and each leaf node is a classification label. A

branch in the tree indicates a value for the outcome of the test 2 in the internal node

from which the branch emerges. The tree is then used to classify a set of unseen data

or a testing set. Figure 2.1 shows an attribute file and a training set from which a

decision tree is constructed.

When classifying a case, the tree is traversed in a top-down order, starting at the

root. At each internal node, the test is evaluated and the search is directed through

one path according to the outcome. This proceeds until a leaf node is reached. Then,

the classification label at this node is attributed to the case.

2The outcomes of a test are all mutually exclusive.
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0,2,4,1,0
8,6,0,3,1
9,0,1,2,1
9,9,0,0,0
1,1,0,7,1
1,0,0,8,0
0,2,4,2,0
8,6,0,1,1
9,0,2,4,0
3,6,0,1,1
9,0,1,2,1
7,2,0,0,0
1,1,0,7,1
1,8,0,10,1
1,9,0,0,0
1,1,0,7,1
1,0,0,3,0

0,1.

A: continuous.
B: continuous.
C: continuous.
D: continuous.

C <= 1

Yes
No

0D <= 0

Yes No

0 B <= 0

  Yes No

1A <= 3

  Yes
No

0 1

Figure 2.1. Attribute file (left-most), training file and a decision tree con-
structed from them. The first line in the attribute file indicates the classifi-
cation labels for the task.The next ones list the attributes and their types.

The algorithm for building the tree is based on the divide-and-conquer method-

ology and is as follows:

If there are no cases in the training set,

create a leaf node and label it using some other knowledge

source.

If all cases in the training set are of the same category,

create a leaf node and label it with the name of this category.

else select one attribute,

perform a test based on this attribute,

divide the training set into subsets, each associated with one

possible value of the test outcome.

repeat the same algorithm above with each subset of the training

set.

The choice of the attribute test is usually done according to the information gain

measure which assesses how well a given attribute, by itself, separates the training
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examples according to the classification desired. This relies on the measure of entropy.

Given a Boolean classification problem and a subset, S, of examples, the entropy of

S relative to the Boolean classification of the examples is [Mitchell, 1997]:

Entropy(S) = −p⊕log2p⊕ − p	log2p	 (2.4)

where p⊕ is the proportion of positive examples in S and p	 the proportion of negative

examples. 0 log 0 is defined to be equal to 0. If the classification can take on c values

(where c > 2) and pi is the proportion of examples in S belonging to class i then the

entropy of S is defined as:

Entropy(S) =
c∑

i=1

−pilog2pi (2.5)

The entropy of a subset S measures the average amount of information needed to

identify the classification label of a random case drawn from S.

One problem exhibited by most decision trees is overfitting. According to Mitchell,

a decision tree is said to overfit the training set if some other tree that fits the train-

ing set less well actually performs better over the entire distribution of the cases

(training and testing sets) [Mitchell, 1997]. Several techniques have been developed

in order to prevent overfitting. The most successful one is pruning. Pruning of a de-

cision tree consists of replacing one or more subtrees with branches or leaves without

compromising the accuracy measured on the testing set.

As we can see from Figure 2.1, decision trees are relatively easy to understand by

human experts. However, rule-based classification models remain easier to understand

and can be easily derived from decision trees by re-iterating each path from the root

to a leaf as a rule3. The rule is formed as a conjunction of the attribute tests along the

path and the classification label indicated by the leaf. Figure 2.2 shows an example

of a tree and its branches re-iterated as rules. The left-most branch is re-iterated at

the top of the list and the right-most branch at the bottom.

3Some algorithms directly generate such models without going through the intermediate step of
generating a decision tree.
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The state-of-art algorithm used to construct decision trees is Quinlan’s C4.5

[Quinlan, 1993] that we describe in the next section.

6. C4.5

The core of C4.5 is the divide-and-conquer based algorithm described in the

previous section. C4.5 can be run with the windowing technique. The idea behind

this technique is to select a subset of the training cases and build a tree from it. This

tree is then used to classify the cases that were not included in the window. Some of

these will be misclassified. A selection of the misclassified cases is added to the window

and the process is repeated until the tree built from the cases in the window classifies

all the cases outside it, or it appears that no more improvement occurs. Multiple

runs of C4.5 with the windowing technique will yield multiple decision trees. When

it was first introduced in ID3 (the precursor of C4.5), the purpose of the windowing

technique was to overcome the small memory size by loading only a subset of the cases

in the main memory. However, when C4.5 came to light, memory was not an issue

anymore. Windowing was kept because of two major advantages: 1. It has proven to

produce trees with good accuracy when used on imbalanced data sets. 2. It gives the

possibility to grow several alternative trees from the same data set (since the initial

window is a selection of random cases biased towards preserving the distribution of

the classes). C4.5 can convert trees to rules. An example is shown in Figure 2.2.

It is possible for C4.5 to perform pruning on the rules generated from the trees.

One result is that these rules might end up being non-exclusive or non-exhaustive.

i.e. some cases will satisfy more than one rule and others none. To solve the second

problem, the algorithm attributes a default classification label to the rule-based model

by choosing the label which applies to the most training cases not covered by any

rule. Ties are resolved in favor of the class with the highest absolute frequency. C4.5

sorts the rules by their classification label. This has two advantages: 1. the rule set

becomes more comprehensible by human interpreters 2. the order of rules for the

same class label does not matter anymore.

24



2.6 C4.5

C <= 1

0D <= 0

Yes No

0 B <= 0

Yes No

1A <= 3

Yes
No

0 1

Rule 1: C <= 1 and D < = 0 −> class 0

Rule 2: C <= 1 and D > 0 and B <= 0 and A <= 3  −> class 0

Rule 3: C <= 1 and D > 0 and B <= 0 and A > 3 −> class 1

Rule 4: C <= 1 and D > 0 and B  > 0 −> class 1

Rule 5: C  > 1 −> class 0

Yes No

Figure 2.2. A decision tree with its branches re-iterated as rules (left-to-
right order).

In order for C4.5 to perform a classification task, the latter should satisfy certain

requirements that we list below in brief:

• The data must be expressed as a vector of attribute values.

• The labels should be pre-defined and sharply delineated.

• The cases should outnumber the labels by far.

The models generated are logical classification models.
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7. Previous Work in Building Logical Software Quality Esti-

mation Models

Selby and Porter have used machine learning to build decision trees as early as

1988 [Porter and Selby, 1988]4. They performed an experiment involving 16 NASA

software systems (with size ranging from 3000 to 112000 source lines of Fortran and

a total of more than 4700 modules) on which they measured 74 metrics. These

capture development effort, faults, design style and implementation style. Decision

trees were constructed using ID3 to predict two kinds of classes: high versus low

development effort and high versus low faults. The average accuracy was 79.3% over

the 9600 decision trees constructed5. Several parameter combinations are tested and

the best accuracy obtained is 88.4%. Later on, in [Porter and Selby, 1990], the authors

motivate the use of classification techniques in the software development process

in general, and especially the use of decision trees. First, classifiers can be easily

calibrated to new projects and environments using historical data and are applicable

to large-scale systems, as opposed to being limited to small-scale applications. Second,

they provide a white-box model from which knowledge can be extracted and fed into

the development process.

In [Mao et al., 1998], the authors proposed the use of C4.5 to build software qual-

ity estimation models that verify three hypotheses about the impact of inheritance,

coupling and complexity, separately, on the reusability of a class in an object-oriented

software system. The accuracy of the induced models ranged from 73.8% to 89.3%.

Similar to our work, [Mao et al., 1998] proposed the use of estimation models as guide-

lines for future software development. In the context of estimating the reusability of

software components, [Basili et al., 1997] used C4.5 to build models that estimate the

cost of rework in a library of reusable software components. Unlike the previous work

that has been done for the same purpose, [Basili et al., 1997] concentrated on software

4As we have seen earlier, decision trees can easily be transformed into rule-based estimation models.
5Nine thousand six hundred decision trees are constructed to test different tree generation parameter
combinations
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components that have been developed for the purpose of re-use. [Jorgensen, 1995] and

[Briand et al., 1993] had attempted the same problem but the former focussed on the

comparison of different techniques as mentioned previously, and the latter analyzed

components that were developed to satisfy specific application requirements. The

work aims at identifying which of the faulty-components are more or less expensive

to isolate and re-work (i.e. it is presumed that the faulty-components are already

identified). In [De Almeida et al., 1999], C4.5 rule sets were used to predict the av-

erage isolation effort and the average effort. An accuracy of 66% was achieved when

predicting the isolation effort variable value and 68% when predicting the average

effort variable value.

In [Miceli et al., 1999] and [Sahraoui et al., 2000b], software quality estimation

models are used to suggest transformations of already existing software. Their tech-

nique involves the selection of a set of transformations and a set of metrics. Then, the

impact of the transformations on the values of these metrics is studied and a set of

new transformation rules is derived. A software quality estimation model is used to

propose transformations (different values for metrics) that improve the quality. The

transformation is implemented by turning the left-hand side of a rule that suggests a

bad quality characteristic to false. For example, a rule like “If the number of children

of a class in an object-oriented system is greater than 6 then, the class is fault-prone”,

suggests to change the number of children of the particular class to a number less than

or equal to 6, provided that there is no contradicting rule in the estimation model.

However, such a rule does not imply that whenever the number of children of a class

in an object-oriented system is less than or equal to 6, the class is not fault-prone.

This point is judiciously addressed in [Sahraoui et al., 2000b]. The authors leave to

the designer/programmer the option of validating any prescribed transformation.

[Briand et al., 1999] empirically investigate the relationship between most of the

existing coupling and cohesion measures, defined at the class level in object-oriented

systems, on one hand and fault-proneness on the other. While cohesion did not appear
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to be a very good indicator of fault-proneness, coupling proved to be a strong one.

This might be due to the inadequate definition of the measures of cohesion.

In [Piattini et al., 2002], two experiments were conducted to validate the use-

fulness of metrics in predicting the maintainability of existing relational databases.

The results were produced using C4.5 and RoC, a bayesian classifier [Ramoni and

Sebastiani, 1999]. The experiments were conducted separately (one in CRIM6 in

Canada and one at the University of Catilla-La Mancha in Spain). We believe that

conducting the experiments in two geographically different locations is an interesting

approach since human experts were involved in the assessment of the maintainability

of the databases (in both countries). The accuracy obtained with C4.5 was 94% in

the Canadian experiment and 92% in the Spanish experiment. RoC achieved an accu-

racy of 73.8% in the Canadian experiment and 81.4% in the Spanish experiment. In

both experiments, the same subset of two metrics (table size and depth of referential

tree) proved to be quite accurate, which proves that these can be good indicators of

maintainability of a relational database.

In [Ikonomovski, 1998], C4.5 was used to construct rule sets to predict the fault-

proneness of a class (in an object oriented software system) based on inheritance

metrics. Two types of models were built. In one, the classification label can take

one of two values (fault-prone or not). In the other, it can take one of three values

(depending on how many faults the class contains). The generated models show an

average prediction accuracy of 83.2% and 75.5% on the training set, for the 2-value

and the 3-value data sets, respectively.

8. Previous Work in Optimizing Existing Software Quality Es-

timation Models

To the best of our knowledge, the only work (other than ours) that tackles the

problem of optimizing already existing rule-based software quality estimation models

is an independent project that is currently taking place at Université de Montréal

6Centre de Recherche Informatique de Montréal.
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in Quebec, Canada by Salah Bouktif, Houari Sahraoui and Balazs Kégl [Bouktif and

Sahraoui, 2002], [Azar et al., 2002], [Bouktif et al., 2004]. While our goal is to explore

the use of genetic algorithms on this optimization problem, [Bouktif and Sahraoui,

2002] consider other techniques (such as tabu search and simulated annealing) to

optimize the models. Their work differs also from ours in that it does not consider

the adaptation of a single rule set to a new data set.
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CHAPTER 3

Genetic Algorithms

Our purpose is to optimize and adapt software quality estimation models that take

the form of rule sets. The search space for this problem is very large. This makes

it impossible to use local search or exhaustive search methods. Genetic algorithms

(GAs), on the other hand, have proved to perform well in such large multi-modal

spaces, so they will be our choice for approaching the problem.

In Section 1, we introduce the Darwinian theory of natural selection [Darwin,

1859] which served as inspiration for GAs. In Section 2, we give some biological

background necessary for understanding some of the concepts implemented in GAs.

In Section 3, we introduce the details of a GA. In Section 4, we mention the pros and

cons of GAs and we refer the interested reader to some works that can be used as a

theoretical background in GAs. In Section 5, we list the different areas where GAs

have been applied (focussing on the work that has been done using GAs in optimizing

classification models in Section 5.2).

This chapter is a brief overview of what genetic algorithms are. For a more

thorough introduction, the interested reader is referred to [Holland, 1975], [Goldberg,

1989] and [Mitchell, 1999]. For a more theoretical review, the reader is also referred

to [Whitley, 1994].



3.1 THE DARWINIAN THEORY BEHIND GAS

1. The Darwinian Theory Behind GAs

Genetic Algorithms were introduced in the 70’s by John Holland as a general

model of adaptation [Holland, 1975], inspired by the Darwinian theory of natural

selection and survival of the fittest [Darwin, 1859]. According to Darwin, a population

of individuals (organisms) exists in an environment. Some individuals have certain

traits that make them ‘fitter’ for the particular environment. These individuals have

a higher chance of surviving and passing their ‘good’ traits on to their progeny as

Darwin states in his book On the Origin of Species by Means of Natural Selection, or

the Preservation of Favoured Races in the Struggle For Life:

...can we doubt (remembering that many more individuals are born than

can possibly survive) that individuals having any advantage, however

slight, over others, would have the best chance of surviving and of

procreating their kind?...This preservation of favourable variations

and the rejection of injurious variations, I call Natural Selection.

[Darwin, 1909].

Genetic algorithms (GAs) can be used as a simplified, abstracted implementa-

tion of this natural process. They have gained great popularity as an optimization

techniques. In a GA, a population of chromosomes or individuals is created.

Each chromosome represents a solution to the problem at hand. The ‘better’ the

underlying solution, the fitter the chromosome, and the higher its chance to survive.

Chromosomes are selected from the current population based on a fitness value, and

new ones are created through the application of some ‘operators’. Since the principal

of natural selection is applied, it is hoped that through the recombination process,

good ‘traits’ dispersed in the population will be combined in one individual that will

display a higher fitness.

Before giving a detailed description of the operators that make the creation of

new individuals possible, we give, in Section 2, the definitions of some of the terms
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that GAs have borrowed from biology and what they mean in the context of computer

science.

2. Definitions of Some Biological Terms

In biology, the chromosomes present in every cell of every living organism are

formed of deoxyribo nucleic acid (DNA). A chromosome can be viewed, in a simplified

way, as a string of genes where each gene encodes a trait (for example, the eye color

in a human being). In [Falkenauer, 1998], the genes are likened to words formed of the

four letters T, C, G and A and the chromosomes to phrases formed of those words.

In nature, the information contained in the genetic code is called the genotype. The

way the genotype manifests itself physically represents the phenotype (for example,

a flower with yellow petals). This brings us to one of the key steps in designing

a genetic algorithm, namely, representing chromosomes. We refer to this as the

encoding scheme. The chromosome as represented in the GA is called the genotype.

The underlying element that it actually represents (in an optimization problem, the

solution that the chromosome represents, for example) is called the phenotype. Hence,

the encoding scheme can be viewed as a mapping between the phenotype space and

the genotype space. In a GA, the set of individuals or chromosomes at a specific time

is called a population. The process of evolution entails several iterations during

which new chromosomes are created from existing ones. Each iteration is called a

generation. Each chromosome displays a certain ‘goodness’ that measures how well

it performs in its environment (i.e. how good a solution it is to the given problem).

This degree of goodness is referred to as the fitness of the chromosome.

To illustrate these terms, let us consider the famous example from [Goldberg,

1989] of maximizing the values of x2 for x ∈ [0, 31]. Using a simple 5-bit binary

encoding, two randomly generated genotypes are: 11000 and 10011. The phenotypes

of these chromosomes are, respectively, the numbers 24 and 19. In the context of this

problem, higher values of x2 imply better or fitter chromosomes. Hence, the fitness

of each individual, x is defined as f(x) = x2. The first chromosome (11000) has a

32



3.3 THE GENETIC ALGORITHM

higher fitness than the second one (10011). A population of such individuals can be

randomly generated to initialize the GA. Afterwards, new individuals are created by

the application of genetic operators, the main ones being crossover and mutation. In

Section 3, we describe these operators in more detail. At this point, we give a brief

sketch of what they mean in nature.

Crossover consists of swapping genetic code between two chromosomes. Roughly

speaking, in biology, two chromosomes meet, swap parts of their genetic code and

drift apart. This results in the creation of two new chromosomes. Mutation occurs

when genetic code gets perturbed. In nature, duplicating DNA can sometimes result

in errors as the genetic information is copied from the parent chromosomes to the

offspring. DNA is also prone to damage in day-to-day existence [Falkenauer, 1998].

Both operators are simulated in the core of a genetic algorithm in order to create new

individuals from already existing ones as we will see in the next section.

3. The Genetic Algorithm

The method that constitutes the core of the GA consists of the following:

1. An initial population of individuals is created. This is usually, but

not always, done at random. The fitness of each individual is computed

and a selection probability is given to each individual. This

probability is influenced by the fitness of the chromosome.

2. Individuals are selected according to the selection probability that

they have been assigned. They undergo crossover which consists of

swapping some of the genetic code (parts of the string that constitutes

the chromsomes) and produce two offspring. The offspring are copied to

the new generation.

3. Some of the better individuals in the current generation can be
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copied (as they are) to the new generation.

4. A small part of the new generation might be mutated.

5. The process continues until the new generation is complete.

6. Several such generations are created one after the other until a

certain stopping criteria is met (a desired fitness has been found or

a preset number of generations has been reached).

3.1. Encoding Scheme. The encoding scheme is one of the most crucial

steps as it affects heavily how easy it is for the GA to solve the problem of finding a

good individual. Encoding also affects some of the genetic operators (in particular,

mutation). The example that we showed in the previous section uses a binary repre-

sentation of the chromosomes. When they were first introduced in [Holland, 1975],

GAs used this kind of representation. One advantage of binary encoding is the simple

crossover and mutation operators that come along with it (we will describe this in

more detail when we describe the two operators). However, binary encoding is not

straightforward to implement in all applications. Often, it is much easier and natu-

ral to use integer or decimal numbers. This is known as the integer/real-valued

representation. Consider, for example, the problem of finding the optimal set of

weights for a neural network. One way to solve this problem with GAs is to create a

set of possible solutions and map each solution to a string of real values. Each string

is a chromosome and each gene in the chromosome encodes one weight in the neural

net. Genetic operators are then applied on the strings of numbers to create new ones.

Other representations were created as applications required. One such represen-

tation is the permutation representation used for the traveling salesman problem

(TSP) [Michalewicz, 1996], [Haupt and Haupt, 1998], [Goldberg and Lingle, 1985],

[Grefenstette et al., 1985], [Oliver et al., 1987], [Jog et al., 1989], [Whitley et al., 1989],
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[Starkweather et al., 1991], [Whitley et al., 1991], [Hamaifar et al., 1993], [Schmitt

and Amini, 1998], [Jog et al., 1991] and the job-scheduling problem [Eiben and Smith,

2003]. In the permutation representation, the order of the genes is important. For

more detail on this type of representation, the reader is referred to [Mitchell, 1999].

Unfortunately, it is impossible to design one representation that suits all appli-

cations. Coming up with a good representation requires a good knowledge of the

domain of application [Eiben and Smith, 2003]. Ideally, one would aim for an encod-

ing that allows representing all valid solutions to the desired problem. Often GAs

are designed to work in a space that includes all valid solutions but is larger. This

is done in order to allow the GA to explore a large search space. Working only with

valid solutions is not always possible, and it is often the case that the GA allows

the emergence of invalid individuals but penalizes them heavily through the fitness

function [Eiben and Smith, 2003].

Another question that is raised when considering the encoding scheme is the

length of the chromosomes. Traditionally, GAs dealt with fixed-length chromosomes,

where all chromosomes are formed of the same number of genes. This is a big limita-

tion in many practical problems, and it was lifted in some recent approaches [Han et

al., 2002]. Here, also, the choice between fixed versus variable length chromosomes is

problem-dependent.

3.2. Genetic Operators. In this section, we review the two genetic operators

that the GA uses to create new individuals: crossover and mutation.

3.2.1. Crossover. Crossover, also referred to as recombination, is a major

genetic operator (we will use these terms interchangeably).

In biology, crossover happens when two chromosomes exchange some of their

genes and generate offspring. Each of the resulting offspring inherits traits (pieces of

information) from both parents. We can see this in a human baby taking the eye color

from the father and the hair color from the mother. The idea behind this operator in

GAs is to combine in one individual “good” traits dispersed in the whole population,

hence, creating “better” individuals. When chromosomes meet, the exchange of the
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genetic material happens with a certain probability. It is possible that chromosomes

do not exchange any genetic code and hence the offspring are exact copies of their

parents. In GA terms, this is referred to as asexual reproduction1. Next, we

describe the most popular versions of this operator, single point crossover and double

point crossover which we will use in chapters 4 and 5.

Single Point Crossover or 1-Point Crossover. This is the original version of

the operator that Holland introduced in his genetic algorithm [Holland, 1975]. Under

this type of crossover, each chromosome in a pair is cut at one location and new

chromosomes are formed. The first offspring receives the first part of the first parent

along with the second part of the second parent whereas the other offspring receives

the first part of the second parent and the second part of the first parent. Figure 3.1

illustrates this operator on a binary representation of chromosomes.

Offspring 2

0 1 0 1 0 1 1 100

0 0 1 1 0 1 1 0 0 1

Parent 1

0 0 1 1 0 1 1 1 1 0

0 0 0 01 1 1 1 1 1

Parent 2

Offspring 1

Figure 3.1. 1-Point Crossover: parent chromosomes get cut at one location
and offspring interchange the tails.

N-Point Crossover. Under N-point crossover, N random cut points are gen-

erated within the parent chromosomes and the offspring inherit from both parents

alternating segments defined by the cut points. Figure 3.2 illustrates this opera-

tor. 2-point crossover or double-point crossover that we used in our algorithm

described in Chapter 4, Section 3 is a special case of N-point crossover.

Single-point and N-point crossover are only two of the variants of this operator

available in the literature. The main appeal of single-point crossover is that it is easy

1Some work has been done in which more than two parents are allowed to breed. The interested
reader is referred to [Eiben and Smith, 2003], [Eiben et al., 1995].
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Offspring 2

0 1 1 1 0 1 1 1 1 1

Parent 1

0 0 1 1 0 1 1 0 0 1

0 0 0 01 1 1 1 1 1

Parent 2

0 0 0 1 0 1 1 0 0 0

Offspring 1

Figure 3.2. N -Point Crossover: parent chromosomes get cut at N different
locations and offspring inherit alternating segments. N=3 in this figure.

to implement. N-point crossover allows bigger changes in the offspring as more parts

are exchanged between chromosomes.

Uniform Crossover. Unlike single-point crossover and N-point crossover, where

genes are inherited as contiguous segments, uniform crossover treats each gene in-

dependently and which offspring inherits which genes is decided randomly. For this,

a sequence of l random numbers is generated (l being the size of the chromosome),

and for each position, if the respective random value is below a certain threshold, the

gene is inherited from parent 1; otherwise, it is inherited from parent 2. The other

offspring inherits the remaining genes. Figure 3.3 illustrates uniform crossover.

1

0 0 1 1 0 1 1 0 0 1

Parent 1

0 0 0 01 1 1 1 1 1

Parent 2

Offspring 1

Offspring 2

Random string=2215648097, threshold=3

0 0 1 1 0 1 1 0 1 0

0 1 0 1 0 1 1 1 0

Figure 3.3. Uniform Crossover: offspring inherit genes from one parent ver-
sus another depending on the sequence of random numbers and the threshold
value.

Uniform crossover found its popularity after the work of Syswerda [Syswerda,

1989]. For a more thorough study on this type of crossover, the reader can refer

to [Ackley, 1987]. For other types of crossover (arithmetic recombination, partially-

mapped crossover, etc.) the reader is referred to [Eiben and Smith, 2003].

3.2.2. Mutation. As mentioned earlier, in nature, duplicating DNA can some-

times result in errors while the genetic information is copied from the parents to the

offspring. Mutation is the operator that simulates this effect. Under this operator,
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a randomly chosen gene within a chromosome gets perturbed to a random value from

the domain of values for the gene. The motivation for simulating mutation in a GA is

to stop the algorithm from being stuck at local optima (as explained later). However,

the probability of mutation should not be set very high; otherwise, the algorithm will

turn into a random search which will slow down the search process. Mutation is not

a major operator in the sense that the rate at which it happens is much lower than

the rate at which crossover occurs. In fact, in most experiments, the rate of mutation

is set to a value between 0.001 and 0.1 (compared to, usually, 50% and above for

crossover). In general, genes are mutated with a certain probability independently of

each other. It is very common not to apply a uniform mutation probability across

a chromosome. Figure 3.4 illustrates the mutation operator in the case of a binary

encoding where the third and the last genes are mutated.

0

Chromosome before mutation

Chromosome after mutation

0 0 0 1 0011 0

0 0 1 1 0 1 1 0 0 1

Figure 3.4. Mutation: The third and last genes of the chromosome are mutated.

Many researchers do not attribute to mutation the same importance that they

attribute to crossover as they view it as simply a means of avoiding local optima

whereas crossover is what makes ‘good’ individuals appear in the population by

combining genes from fit chromosomes. A debate is still ongoing in the GA community

regarding the importance of mutation (in [Rowe and East, 1993], a GA is designed

in which mutation is not needed). We do believe that mutation is a very important

operator as it stops the algorithm from being stuck in local optima and it also helps re-

introduce information that might be lost during the search process ([Ghanea-Hercock,

2003] and [Holland, 1975]). For example, consider the case of a binary search space.

Assume that at one point of the evolution process, all chromosomes have the value

1 in their first gene location. If the optimal solution has a value 0 in the first gene
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location, without mutation, the GA will never find the optimal solution as it will skip

exploring half of the search space.

Unlike crossover, there is a great dependence between mutation and the encoding

scheme. For example, mutating a bit-string consists of just flipping a bit from 1 to

0. As is the case with crossover, several mutation operators can be found in the

literature. We list a few only in order to show the intricate dependence between this

operator and the encoding scheme.

Mutation for Real-Valued Representations. This version of the operator is

analogous to bit-flipping but operates on chromosomes with floating-point represen-

tations. Under this operator, a gene value gi is replaced with another value g′

i chosen

randomly from the domain of gi and with a uniform probability distribution over the

domain (see Figure 3.5).

1.75

Chromosome after mutation

Chromosome before mutation

1.5 1.0 1.5 3.5 2.5 1.25 1.75 1.5 2.5 1.75

1.5 2.5 1.5 3.5 2.5 2.25 1.75 1.5 2.5

Figure 3.5. Floating-Point Mutation: the fifth gene is mutated to a random
value from the domain of the gene.

Creep Mutation for Integer Representations. To mutate a gene, a small value

is added to, or subtracted from its value.

Swap Mutation for Permutation Representations. Under this operator, two

positions are randomly picked in a chromosome and their values are swapped. In this

case, the mutation of one gene is no longer independent of others.
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Inversion Mutation. Similar to swap mutation for permutation representations,

this mutation links genes to others in the string. This operator generates two ran-

dom positions within a chromosome and inverts the substring between them (see

Figure 3.6).

Chromosome before mutation

4 2 6 8 2 2 0 40 1

2 4 6 8 2 2 0 40 1

Chromosome after mutation

Figure 3.6. Inversion Mutation: The genes between the second and the
fourth ones are inverted

Many other mutation operators can be found in the literature. We refer the

reader to [Mitchell, 1999] and [Eiben and Smith, 2003] for a more detailed discussion.

3.3. Selection Techniques. The core of the Darwinian theory of evolution

lies in the idea of fitter individuals getting a higher chance of surviving and producing

progeny. Inspired by this theory, in a GA, selecting individuals for mating should be

based on their fitness.

Roulette Wheel Selection. When GAs were first introduced, this was the most

commonly used selection technique. One can imagine a roulette wheel and each

chromosome is given a part of the wheel that is proportionate to its fitness. A marble

is thrown and the chromosome corresponding to the piece of the wheel where the

marble stops is selected. Roulette wheel selection is a fitness-proportionate selection,

i.e., the selection of an individual depends on its absolute fitness value and on the

absolute fitness values of other individuals in the population. We can see this as

attributing to an individual i a selection probability s(i) proportionate to its fitness

f(i) in a population of n individuals (Equation 3.1).

s(i) =
f(i)∑n

j=1
f(j)

. (3.1)
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One drawback of this technique is that when a population exhibits a high variance

of fitness, the technique is strongly biased toward individuals that are usually fit

compared to the rest of the population. For example, consider a population of 4

individuals having a fitness of 5, 50, 10 and 75. Applying roulette wheel selection will

result in the situation shown in Figure 3.7.

50

10

75

5

Figure 3.7. Roulette Wheel Selection. The pie is split among four chro-
mosomes of fitness: 5, 50, 10 and 75.

It is easy to see that in a similar situation, the chromosomes with fitness 5 and 10 have

very little chance of being selected and the fittest chromosomes are almost always the

one selected. In real applications, this often translates to a convergence of the GA to

a population containing multiple copies of the same (usually suboptimal) individuals,

an anomaly commonly referred to as premature convergence. An interesting com-

parison of different selection techniques based on a mathematical description using

the fitness distribution can be found in [Blickle and Thiele, 1995].

Rank Selection. One way to overcome the anomaly presented by the roulette wheel

selection technique is to assign to individuals ranks and then to select by rank instead
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of absolute fitness ([Baker, 1985] and [Grefenstette and Baker, 1989]). Hence, in a

population of 4 individuals, the fittest one will be given rank 4, the next one 3 and the

least fit one will be given rank 1. Figure 3.8 shows the same four individuals shown

in figure 3.7 but the wheel is apportioned relatively to the ranks of the individuals.

It is easy to see that they all get a fair chance of being selected while giving priority

to the fitter chromosomes. The drawback to rank selection is slowing down the

convergence of the GA, because all individuals now get a chance to reproduce. For a

more thorough discussion of rank selection, the reader is referred to [Ghanea-Hercock,

2003] and [Eiben and Smith, 2003].

3

4

1

2 

Figure 3.8. Rank Selection. The pie is split among chromosomes of fitness:
5, 50, 10 and 75. Chromosomes are ranked (ranks from 1 to 4) and portions
of the pie are alloted to them by rank.

Tournament Selection. Roulette wheel selection and rank selection both assume

à priori knowledge of the fitness of all the individuals in the populations. As we can

see from Equation 3.1, the selection probability s(i) of an individual i is computed

based on the fitness of all other chromosomes from the same population. Also, in
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rank selection, ranks are attributed taking into consideration the fitness of all chro-

mosomes. Tournament selection does not require such a knowledge. Tournament

selection consists of selecting k random individuals from the current population and

the fittest of them is chosen to be one of the parents in the pair to undergo crossover.

The chromosomes are then returned to the population. The process is repeated to

choose the next parent. This is particularly useful in situations where the fitness of

all the individuals in a population is not available. Consider, for example, a game

strategy evaluation. It is computationally inefficient to measure the value of all strate-

gies when this incurs simulating a game with a particular strategy. By setting the

tournament size to 2, it is possible to select between two strategies at a time [Eiben

and Smith, 2003].

Elitism. Elitism was first introduced by [De Jong, 1975]. It consists of copying

the best chromosome(s) to the new population. This ensures that the best found

so far is (are) never lost. In many applications, elitism has been found to improve

the performance of the GA. However, choosing a large number of chromosomes to be

copied to the next generation might result in the premature convergence of the GA

to a population formed of copies of the same individual, which usually represents a

suboptimal solution.

3.4. Replacement Policies. Traditionally, GAs maintain a population of

fixed size throughout the process of evolution. One question that comes to mind is

which individuals to replace when creating a new population: replace all individuals

and create a fresh new population, or replace only a portion of the older population

and allow chromosomes to breed with individuals from the previous generation. These

two different tracks have given way to what is known as the generational GA and

the steady-state GA. Under the first replacement policy, the new generation of

chromosomes replaces all of the previous generation. Of course, some offspring might

be copies of their parents, and also the generations may overlap due to elitism. This

is the traditional policy introduced in [Holland, 1975]. A steady-state GA, on the
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other hand, consists of replacing only a portion of the population (typically two

chromosomes) with the offspring. In this case, the offspring may compete with their

parents (this is more like nature where, luckily, the creation of one generation does

not efface the previous one). Steady-state GAs have gained popularity in the 80’s.

This replacement policy has the advantage of allowing an individual to compete as

soon as it comes to existence [Beasley et al., 1993a]. For a more thorough study

on this topic, the reader can consult [Syswerda, 1989], [G. Rawlins, 1991], [Holland,

1986], [De Jong and Sarma, 1993], [Beasley et al., 1993a] and [Whitley, 1989]. In

our problem, we chose to use the generational GA since the search space is big and

only a small number of chromosomes are available in each population. Applying the

steady-state GA in our case will result in a slow convergence of the GA.

4. The Pros and Cons of GAs

In this section, we discuss the major arguments in favor and against GAs.

Pros. GAs have proven to perform well in many parameter optimization tasks.

Holland showed that GAs are good at performing, at the same time, exploration of

the search space and exploitation of the knowledge acquired [Holland, 1975]. Many

search methods are good at one task or the other. For example, hill climbing is good

at exploiting knowledge and weak in exploring the search space whereas random

search is good at exploring the search space while exploiting very little, if at all, the

knowledge gained throughout the search. GAs combine the two qualities [Beasley

et al., 1993a], as the search is always guided by the fitness of the chromosomes (the

goodness of the solutions to optimize); as Goldberg puts it beautifully “GAs are

random but not directionless” [Goldberg, 1989]. Another argument in favor of genetic

algorithms is that no matter which different operators or techniques one might choose

at each step of the evolution process, the algorithm is always relatively simple and

easy to understand [Whitley, 1994]. Many have praised the implicit parallelism that

GAs exhibit. As a matter of fact, many solutions to a problem exist in the same
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population and are explored at the same time (in one generation). Tabu search and

simulated annealing, on the other hand, work with a single solution. Finally, GAs are

biologically inspired and hence appealing for people who are fascinated by mimicking

nature or using it as an inspiration.

Cons. The main argument against GAs is that they are computationally expensive,

and they do not guarantee an optimal solution. As a matter of fact, in most cases

most of the computation time is spent evaluating the fitness function. However, it is

quite common to parallelize the evaluation process. Although they do not guarantee

an optimal solution, with the appropriate choice of the selection technique, GAs

guarantee a non-deterioration of results (by applying elitism, which consists of copying

the fittest individual(s) to the next generation).

It is largely agreed upon that if an algorithm is known to work well for a certain

problem then a genetic algorithm would not be the proper choice [Whitley, 1994].

However, GAs are worth exploring in areas where other techniques have failed (for

example, when exhaustive search is impossible, as is the case in our problem) or

in hybrid approaches where they can be combined with another technique. Another

concern is the fact that it is often difficult to come up with an encoding of the problem

at hand.

No study about genetic algorithms would be complete without an insight into

the fundamental theoretical issues that arise in GAs, such as the schema theorem,

the building block hypothesis, the effect of epistasis (when the behavior of one gene

is affected by others), niching and speciation, deception, etc. Since these are not

central to the topic of our thesis, we refer the interested reader to [Whitley, 1994],

[Whitley, 1991], [Goldberg, 1989], [Beasley et al., 1993a], [Beasley et al., 1993b] for a

comprehensive introduction to these topics.
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5. Areas of Application

In this section, we list several areas of application for GAs. We start by giving

a general view of the different areas and then we focus on the previous work that,

similar to ours, has used GAs in optimizing rule-based classification models.

5.1. Different Areas of Application. GAs are mostly suitable in prob-

lems where we can settle for a good solution rather than an optimal one [Goldberg,

1989]. They have been successfully applied to problems such as: finding control poli-

cies for manufacturing systems [Porter, 1998], electronic circuit design [Miller et al.,

1998], sparse table compression [Driesen, 1994], obstacle avoidance in mobile robotics

[Michalewicz, 1996], [Floreano, 1998] and [Potter et al., 1995], mechanical cam shape

optimization [Alender and Lampinen, 1998], neural network synthesis [Back, 1998],

protein structure prediction [Day et al., 2003], and other classical optimization prob-

lems such as activity scheduling, the 0/1 knapsack problem, the personnel scheduling

problem [Han et al., 2002], route scheduling problems [Logan and Riccardo, 1996], the

traveling salesman problem [Michalewicz, 1996], [Haupt and Haupt, 1998], [Goldberg

and Lingle, 1985], [Grefenstette et al., 1985], [Oliver et al., 1987], [Jog et al., 1989],

[Whitley et al., 1989], [Starkweather et al., 1991], [Whitley et al., 1991], [Hamaifar

et al., 1993], [Schmitt and Amini, 1998], [Jog et al., 1991] and other NP-Complete

problems [Falkenauer, 1998]. For an extended but older bibliography on applications

of GAs, the reader can consult [Alander, 1995].

GAs have also been used for optimizing rule-based classification models. We give

an extensive review of the literature in this domain.

5.2. Previous Work in Using GAs to Optimize Rule-Based Classifi-

cation Models. GABL (Genetic Batch concept Learner) ([Spears and DeJong,

1993], [Spears and F., 1991], [De Jong and Spears, 1991] and [De Jong et al., 1993])

is one of the most popular systems which used GAs to optimize classification models.

The GA at the heart of GABL evolves concepts represented as a disjunction of rules.
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The left-hand side of each rule is a conjunction and the right-hand side is a classi-

fication label. The rules are presented to the GA as fixed-length chromosomes with

a binary representation. Each substring encodes an attribute test and is of length n

where n is the number of possible values that the corresponding attribute can have.

The work compares GABL to ID5R, a decision tree construction algorithm. Because

ID5R learns incrementally as new data becomes available, an incremental version of

GABL, called GABIL, was also analyzed. GABIL continually learns and refines the

concept classification rules as new data is obtained. The system proved to be com-

petitive with ID5R on complex target concepts. As a matter of fact, the performance

of ID5R seemed to suffer as the number of conjuncts and disjuncts increased. The

system favored concepts which could be represented with small decision trees. GABIL

did not show such bias. In [Spears and F., 1991] GABIL was compared to C4.5 and

the rule-induction system NEWGEM [Mozetic, 1985] on two different domains. The

authors also included in GABIL the mechanisms in NEWGEM that seemed to be

responsible for its superior performance on certain classes of target concepts (for ex-

ample, dropping conditions). In general, complementing GABIL with one or more

such strategies improved significantly the performance of the system. Compared to

C4.5 and NEWGEM on two different domains, the modified GABIL performed much

better than C4.5 and was competitive with NEWGEM on one of the domains. On

the other, its performance was close to that of C4.5 and significantly better than that

of NEWGEM (significance at the 90% level).

Corcoran and Sen [Corcoran and Sen, 1994] also used genetic algorithms to opti-

mize rule-based models. In this work, classification rules involve real-valued attributes

and classification labels can be either integer or real. Similar to GABIL, the chromo-

somes have a fixed-length, but each attribute is represented by two values (min and

max) which indicate the valid range of values for this attribute. The GA was tested

on the wine classification benchmark problem available at UCI repository of Machine
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Learning datasets2. Results show that the GA is able to find effective rule sets to

accurately classify almost all instances.

The same problem is tackled in [Llorà and Garrell, 1999] where GABL is adapted

to real-valued attributes. They implemented GENIFER (GENetic classIFiER). In its

original version, GENIFER-BRE (Binary Rule Encoding) the system suffered from

two drawbacks: the large variance between results on training sets and results on

testing sets and the language being not powerful enough to handle problems with

real-valued attributes. Different variants of GENIFER introduced a new concept,

namely the expression of the condition part of a rule based on a nearest-neighbour

approach. The space is divided into regions each represented with one significant

point (associated with one classification label). When a new example is to be classi-

fied, it is attributed the classification label of the significant point that is nearest to it.

Different ways of computing the distance between two points were considered (Ham-

ming distance, Euclidian distance and cubic distance). Also, other variants of the

system took into account the assumption that not all attributes are useful or should

be included when computing the nearest neighbour. Compared to neural networks

and case-based reasoning, GENIFER performed better than the former and slightly

better than the latter.

In [Garrell et al., 1999], Ge-CS (Genetic based Classifier System), another system

based on GABL, is presented and compared to CaB-CS (Case Based Classifier Sys-

tem) on data for classifying mammary biopsy images as cancerous or non-cancerous.

In Ge-CS, a chromosome is a binary string that encodes a rule. Both systems outper-

form neural networks. The results obtained with CaB-CS were globally better but

the rule sets obtained by Ge-CS were easy to interpret by human experts.

Mianei and Punch [Minaei and Punch, 2003] show that combining classification

models gives better results than a single model when classifying students in order to

predict their final grade based on other features. A GA is used to search for the best

weights for feature vectors. Results show that a combination of multiple classification

2http://www.ics.uci.edu/ mlearn/MLRepository.html
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models, by itself, improved accuracy significantly. Weighing the attributes and using

the GA improves results by at least 10%.

Sen and Knight use a GA to learn appropriate prototypes for classes [Sen and

Knight, 1995]. A prototype is defined as a “collection of salient features of a concept”.

An instance is labelled by the class of the prototype that shares the most features

with it. PLEASE is a GA that evolves structures (a structure consists of one or more

prototypes). The work compares PLEASE to C4.5 on a set of problems comprising 2

attributes each having a range of [0,1]. Hence, the input space is a square of unit area.

Four different problems were formulated by dividing the unit square in different ways.

Each division is assigned a label. PLEASE outperforms C4.5 on the testing sets and

is consistently able to find a near perfect set of prototypes. Training and testing errors

are more consistent in PLEASE than in C4.5. However, C4.5 outperforms PLEASE

on the training set (but not significantly). As to the quality of the solutions, PLEASE

find solutions with fewer prototypes than those found in C4.5, although, in most cases,

the number of prototypes is bigger than the minimal number required.

Less similar to our work but still related is the work of Llorà and Garrell [Llorà

and Garrell, 2001b], where an evolutionary algorithm (EA) is used to reduce storage

requirements in instance-based learning algorithms. Different evolutionary algorithm

techniques other than GAs have been used in similar problems. For example, GALE

(Genetic and Artificial Life Environment) is an EA that induces a set of partially-

defined instances. A partially-defined instance is an input vector with at least one

known value of several input attributes and an output class. In [Llorà and Garrell,

2001b], experiments were performed on 10 different datasets (2 artificial, 2 private and

6 taken from the UCI repository). GALE was compared to four other classification

models (IB1, IB2, IB3 and IB4). Results show that GALE slightly improves accuracy

and significantly reduces the required storage space. In [Llorà and Garrell, 2001a],

experiments were perfomed on 8 datasets chosen from the UCI repository and 2

private datasets. GALE is compared to C4.5 revision 8 (C4.5r8). The orthogonal

decision trees evolved by GALE outperform significantly the ones induced by C4.5r8.
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The results of GALE on oblique and multivariate decision trees are comparable to

those of C4.5r8.

In [Punch et al., 1993], [Pei et al., 1994] and [Pei et al., 1995], GAs were also used

to optimize classification systems. In this case, the optimization criterion was based

on the number of features included in the classification rules as well as the accuracy

of the classifier. As a matter of fact, the GA was used to select features according to

how discriminatory they are, keeping into consideration that the accuracy had also

to be optimized. The work is based on a previous work by Sieldlecki and Sklansky

[Siedlecki and Sklansky, 1989] which uses a GA to select features.

One important difference between our work and the GAs described above is the

fact that our GA allows the representation of variable-length chromosomes (as op-

posed to GABL and GENIFER, for example). As a result, the number and type

of attributes in the data set does not affect the speed of the GA. In contrast, in

GABL, for example, allowing continuous type attributes increases significantly the

size of the chromosomes and hence affects the speed of the search process because

the chromosome contains a gene for every possible value of the attribute. Another

important difference is the fact that our GA can be used with any type of rules, not

only attribute-value based rules although in the results reported in this thesis, we

focus on attribute-value based rules.
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CHAPTER 4

First Approach to Optimization: Deriving

a Better Model from a Set of Models

A major problem in the area of software quality is the scarcity of data from which

representative samples can be drawn. Due to this fact, it becomes hard to use machine

learning techniques to build software quality estimation models that can be used to

classify new/unseen data. As a matter of fact, many machine learning techniques

need a lot of data in order to construct reliable classification models; otherwise, these

suffer from overfitting. Our approach to the problem consists of combining existing

models and adapting them to new, specific domain data. This helps incorporate the

expertise of older models into the new models.

This chapter presents a genetic algorithm-based approach that we designed for

this purpose. We start by describing our initial, primitive attempt in Section 1. In

Section 2, we describe some experiments that we ran with the initial GA. In Section 3,

we present a refined algorithm that we designed as a solution to the problems revealed

during our initial attempt. In Section 4, we describe experiments conducted with the

refined GA. Throughout the discussion in this chapter, we describe the main design

issues that we had to address. We focus on the aspects of the algorithm that are

specific to our solution.



4.1 AN INITIAL GENETIC ALGORITHM

1. An Initial Genetic Algorithm

As seen in Chapter 3, genetic algorithms evolve populations of individuals (or

chromosomes) where each individual can be used to represent a solution to the prob-

lem at hand. With this in mind, our first approach to the problem of optimizing

software quality estimation models was to consider each model (rule set) as an in-

dividual and to design a GA that would evolve populations of such individuals. In

this section, we describe the GA that was designed as a first attempt to solving the

problem of optimizing rule sets. In order to make it easy for the reader to follow, we

start by giving the skeleton of the traditional generic GA (Algorithm 1) and then, in

separate sections, we focus on the parts that we designed and implemented in a way

specific to our problem.

t← 0 {Initialize time variable t.}
P (t)← createInitialPopulation();
n← |P (t)| {Assign to n the population size.}
repeat

computeF itness(P (t)) {Evaluate the individuals in P (t).}
elitism(percentage elit);
repeat

i1← Select();
i2← Select();
if (crossoverDecided()==TRUE) then

crossover(i1,i2) → c1 and c2;
else

c1← i1;
c2← i2;

end if
c1←mutate(c1);
c2←mutate(c2);
copy(P (t + 1), c1);
copy(P (t + 1), c2);

until (|P (t + 1)| ≥ n)
t← t + 1;

until (stoppingCriteriaMet()==TRUE);

Algorithm 1: A Generic GA.
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1.1. Chromosomes and Fitness Function. The first design issue that

arises when writing a genetic algorithm is the choice of an encoding scheme or, in

other terms, what constitutes a chromosome. This is a crucial step in the design of the

solution since it influences greatly the difficulty of the search/optimization problem,

as well as the genetic operators (such as mutation).

In our case, because the goal is to optimize software quality estimation models (in

the form of rule sets), the approach that seems most natural is to consider each model

as a chromosome. Since we are only interested in models that take the form of rule

sets, we will use the phrases “rule sets” and “software quality estimation models”

interchangeably throughout the rest of this chapter and the next. For the sake of

simplicity, we start by representing each chromosome as a string of pointers to rules

and a default classification label. Figure 4.1 shows an example of a rule set and the

chromosome that represents it. The rule set in the figure contains 7 rules (labelled

Rule 1...Rule 7 ) and a default classification label (Default class: 0 ). The chromosome

is an array of pointers to rules and a classification label. In this array, the value RI J

points to rule J of rule set I and the value D0 indicates that the rule set has a default

classification equal to 0. Each rule constitutes a gene in the chromosome.

Rule Set 1:
Rule 1: NMO > 1 ^ NMI <=  22 ^ SIX  <=  0.222222 −> class 0
Rule 2: NOC > 1 ^ NOD <= 8 −> class 0
Rule 3: DIT > 1 ^ NMA <= 7 −> class 0 
Rule 4: NMI > 10 ^ NMI <=  22 −> class 0 
Rule 5: CLD <= 0 ^ NMA > 7 ^ SIX >  0.222222 −>  class 1 
Rule 6: NOC <= 1 ^ NMO <=  0 ^ NMI <=  6 −>class 1 
Rule 7: NMI >  22 −> class 1
Default class:  0

Chromosome:
RS1 [R1_1 R1_2 R1_3 R1_4 R1_5 R1_6 R1_7   D0]

Figure 4.1. This is an example of a rule set constructed by C4.5 and the
corresponding chromosome. The chromosome is formed of genes where each,
except the last one, points to a rule in the corresponding rule set. The last
gene encodes the default classification label of the rule set.
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The GA is seeded with an initial population of chromosomes that represent rule

sets. Based on the principles described in Chapter 3, the selection of individuals from

which to produce the next generation is based on their fitness as measured by the

fitness function. In this problem, since we seek to optimize the accuracy of the rule

sets, it is natural to define the fitness of a chromosome to be the accuracy of the rule

set that it represents (as defined in Chapter 2, Equation 2.1). Thus, we choose the

fitness of a rule set R to be f(R) = C(R) where f is the fitness function and C the

accuracy measured on the specific data set.

Now that a chromosome and the fitness function have been defined, we can con-

sider the process of evolution which consists of applying the two genetic operators,

crossover and mutation, to the existing population, in order to produce a new popu-

lation. As previously mentioned, the selection of chromosomes to produce progeny is

based on the fitness of the individuals. In our algorithm, chromosomes are selected

by the roulette-wheel technique (described in Chapter 3) to undergo crossover. Our

choice of this selection technique was based on two considerations. First, this was

an initial attempt to explore how well a simple GA will perform on our problem and

we wanted the implementation to be as faithful as possible to the classical one pre-

sented by Goldberg [Goldberg, 1989]. The second consideration was the fact that the

initial rule sets for our application did not exhibit a wide variation in the accuracy.

Hence, it was safe to use the roulette-wheel selection technique without biasing the

GA strongly towards fitter individuals (an issue described in Chapter 3, Section 3.3).

1.2. The Genetic Operators. For simplicity, we use single-point crossover

when two chromosomes are selected to create offspring. For this, a random cut point

is defined and the chromosomes are cut at this location. Because chromosomes can

be of different lengths, the cut point is always generated within the boundaries of the

shorter one. Two offspring are then generated. The first one gets the first part of the

first parent (before the cut point) combined with the second part of its second parent

(after the cut point). The second offspring is formed by combining the first part of

the second parent with the second part of the first parent. From the perspective of
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the rule set, this can be seen as combining rules taken from two different rule sets

and generating two new rule sets. Crossover happens with a certain probability. If

no crossover occurs within a pair, the offspring are exact copies of their parents.

Before copying the offspring to the next generation, the GA mutates them with

a certain probability. In an initial effort, we chose to implement a very conservative

mutation operator in order not to perturb the rule sets much. In particular, we defined

mutation to consist of flipping the default classification label of the rule set that a

chromosome encodes to a value chosen randomly from the domain of the last gene (the

set of classification labels). From the perspective of the rule set, this is equivalent to

keeping the rules intact and modifying the default classification label of the rule set.

This will help us evaluate how much impact the default classification label has on the

accuracy of the rule set in the context of the specific data set. From a GA perspective,

this can be seen as applying a non-uniform mutation rate (Chapter 3, Section 3.2.2)

across the chromosome where the last gene is mutated with a probability greater than

or equal to 0 while all others are mutated with probability 0. Figure 4.2 shows an

example of the application of the genetic operators; the chromosomes are cut after

the third gene, and one of the offspring is mutated.

Parent 1 RS1 [R1_1 R1_2 R1_3 R1_4 R1_5 R1_6 R1_7 D0]

Parent 2  RS2 [R2_1 R2_2 R2_3 R2_4 R2_5 R2_6 D1]

Offspring 1 RS3 [R1_1 R1_2 R1_3 R2_4 R2_5 R2_6 D1]

Offspring 2  RS4 [R2_1 R2_2 R2_3 R1_4 R1_5 R1_6 R1_7 D1]

Figure 4.2. Example of crossover. Rule sets RS1 and RS2 are cut at gene
3. The two resulting offspring are RS3 and RS4. The latter is then mutated
(mutated gene is in the shaded box).

Similar to the traditional GA, our algorithm maintains a fixed size population.

To achieve this, at each iteration, crossover and mutation are repeated bn/2c times, n

being the size of the population. Unlike the traditional GA, our GA performs elitism

only when n is odd in order to complete the population1. This consists of copying

the chromosome with the highest fitness to the next generation. The whole process of

1The traditional GA creates n + 1 chromosomes when n is odd and then deletes the least fit one.

55



4.2 EXPERIMENTS AND RESULTS

creating a new population is repeated until a pre-specified number of generations is

reached. Algorithm 2 shows the pseudocode of a more detailed version of Algorithm 1.

t← 0;
P (t)← Parse(); {Read initial file of rule sets and create a population of chromo-
somes.}
n← |P (t)|; {assign to n the population size.}
repeat

for (i = 0 to n− 1) do
ruleset[i]← decode(P (t), i);
f(i)← computeAccuracy(ruleset[i]);
i← i + 1;

end for
if (n%2 6= 0) then

P (t + 1)← Elitism(1);
end if
repeat

i1←rouletteSelect();
i2←rouletteSelect();
if (crossoverDecide()==TRUE) then

singlePointCrossover(i1,i2) → c1 and c2;
else

c1← i1;
c2← i2;

end if
c1←mutate(c1);
c2←mutate(c2);
copy(P (t + 1), c1);
copy(P (t + 1), c2);

until (|P (t + 1)| ≥ n)
t← t + 1;

until (stoppingCriteriaMet()==TRUE);

Algorithm 2: A more detailed version of the GA written as an initial attempt.

2. Experiments and Results

In order to assess the performance of this GA, we used the data from [Ikonomovski,

1998] which involves quality estimation models that assess the maintainability of soft-

ware components in an object-oriented system. In this work, a component is a C++
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class. One way to measure maintainability of a component is by assessing its fault-

proneness (defined below). Fault-prone components require more maintenance than

non-fault-prone ones. Cohesion, coupling and inheritance are object-oriented (OO)

design product properties that have been widely used to predict fault-proneness [Basili

et al., 1996] and [Demeyer and Ducasse, 1999]. We give a brief definition of these

terms before proceeding with our discussion.

According to [Fenton and Pfleeger, 1997], cohesion is characterized by “how

closely the local methods are related to the local instance variables of the class”.

In other words, it is the degree to which the elements within the same component

are linked. Coupling is the amount of linkage between different components of the

same software system [Fenton and Pfleeger, 1997] and [Erdogmus and Tanir, 2002].

Inheritance is a relationship between two classes in which one class can be seen as

a specialization of the other. In tables 4.1, 4.2 and 4.3, we show the metrics that are

used to measure these properties.

In his thesis, Ikonomovski built two types of predictive models that establish the

relationships between fault-proneness of a software component (OO class) on the one

hand and cohesion, coupling and inheritance on the other. In one type of models, he

classifies a component as:

• non-faulty - the component did not undergo any change of a corrective

nature.

• faulty- one or more changes had to be done on the component during the

development or maintenance phase.

In the other type of models, he classifies a component as:

• non-faulty- no change was performed on the component.

• low-risk- 1 to 4 changes of a corrective nature were performed on the

component.

• high-risk - more than four changes of a corrective nature were performed

on the component.
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We refer to these as the 2-value estimation models and the 3-value estimation models,

respectively.

The attributes in the predictive models are metrics that measure cohesion, cou-

pling and inheritance. The predictive models take the form of rule sets constructed

by C4.5 using data from an open multiagent system development environment called

LALO2 (developed and maintained at CRIM3). At the time when Ikonomovski exper-

imented with LALO, the system contained 83 C++ classes and approximately 57 K

source lines of C++ code. These classes translated to 83 instances in the data set that

Ikonomovski used with 49 attributes. This data was used to construct 15 different

trees with C4.5. Rule sets derived from the trees contain between 4 and 10 rules each

for the 2-value estimation models and between 5 and 11 rules each for the 3-value

models. The metrics used as attributes in these models are shown in Tables 4.1, 4.2

and 4.3. For a detailed explanation of the hypotheses that link these metrics to the

maintainability of a software component, the reader can refer to [Ikonomovski, 1998].

At this point, we simply list them in the tables indicated above as we feel this is

enough for the reader to understand our technique.

Metric Name Brief Description
DIT Depth Of Inheritance Tree
AID Height Of Inheritance Tree
CLD Class-to-Leaf Depth
NOC Number Of Children
NOP Number Of Parents
NOD Number Of Descendants
NOA Number of Ancestors
NMO Number Of Methods Over(riden-loaded)
NMI Number of Methods Inherited
NMA Number of Methods Added
SIX Specialization Index

Table 4.1. Inheritance Metrics.

2Langage d’Agents Logiciel Objet.
3Centre de Recherche Informatique de Montréal, Montreal, Quebec, Canada.
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Metric Name Brief Description
LCOM1 Lack of Cohesion in Methods
LCOM2 Lack of Cohesion in Methods
LCOM3 Lack of Cohesion in Methods
LCOM4 Lack of Cohesion in Methods
LCOM5 Lack of Cohesion in Methods

Coh A Variation of LCOM5
Co Connectivity

LCC Loose Class Cohesion
TCC Tight Class Cohesion
ICH Information-flow-based Cohesion

Table 4.2. Cohesion Metrics.

2.1. Results. The results shown in this section have been published in

[Sahraoui and Azar, 1999].

We tested our GA on the two fault-proneness data sets but it resulted in no

improvement over the rule sets built by C4.5. As a matter of fact, the GA converged

rapidly to the best chromosome that already existed in the initial population. In order

to understand this behavior, we created an artificial data set by randomly changing

attribute values in the real data set. The accuracy of the rule sets obtained with the

GA on this data set was higher than that of the rule sets built by C4.5, as shown in

the two runs described below. Before looking at the runs, we bring to the reader’s

attention the fact that we have experimented with several parameter values (crossover

probability, mutation rate and location of cut point) and these proved to have very

little effect on the best accuracy obtained. Hence, the results shown below can be

viewed as typical results of the experiments. We show a single run for each different

experiment.

First Run. In the first run, we used 3-value fault-proneness estimation models,

a probability of 60% for the crossover, and a probability of 5% for the mutation.

The cut point was set to 2 throughout the evolution process (i.e. we always cut the

chromosomes after the second gene/rule, all chromosomes having a length strictly
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Metric Name Brief Description
CBO Coupling Between Object classes
CBO’ Non-inheritance based Coupling
RFC 1 Number of methods invoked by the class
RFC∞ Number of methods that can be invoked by sending

a message to the class
MPC Message Passing Coupling
ICP Information-flow-based Coupling

IH-ICP Inheritance ICP
NIH-ICP Non-Inheritance ICP

DAC Data Abstraction Coupling
DAC’ Number of classes used as attribute types

IFCAIC Inverse Friends Class-Attribute Import Coupling
ACAIC Ancestors Class-Attribute Import Coupling
OCAIC Others Class-Attribute Import Coupling
FCAEC Friends Class-Attribute Export Coupling
DCAEC Descendants Class-Attribute Export Coupling
OCAEC Others Class-Attribute Export Coupling
IFCMIC Inverse Friends Class-Method Import Coupling
ACMIC Ancestors Class-Method Import Coupling
OCMIC Others Class-Method Import Coupling
FCMEC Friends Class-Method Export Coupling
DCMEC Descendants Class-Method Export Coupling
OCMEC Others Class-Method Export Coupling
IFMMIC Inverse Friends Method-Method Import Coupling
AMMIC Ancestors Method-Method Import Coupling
OMMIC Others Method-Method Import Coupling
FMMEC Friends Method-Method Export Coupling
DMMEC Descendants Method-Method Export Coupling
OMMEC Others Method-Method Export Coupling

Table 4.3. Coupling Metrics.

greater than 2). Figure 4.3 shows the initial population and Figure 4.4 shows the

best (solid line) and the worst (dashed line) fitnesses obtained during evolution (only

the generations that showed an improvement over the previous one are plotted).

The best rule set constructed by C4.5 had an accuracy slightly around 81% on the

training set. At the end of the run, the GA could find a rule set with an accuracy of
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RS1 [ R1_7 R1_14 R1_5 R1_12 R1_1 R1_4 R1_13 R1_15 D0] 67.4699%
RS2 [ R2_2 R2_14 R2_12 R2_7 D1]   74.6988%
RS3 [ R3_7 R3_13 R3_5 R3_11 R3_1 R3_4 R3_12 R3_14 D0]   67.4699%
RS4 [ R4_7 R4_13 R4_5 R4_11 R4_1 R4_2 R4_12 R4_14 D0]   66.2651%
RS5 [ R5_7 R5_13 R5_5 R5_11 R5_1 R5_4 R5_12 R5_14 D0]   67.4699%
RS6 [ R6_2 R6_11 R6_13 R6_8 R6_3 R6_12 R6_14 D0]   71.0843%
RS7 [ R7_9 R7_7 R7_5 R7_12 R7_1 R7_11 D1]   68.6747%
RS8 [ R8_7 R8_13 R8_5 R8_11 R8_1 R8_4 R8_12 R8_14 D0]   67.4699%
RS9 [ R9_2 R9_10 R9_12 R9_4 R9_5 D1]   71.0843%
RS10 [ R10_2 R10_11 R10_13 R10_9 R10_7 R10_12 R10_14 D0]   72.2892%
RS11 [ R11_7 R11_12 R11_1 R11_17 R11_16 R11_11 R11_18 D1]   67.4699%
RS12 [ R12_2 R12_12 R12_15 R12_6 R12_5 D1]   73.494%
RS13 [ R13_2 R13_7 R13_8 R13_13 R13_4 R13_5 D1]   80.7229%
RS14 [ R14_2 R14_11 R14_13 R14_9 R14_7 R14_12 R14_14 D1]   71.0843%
RS15 [ R15_5 R15_11 R15_1 R15_7 R15_15  R15_3 R15_14 R15_4 R15_12 R15_16 D1]   71.0843%

Figure 4.3. Initial population of chromosomes built by C4.5. The number
on each line indicates the fitness of the chromosome (accuracy of the rule set
that the chromosome represents).

slightly above 90% on the same set. At the 28th generation, the population was formed

of all similar chromosomes hence, not much further progress could be expected.

Second Run. In this run, we used also 3-value fault-proneness estimation models,

a probability of 60% for crossover, and a probability of 5% for mutation. However,

during crossover, we defined the cut point randomly for each pair of chromosomes (as

opposed to having a fixed cut point throughout the evolution process). This choice

was made to introduce more possible combinations among rules. We ran the GA

through 100 generations. The fittest chromosome found had a fitness around 85.5%

and was found at the 89th generation (compared to 90% found much earlier, at the

7th generation, in the previous run). We suspect that the difference is due to the size

of the search space in both runs. In the first one, the chromosomes were cut at the

same location during crossover. In the second one, they were cut at different locations

which implies more possibilities of cut points and hence more possible combinations

of rules (and hence, more rule sets). Enlarging the search space usually delays finding

a good solution and at the same time can create more local optima, which we suspect

was the case in the second run.
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Figure 4.4. Best and worst fitness in each generation that shows an im-
provement over the previous one.

2.2. Modifications to the Algorithm. The previous experiments (with

real data) indicated a premature convergence of the GA to a population of similar

individuals representing the best rule set already existing in the initial population.

This behavior was consistent across a wide range of parameter settings. In order to

prevent premature convergence, we experimented with different elitism and mutation

operators, as follows:

Elitism. We replaced the elitism operator with the random selection of a chromo-

some to be copied to the next generation. Still, the GA converged to the best rule set
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already existing in the initial population when tested on the real data set. However,

improvement was always obtained with the artificial data set.

Mutation. As one can see, the mutation operator does not allow the creation of new

rules. It only changes the default classification label of the rule set. We defined two

variants of this operator, both of which modified the rules. One mutation operator

consists of deleting a condition in one of the rules in the rule set represented by the

chromosome. Figure 4.5 shows an example.

NOC <= 1 ^ NMO <= 1 ^ NMI <=  10 ^ NMA <= 19 −> class 1

NOC <=  1 ^ NOP > 0 ^ NMO <= 1 ^ NMI <=  10 ^ NMA <=  19 −> class 1

Rule before mutation

Rule after mutation

Figure 4.5. The modified mutation operator that removes a condition from
a rule. Condition NOP > 0 is removed.

Another mutation operator consists of changing the classification of a rule. Figure 4.6

shows such an example where the chromosome is mutated by changing the classifi-

cation label of a rule from 1 to 0. In all these attempts, improvement was obtained

with artificial data only.

2.3. Discussion and Summary. Although our first GA did not bring any

improvement over the initial rule sets on the maintainability data set, it did improve

the accuracy of rule sets on artificial data. We suspect that the lack of improvement

on real data is due to two things. First, the rule sets constructed by C4.5 already have

high accuracy, and given the small amount of data available, we may be witnessing a

ceiling effect. As a matter of fact, in the case of the real data set, the rule sets have

an average accuracy rate of 75.5% whereas, on the artificial data, the rule sets have

an average accuracy rate of 70.5%. Second, the granularity of the encoding we use

is too coarse and does not allow much variation. The crossover operator creates new

combinations of the existing rules, but does not create any new rules. The variants

of mutation that we defined either change the classification label of a rule or delete
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Rule before mutation
NOC > 1 ^ NOP  >  0 ^ NMO <= 1 ^ NMI  <= 10 ^ NMA <= 19 −> class 1

Rule after mutation
NOC  > 1 ^ NOP  > 0 ^ NMO  <=  1 ^ NMI <= 10 ^ NMA <=  19 −> class 0

Figure 4.6. The modified mutation operator that changes the classification
label of a rule.

a condition but do not create any new conditions. This limited effect of the genetic

operators on the rule sets, and especially the fact that no new conditions are created,

might be causing the GA to converge to the best rule set that already exists in the

population. An attempt to address this problem is presented in Section 3.

Despite the disappointing results that we obtained on real data, this initial at-

tempt to use GAs to optimize software quality estimation models (in the form of

rule sets) opened a new line of work. Below we present a refined GA that avoids the

problem highlighted above by allowing crossover and mutation to work at a much

finer level.

3. A Refined GA for Combining Rule Sets

The technique described in Section 1 suffers from a major drawback namely, the

granularity of the genetic operators can operate. More precisely, since each gene in

a chromosome represents a rule (or the default classification label4), the cut points

during crossover can only fall between rules (as opposed to within rules). This leads

to the crossover allowing only a recombination of already existing rules. Mutation

also has very little effect on rules - it modifies the default classification label of the

rule set, the classification label of the rule, or drops a condition in the rule. None

of this proved to be enough to improve on the accuracy of the initial rule sets. In

this section, we describe a GA that can be seen as a refinement to the previous one.

Like the previous GA, it considers each rule set as a chromosome, and a population is

formed of a number, n, of rule sets. But here, we drop the restriction of a rule being

4The default classification label can be thought of as a rule with an empty left-hand side i.e any
case satisfies its left-hand side.
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a gene. Instead, the rule set is represented as an array of conditions and classification

labels. With this new, finer granularity, the genetic operators can now operate on

the level of conditions as well as classification labels. This allows the introduction of

more variety in the rule sets generated because changes can now occur at the level of

the conditions as well. In the remainder of this section, we focus on the differences

between this GA and the previous one.

3.1. Chromosomes and Fitness Function. Like in the previous approach,

the initial population is formed of chromosomes that represent rule sets. However,

the genes are at a finer level: Each gene represents either a condition or a class label.

We call the genes that represent class labels special genes. There are m + 1 special

genes in a chromosome that represents a rule set of m rules (one for the classification

label of each rule plus the default classification label of the rule set). Figure 4.7 shows

an example of a rule set and its representation as a chromosome. We define the fitness

of a chromosome to be equal to the accuracy of the rule set (f(R) = C(R)) since this

is the measure we are trying to optimize.

Rule Set 1:
Rule 1: NMO > 1 ^ NMI <=  22 ^ SIX  <=  1 −> class 0
Rule 2: NOC > 1 ^ NOD <= 8 −> class 0
Rule 7: NMI >  22 −> class 1
Default class:  0

NMO > 1  NMI <=  22  SIX  <=  1   c 0  NOC > 1  NOD <= 8  c0  NMI >  22  c1  c0

Figure 4.7. A rule set and its chromosome representation. Special genes,
representing classification labels, are underlined.

In order to pass from one generation to the next, we implemented the two tradi-

tional selection techniques, roulette wheel and rank selection. In Section 4 we discuss

how each influences the behavior of the GA. Chromosomes are selected to undergo

crossover and mutation. The GA also copies chromosomes by elitism in order to con-

serve the best found during the process of evolution. In order to have more control

on the number of rule chromosomes to preserve during the process of evolution, we
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designed elitism to copy x% of the chromosomes in the current population to the next

(as opposed to only one). The value of x is decided at the onset of the experiments.

3.2. The Genetic Operators. The two main genetic operators that the GA

uses to create new chromosomes are crossover and mutation.

3.2.1. Crossover. Because the definition of genes is different in this refined GA,

during crossover, a cut point can fall between rules or within a rule. The latter case

allows conditions to be taken from different rules and recombined. The former one

allows rules to be exchanged between rule sets.

We have experimented with two crossover operators: single-point crossover and

double-point crossover. When single-point crossover occurs, a cut point is generated

randomly in each of the parent chromosomes. This can fall within a rule or on a

rule boundary (between rules or between a rule and the default classification label

of the rule set). In order to ensure the validity of the chromosomes resulting from

crossover, we imposed the following restrictions on where a cut point can fall. Let

us designate by p1 and p2 the two chromosomes undergoing crossover (the parent

chromosomes) and by i1 and i2 the cut points in p1 and p2, respectively. If i1 falls

within a rule in p1, i2 should fall within a rule in p2. If i1 falls on a rule boundary in

p1, i2 should also fall on a rule boundary in p2. For this, the algorithm keeps indices

of the locations in a chromosome that delimit rules and those that lie inside rules.

These indices designate either within rule cut points or boundary cut points.

When the GA generates a cut point, it can decide from which set of indices to pick its

second cut point by checking the type of the first one. The cut point is not allowed

to fall on a chromosome boundary (i.e. before the first cell in the string or after the

last one).

Figures 4.8 and 4.9 show two examples of crossover, where the cut points fall

within rules and on rule boundaries, respectively. Figure 4.10 shows an example of

an invalid crossover, where i1 falls within a rule in p1 and i2 falls on a rule boundary

in p2. As we can see from the figure, offspring 1 represents an invalid rule set (it

contains a rule with no classification label).
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NMO > 1 NMI <=  22    SIX  <=  1    c0   NOC > 1  NOD <= 8   c0   NMI >  22    c1    c0

DIT > 1  NMA <= 7  c0    CLD <= 0  NMA > 7  SIX >  0.22   c1  c 0

NMO > 1 NMI <=  22   SIX  <=  1   c0  NOC > 1  NOD <= 8   c0   CLD <=0  NMA > 7 SIX > 0.22  c1   c0

DIT > 1  NMA <= 7  c0   NMI > 22   c1  c 0

Offspring 1

Offspring 2

Parent 1

Parent 2

Figure 4.8. Single point crossover where the cut point falls on a rule boundary.

NMO > 1 NMI <=  22    SIX  <=  1    c0   NOC > 1  NOD <= 8   c0   NMI >  22    c1    c0

DIT > 1  NMA <= 7  c0    CLD <= 0  NMA > 7  SIX >  0.22   c1  c 0

NMO > 1 NMI <=  22   SIX  <=  1   c0  NOC > 1  c0   CLD <= 0  NMA > 7  SIX > 0.22  c1  c0

DIT > 1  NMA <= 7  NOD <=8   c0  NMI > 22   c1  c0

Offspring 1

Offspring 2

Parent 1

Parent 2

Figure 4.9. Single point crossover where the cut point falls within a rule.

Since the length of the chromosomes was sufficiently large, we found it interest-

ing to implement and test double-point crossover, as well. As we can recall from

Chapter 3, when double-point crossover occurs, two cut points are generated within

each of the parent chromosomes and the offspring take alternating segments of both

parents. Traditionally, both parents are cut at the same locations. In our case, we
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NMO > 1 NMI <=  22    SIX  <=  1    c0   NOC > 1  NOD <= 8    c0   NMI >  22    c1    c0

DIT > 1  NMA <= 7   c0    CLD <= 0  NMA > 7  SIX >  0.22   c1   c0

NMO > 1  NMI <=  22    c0

DIT > 1  NMA <= 7  c0  CLD <=0 NMA > 7 SIX > 0.22  c1 SIX <=1  c0  NOC > 1 NOD <= 8  c0  NMI >22   c1  c0

Offspring 1

Offspring 2

Parent 1

Parent 2

Figure 4.10. Single point crossover where the cut point falls within a rule
in parent 1 and on a rule boundary in parent 2. This results in one of the
offspring (offspring 1) representing an invalid rule set (missing classification

label).

allow for cut points to fall at different locations in each parent. This allows for more

variety in the combination of conditions and allows rules of sizes different from their

parents to be formed. Here also, we ensure the validity of the offspring by imposing

restrictions on where the cut points can fall with respect to each other. To make the

implementation simple, if the first cut point within the first parent falls within a rule,

the same should happen for the first cut point within the second parent. If it falls on

a rule boundary, the same is also imposed on the cut point in the second parent. The

same rules are applied to the second cut point. Similarly to the previous algorithm,

the cut points cannot fall on the boundaries of the chromosomes. Of course, since

crossover happens only with a certain probability, it is possible that offspring end up

being duplicates of their parents.

3.2.2. Mutation. In this refined GA, a gene represents either a condition or a

classification label. In the case where a special gene is mutated, the value is changed

to another one chosen randomly from the domain of the classification labels. For all

other genes which represent conditions of rules, mutation consists of changing the

value to which the attribute is compared to another value picked randomly from the
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set of cutpoints for this attribute. A cutpoint for an attribute, not to be confused

with the crossover cut point is the median of the two values of the attribute where the

classification label changes. Unlike the previous technique, this allows the creation of

new conditions. We choose a value from the set of cutpoints of an attribute because

these are more likely to change the set of examples that the rule classifies.

3.3. Trimming. One can easily see that crossover and mutation, as defined

in this GA, might result in redundancy and inconsistency. Redundancy exists in

a rule r when a condition ci implies or is the same as another condition cj in r.

Redundancy exists in a rule set R when R contains two or more rules that have

the same conditions (the order of the conditions is not important) and the same

classification label. Figure 4.11 shows an example of redundancy that occurs in

the first rule in the rule set. Condition NMO > 7 implies condition NMO > 1.

Figure 4.12 shows an example of redundancy in a rule set where the first and the third

rules are the same (the two conditions are: NMO > 1 ∧ NMI ≤ 22 ∧ SIX ≤ 1 c 0

and NMI ≤ 22 ∧ SIX ≤ 1 ∧NMO > 1 c 0).

NMO  > 1  NMI <=  22    NMO  > 7  c0   NOC > 3  NOD <= 8  NOC <= 1   c0   NMI <= 22   SIX <=1  NMO >1  c0   1

Figure 4.11. Redundancy in the first rule. The third gene represents a
condition that implies the one represented by the first gene.

NMO > 1 NMI <=  22    SIX  <=  1    c0   NOC > 1  NOD <= 8   c0  NMI <= 22   SIX <=1  NMO >1  c0   1

Figure 4.12. Redundancy in a rule set. The first and the third rules are the same.

The algorithm eliminates redundancy inside the rules by combining conditions c1,

..., cn if one implies the others. In particular, if condition ci implies condition cj,

the latter is deleted. It eliminates redundancy inside the rule sets by eliminating

duplicate rules and keeping only one instance of each such rule.
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We define inconsistency inside a rule r to occur whenever r has two or more

conditions that cannot be true at the same time. Figure 4.13 shows an example of a

rule that has the two conditions NOC > 3 and NOC ≤ 1, which cannot be true at

the same time.

NMO  > 1   NMI <=  22    SIX  <=  1    c0   NOC > 3  NOD <= 8  NOC <= 1   c0   NMI <= 22   SIX <=1  NMO >1  c0   1

Figure 4.13. Inconsistency in the second rule (shown in bold). The condi-
tions NOC > 3 and NOC ≤ 1 cannot be true at the same time.

Inconsistent rules are allowed to remain in the rule sets as long as the evolution is

ongoing. Some conditions, although “fatal” in some combinations, might turn out

to form good rules when combined with other conditions. Inconsistent rules are

eliminated only when the last population is created (there is no need to keep these

conditions anymore, and they are disturbing to human experts). Rules are sorted

by the classification label inside the rule set. This is inspired from C4.5 and has two

advantages: the order of the rules for one classification label does not matter anymore

and the rule set is easier to interpret by human experts [Quinlan, 1993]. It is possible

for the rule set to be inconsistent (for example, a rule set can have the two rules

NOC ≤ 22→ class 0 and NOC ≤ 22→ class 1. Such rules are kept inside the rule

sets as the sequential classification process allows one of them to fire only (this does

not lead to any inconsistent classification).

4. Experiments and Results

4.1. Description of the Data Sets. Most of the experiments were con-

ducted using data sets in which the goal is to predict the stability of a software

component, based on several metrics. For the purpose of this thesis, a software

component is a class in an object-oriented software system. During its operation

time, a software component undergoes several changes due to error detection, envi-

ronment changes, etc. It is important for a software component to remain stable when
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these changes occur. A component is said to be stable if its public interface remains

valid between different versions; otherwise, the component is said to be unstable.

We used 2 data sets, STAB1 and STAB2, prepared by Salah Bouktif at Université

de Montréal, Canada.

(i) STAB1: This data set was generated using the 11 software systems listed in

Table 4.4 and the 19 metrics shown in Table 4.5. These metrics correspond

to four groups: cohesion, coupling, inheritance and size complexity and

the Stress metric. Fifteen subsets (of size 1, 2, 3, and 4) were created by

combining these groups of metrics (the Stress metric was always included).

The combination was based on the relationship desired among the different

quality characteristics. For example, for the goal of constructing rule sets

that estimate stability of a component based on its complexity and coupling,

only the metrics that measure these two characteristics are included.

Software Systems

Bean browser
Ejbvoyager
Free
Javamapper
Jchempaint
Jedit
Jetty
Jigsaw
Jlex
Lmjs
Voji

Table 4.4. Software systems used to build decision trees and rule sets with C4.5.

The 15 subsets of metric groups were used with the 11 software systems to

extract 165 (11 X 15) data sets used to build decision tree classifiers with

C4.5. Constant classifiers (classifiers that have a single classification label)

and classifiers with a training error of more than 10% were eliminated.

Then, 40 decision trees were selected randomly from the retained ones.
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These decision trees were converted into rule sets using C4.5. Our GA

evolves these rule sets using the four software systems shown in Table 4.6.

From these, a data set of 2920 cases was extracted (Table 4.6). Ten-fold

cross validation was performed to assess the GA. The data set was randomly

split into 10 folds of roughly equal size. Nine out of the ten folds were

randomly chosen and combined to form the learning (or training) set for

the GA and the remaining fold constitutes the testing set. Throughout our

discussion, we refer to one split as a (training, testing)-pair. Ten such

pairs are possible. One run of the GA consists of learning and testing on

all 10 (training,testing)-pairs.

(ii) STAB2: The previous data set is imbalanced (one classification label ap-

pears much more frequently than the other). As a matter of fact, 2481 of

the 2920 cases are stable and the remaining ones are unstable. In order

to test our algorithm on a balanced data set, we used STAB2 which also

involves stability. Twenty two software metrics were extracted as shown in

Table 4.8. Nine of the 11 software systems shown in table 4.4 are used to

build the experts with C4.5. These are the ones shown in table 4.7. The re-

maining two, namely, Jedit and Jetty, were used to train and test the GA.

For this, 15 subsets of groups of metrics were created by combining 1, 2, 3,

or 4 groups in all possible ways. These subsets were used with the 9 chosen

software systems (Table 4.7) to create 135 (9X15) data sets. C4.5 was used

on each of these data sets to construct a classification model in the form of

a rule set. The models with an error rate greater than 10% and constant

classifiers were eliminated and 23 were retained. 10-fold cross-validation is

used like before to run the GA.

(iii) MAINT: This is the data set described in Section 2. It estimates fault-

proneness (as an indicator of maintainability) based on cohesion, coupling

and inheritance. We consider the 2-value classification models only. To

prepare the data for the GA and in order to simulate the same setup that
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Name Description

Cohesion metrics
LCOM lack of cohesion methods
COH cohesion
COM cohesion metric
COMI cohesion metric inverse

Coupling metrics
OCMAIC other class method attribute import coupling
OCMAEC other class method attribute export coupling
CUB number of classes used by a class

Inheritance metrics
NOC number of children
NOP number of parents
DIT depth of inheritance
MDS message domain size
CHM class hierarchy metric

Size complexity metrics
NOM number of methods
WMC weighted methods per class
WMCLOC LOC weighted methods per class
MCC McCabe’s complexity weighted meth. per cl.
NPPM number of public and protected meth. in a cl.
NPA number of public attributes

The stress metric
STRESS stress applied to the class

Table 4.5. Software quality metrics used as attributes in STAB1.

JDK version5 Number of classes
jdk1.0.2 187
jdk1.1.6 583
jdk1.2.004 2337
jdk1.3.0 2737

Table 4.6. STAB1- Software systems used to train and test the GA.

we had with STAB1 and STAB2, we divided the data sets into two parts

of roughly equal size: one was used to create decision trees with C4.5 and
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the other was used to train and test the GA (using 10-fold cross validation

technique).

Software Systems

Bean browser
Ejbvoyager
Free
Javamapper
Jchempaint
Jigsaw
Jlex
Lmjs
Voji

Table 4.7. Software systems used to build decision trees and rule sets with C4.5.

Next, we describe the different experiments that we ran to assess the performance

of our GA. We group these experiments by parameter setup. In order to account for

the element of randomness in the GA, each experiment was repeated 30 times and

the average over the 30 runs was reported. During each run, 10-fold cross-validation

is used whereby the training set is divided into 10 subsets, the GA is trained on 9

and tested on the remaining one. For each setup, we describe the parameter values

and then we give the results obtained on the three data sets described above. In

Section 4.6, we summarize all the results in Table 4.13.

When assessing our GA, we give four measurements: the accuracy on the training

set, the accuracy on the testing set, the J index on the training set and the J index

on the testing set (all of them defined in Chapter 2, Section 2). For each experiment,

we show the best rule set in the initial population and the one in the last population.

In the context of these experiments, the best rule set is the one with the highest

accuracy measured on the training set. We are measuring the J index as well as

the accuracy because the data set in STAB1 is imbalanced (one classification label

appears much more frequently than the others). For this, we find it important to

measure the average accuracy per class label in the case of STAB1 as well as the
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Name Description
Cohesion metrics

LCOM lack of cohesion methods
COH cohesion
COM cohesion metric
COMI cohesion metric inverse

Coupling metrics
OCMAIC other class method attribute import coupling
OCMAEC other class method attribute export coupling
CUB number of classes used by a class
CUBF number of classes used by a member function

Inheritance metrics
NOC number of children
NOP number of parents
NON number of nested classes
NOCONT number of containing classes
DIT depth of inheritance
MDS message domain size
CHM class hierarchy metric

Size complexity metrics
NOM number of methods
WMC weighted methods per class
WMCLOC LOC weighted methods per class
MCC McCabe’s complexity weighted methods per class
DEPCC operation access metric
NPPM number of public and protected methods in a class
NPA number of public attributes

Table 4.8. Software quality metrics used as attributes in STAB2.

overall accuracy. However, we train our GA to optimize the accuracy of the rule

set rather than its J index. Hence, an improvement is guaranteed on the training

accuracy, but not necessarily on the J index. We decided to use the accuracy in

our fitness function rather than the J index because most of the work that has been

done in building software quality estimation models uses the accuracy rather than

the J index, as a measure of performance.

4.2. SETUP I: Single Point Crossover and Roulette Wheel. We start

with a setup similar to the previous GA in which roulette wheel and single point
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Parameter Value Parameter Value
crossover probability 0.9 Generations 300
mutation rate 0.1 Selection technique Roulette Wheel
Elitism 10% Crossover type Single point

Table 4.9. Experiment SETUP I: Single Point Crossover and Roulette Wheel.

crossover were used. These two choices of parameters make the GA as similar as

possible to the classical one described in [Goldberg, 1989].

The experiments in this setup had: crossover probability (ℵ) of 0.9, mutation rate

(µ) of 0.1 (applied uniformly across a chromosome). The percentage of chromosomes

copied by elitism (ε) was set to 10% and the number of generations (G) was set to

300. Roulette wheel selection technique was used as well as single-point crossover.

Table 4.9 summarizes these parameters.

On MAINT (Figure 4.14), the GA achieved an accuracy of 85% on the training

set and about 54% on the testing (compared to 72% and 51%, respectively, for C4.5

rule set) and a J index of 81% on the training set and 47% on the testing set (compared

to 65% and 45% for C4.5). We believe the big difference between the accuracy on the

training set and the accuracy on the testing (and between the J index on the training

set and the J index on the testing) is due to the small size of the data set.

On STAB1 (Figure 4.15), almost no improvement was made by the GA as it

found a rule set with an accuracy equal to 86% on the training set and 85.5% on the

testing set (the best rule set constructed by C4.5 had an accuracy of 85% on both

sets). However, the GA improved the J index and it reached 60.5% on the training

set and 59% on the testing set compared to 51% for C4.5 on both sets. It is worth

recalling that STAB1 is imbalanced. According to [Elomaa, 1994], when the data set

is imbalanced, it is important to compare the performance of learning algorithms to

the majority classifier, which classifies all the cases to be of the majority category.

In the case of STAB1, the majority classifier had an accuracy of 84.95 % on the

training set 84.7 % on the testing set and a J index of 50% on both sets. Hence, the

GA outperformed it.
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Figure 4.14. MAINT-Accuracy (C) and J index (J) of C4.5 and GA gen-
erated rule sets on both the testing and the training sets. Experiments were
run with the following parameters: ℵ = 0.9, µ = 0.1, f(R) = C(R), ε = 10,
G = 300, selection technique=roulette wheel and crossover=single-point

crossover.
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Figure 4.15. STAB1-Accuracy (C) and J index (J) of C4.5 and GA gen-
erated rule sets on both the testing and the training sets. Experiments were
run with the following parameters: ℵ = 0.9, µ = 0.1, f(R) = C(R), ε = 10,
G = 300, selection technique=roulette wheel and crossover=single-point

crossover.

STAB2 is a balanced data size that is bigger in size than MAINT. Figure 4.16

shows the results on this data set. The GA could achieve an accuracy of 74.5% on the

training set and 70% on the testing set and a J index of 65% on the training set and
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60.5% on the testing set. The best rule set constructed by C4.5 had an accuracy of

68% and a J index of 58% on both sets and hence, our GA outperforms it. STAB2

is a balanced data set and improving the accuracy on a balanced data set is harder

than improving it on an imbalanced one according to existing literature, e.g. [Elomaa,

1994].
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Figure 4.16. STAB2-Accuracy (C) and J index (J) of C4.5 and GA gen-
erated rule sets on both the testing and the training sets. Experiments were
run with the following parameters: ℵ = 0.9, µ = 0.1, f(R) = C(R), ε = 10,
G = 300, selection technique=roulette wheel and crossover=single-point

crossover

.

In order to assess the performance of our GA with any rule sets (not only those

constructed by C4.5), we built random ones. For this, attributes were picked ran-

domly from the set of attributes that describe the data. Conditions were created

by combining each randomly chosen attribute with a relational operator from the

set {>,≤}6 and a cutpoint also chosen at random from the set of cutpoints for this

attribute. The number of rules included in these rule sets varied from 5 to 70 and the

number of conditions included in the rules varied between 3 and 30. We repeated the

experiments using the random rule sets as an initial population for the GA, instead

of C4.5 rule sets. The same set of random rule sets was used across all experiments.

6The algorithm is not restricted to these two operators. We chose these two, in the experiments, in
order to be consistent with the syntax of the rule sets created by C4.5.
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Figures 4.17, 4.18 and 4.19 show the results. It is worth pointing out that the ran-

domly generated rule set chosen as the best in the initial population happened to

have a high accuracy (higher than C4.5). It is not representative of the rest of the

rule sets in the same population which had a much lower accuracy. In the case of

MAINT, the GA was able to attain an accuracy of 94% on the training set and 63%

on the testing (compared to 70% on both sets for the initial random rule set). The

improvement was also noticeable in the case of the J index computed on the training

set. The GA achieved a J index of 91% on the training set and 55% on the testing

set whereas the best rule set in the initial population had a J index of 61% on the

training set and 60% on the testing set.

On STAB1, almost no improvement was noticed in the accuracy but the J index

achieved by the GA was about 56% on both sets (compared to 50% for the best rule

set in the initial population and 50% for the majority classifier).

One important detail to point out is the shape of the rule sets that are found

in the last population when the GA is seeded with random rule sets in the case of

STAB1. Most of the time, these rule sets are formed of one or two attributes only

(most of the time, one attribute). This happened most of the time in the case of

STAB1 but only very rarely in the case of STAB2 and MAINT. In our opinion,

this is due to the fact that the data is imbalanced and one attribute or two attributes

are enough to split it into positive and negative examples.

On STAB2, the best accuracy achieved by the GA was 73% on the training set

and 69% on the testing set (compared to about 65% for the best rule set in the initial

population on both the testing and the training sets). The GA also improved the

J index as it scored 65% on the training set and 60% on the testing set (compared to

50% on both sets for the best in the initial population of rule sets).

4.3. SETUP II: Double Point Crossover and Roulette Wheel. In

order to see how double-point crossover affects the performance of the GA, we set

up experiments to run with the following parameters: crossover probability (ℵ) was

0.9, mutation rate (µ) was 0.1 (applied uniformly throughout a chromosome). The
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Figure 4.17. MAINT-Accuracy (C) and J index (J) of a random rule set
and the GA generated rule set on both the testing and the training sets.
Experiments were run with the following parameters: ℵ = 0.9, µ = 0.1,
f(R) = C(R), ε = 10, G = 300, selection technique=roulette wheel and
crossover=single-point crossover.
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Figure 4.18. STAB1-Accuracy (C) and J index (J) of a random rule set
and the GA generated rule set on both the testing and the training sets.
Experiments were run with the following parameters: ℵ = 0.9, µ = 0.1,
f(R) = C(R), ε = 10, G = 300, selection technique=roulette wheel and
crossover=single-point crossover.

percentage of chromosomes copied by elitism (ε) was set to 10 and the number of

generations (G) was set to 300, roulette wheel selection technique was used as well

as double-point crossover. Table 4.10 summarizes these parameters.
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Figure 4.19. STAB2-Accuracy (C) and J index (J) of a random rule set
and the GA generated rule set on both the testing and the training sets.
Experiments were run with the following parameters: ℵ = 0.9, µ = 0.1,
f(R) = C(R), ε = 10, G = 300, selection technique=roulette wheel and
crossover=single-point crossover.

Parameter Value Parameter Value
crossover probability 0.9 Generations 300
mutation rate 0.1 Selection technique Roulette Wheel
Elitism 10% Crossover type Double point

Table 4.10. Experiment Setup II: Double Point Crossover and Roulette Wheel

Figures 4.20, 4.21 and 4.22 show the results on all three data sets. In the case of

the maintainability data set, the accuracy achieved by the GA is the same as in the

previous setup (85% on the training set and 54% on the testing set) and the J index

is only slightly different. The rule set obtained by the GA has a J index of 82% on

the training set and 49% on the testing set (compared to 81% and 47%, respectively,

in the last setup). Hence, the results are very similar in both setups.

On STAB1 (Figure 4.21), the GA could reach a J index of 60% on the training

set and 57% on the testing set (compared to 60.5% and 59%, respectively, in the

previous setup). The accuracy is the same as in the previous setup. On STAB2

(Figure 4.22), the results were very close to those obtained in the previous setup.
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Figure 4.20. MAINT-Accuracy (C) and J index (J) of C4.5 and GA gen-
erated rule sets on both the testing and the training sets. Experiments were
run with the following parameters: ℵ = 0.9, µ = 0.1, f(R) = C(R), ε = 10,
G = 300, selection technique=roulette wheel and crossover=double-point

crossover.
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Figure 4.21. STAB1-Accuracy (C) and J index (J) of C4.5 and GA gen-
erated rule sets on both the testing and the training sets. Experiments were
run with the following parameters: ℵ = 0.9, µ = 0.1, f(R) = C(R), ε = 10,
G = 300, selection technique=roulette wheel and crossover=double-point

crossover.

Since the GA was designed to optimize the accuracy on the training set, and the

accuracy obtained in this setup was very similar to the one obtained in the previous
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Figure 4.22. STAB2-Accuracy (C) and J index (J) of C4.5 and GA gen-
erated rule sets on both the testing and the training sets. Experiments were
run with the following parameters: ℵ = 0.9, µ = 0.1, f(R) = C(R), ε = 10,
G = 300, selection technique=roulette wheel and crossover=double-point

crossover.

setup, we can conclude that double-point crossover did not affect the GA behavior

(when combined with the roulette wheel selection technique).

We repeated the same experiments seeding the GA with a population of random

rule sets (Figures 4.23, 4.24 and 4.25). The only difference was noticed in the case

of the maintainability data, on which the GA achieved an accuracy of 91% on the

training set and 61% on the testing set (compared to 94% on the training set and

63% on the testing set in the previous setup). It outperformed C4.5 rule set which

had an accuracy of 73% on the training set and 51% on the testing set.

4.4. SETUP III: Single Point Crossover and Rank Selection. As al-

ready discussed in Chapter 3, roulette wheel suffers from a drawback when the vari-

ance of the fitness is high in a population: lower fitness chromosomes are not given

a fair chance to survive and produce progeny as most of them die out early in the

process of evolution. In the context of our work, rule sets are not given a chance to

survive to the next generation because of their low accuracy. However, as one can

imagine, some conditions might be ‘fatal’ when they are combined with others in a

rule. This can deteriorate significantly the accuracy of the rule and hence the rule
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Figure 4.23. MAINT-Accuracy (C) and J index (J) of a random rule set
and GA generated rule sets on both the testing and the training sets. Ex-
periments were run with the following parameters: ℵ = 0.9, µ = 0.1,
f(R) = C(R), ε = 10, G = 300, selection technique=roulette wheel and
crossover=double-point crossover.
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Figure 4.24. STAB1-Accuracy (C) and J index (J) of a random rule set
and the GA generated rule set on both the testing and the training sets.
Experiments were run with the following parameters: ℵ = 0.9, µ = 0.1,
f(R) = C(R), ε = 10, G = 300, selection technique=roulette wheel and
crossover=double-point crossover.

set that contains it (if the coverage of the rule is significant). As a result, the chro-

mosome that represents the rule set is given a low fitness and might not be selected

to reproduce. However, these same conditions might turn out ‘good’ when they are
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Figure 4.25. STAB2-Accuracy (C) and J index (J) of a random rule set
and the GA generated rule set on both the testing and the training sets.
Experiments were run with the following parameters: ℵ = 0.9, µ = 0.1,
f(R) = C(R), ε = 10, G = 300, selection technique=roulette wheel and
crossover=double-point crossover.

Parameter Value Parameter Value
crossover probability 0.9 Generations 300
mutation rate 0.1 Selection technique Rank Selection
Elitism 10% Crossover type Single point

Table 4.11. Experiment Setup III: Single Point Crossover and Rank Selection

combined with different ones forming different rules. In order to allow such rules

(and rule sets) to survive, we repeated the experiments described above and replaced

the roulette wheel selection technique with rank selection. Hence, this setup was

similar to SETUP I except for the use of rank selection. Table 4.11 summarizes the

parameters.

Figure 4.26 shows the accuracy and the J index on MAINT. The GA achieved

an accuracy of 87% on the training set and 59% on the testing set and a J index of

85% on the training set and 54% on the testing set. The rule set constructed by C4.5

had an accuracy of 72% on the training set and 51% on the testing set and a J index

of 65% on the training set and 45% on the testing set. Hence, the GA outperformed

C4.5 in both the accuracy and the J index although it was not trained to optimize
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the J index. Compared to the GA in SETUP I (single point crossover and roulette

wheel selection), performance was slightly better. This might be due to the fact that

more conditions were kept in the pool with the rank selection technique. Since the

data set was small in size, these conditions might be important in achieving a better

accuracy.

On STAB1 (Figure 4.27), the results were very similar to the previous two setups

and the behavior of the GA is also very similar (converging to a classifier with one or

two attributes only).
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Figure 4.26. MAINT-Accuracy (C) and J index (J) of C4.5 and GA gen-
erated rule sets on both the testing and the training sets. Experiments were
run with the following parameters: ℵ = 0.9, µ = 0.1, f(R) = C(R), ε = 10,
G = 300, selection technique=rank selection and crossover=single-point

crossover.

On STAB2 (Figure 4.28), the GA achieved an accuracy of 74% on the training

set and 69% on the testing set. The J index was 64% on the training set and 60% on

the testing set.

We repeated the experiments seeding the GA with random rule sets. Figure 4.29

shows the results on MAINT. These were lower than the results obtained with

SETUP I but better than the results obtained with the same setup (SETUP III)

seeding the GA with C4.5.
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Figure 4.27. STAB1-Accuracy (C) and J index (J) of C4.5 and GA gen-
erated rule sets on both the testing and the training sets. Experiments were
run with the following parameters: ℵ = 0.9, µ = 0.1, f(R) = C(R), ε = 10,
G = 300, selection technique=rank selection and crossover=single-point

crossover.

C(Initial−test) C(Initial−train) C(GA−test) C(GA−train)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

J(Initial−test) J(Initial−train) J(GA−test) J(GA−train)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Figure 4.28. STAB2-Accuracy (C) and J index (J) of C4.5 and GA gen-
erated rule sets on both the testing and the training sets. Experiments were
run with the following parameters: ℵ = 0.9, µ = 0.1, f(R) = C(R), ε = 10,
G = 300, selection technique=rank selection and crossover=single-point

crossover.

On STAB1, the GA always behaves the same (Figure 4.30). On STAB2 (Fig-

ure 4.31), the results were similar to those obtained in SETUP I. Rank selection

seemed to delay the convergence of the GA when the number of attributes increased.
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Figure 4.29. MAINT-Accuracy (C) and J index (J) of a random rule set
and the GA generated rule set on both the testing and the training sets.
Experiments were run with the following parameters: ℵ = 0.9, µ = 0.1,
f(R) = C(R), ε = 10, G = 300, selection technique=rank selection and
crossover=single-point crossover.
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Figure 4.30. STAB1-Accuracy (C) and J index (J) of a random rule set
and the GA generated rule set on both the testing and the training sets.
Experiments were run with the following parameters: ℵ = 0.9, µ = 0.1,
f(R) = C(R), ε = 10, G = 300, selection technique=rank selection and
crossover=single-point crossover.

4.5. SETUP IV: Double Point Crossover and Rank Selection. Also,

to assess how the GA would perform with rank selection combined with double-point

crossover, we set up the following experiments to run with the following parameters:

88



4.4 EXPERIMENTS AND RESULTS

C(Initial−test) C(Initial−train) C(GA−test) C(GA−train)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

J(Initial−test) J(Initial−train) J(GA−test) J(GA−train)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Figure 4.31. STAB2-Accuracy (C) and J index (J) of a random rule set
and the GA generated rule set on both the testing and the training sets.
Experiments were run with the following parameters: ℵ = 0.9, µ = 0.1,
f(R) = C(R), ε = 10, G = 300, selection technique=rank selection and
crossover=single-point crossover .

Parameter Value Parameter Value
Crossover probability 0.9 Generations 300
Mutation rate 0.1 Selection technique Rank Selection
Elitism 10% Crossover type Double point

Table 4.12. Experiment Setup IV: Double Point Crossover and Rank Selection

crossover probability (ℵ) was 0.9, mutation rate (µ) was 0.1 (applied uniformly across

a chromosome), the fitness of a chromosome was equal to the accuracy of the rule set

that it represents (f(R) = C(R)). The percentage of chromosomes copied by elitism

(ε) was set to 10. The number of generations (G) was set to 300, rank selection

technique was used as well as double-point crossover. Table 4.12 summarizes these

parameters.

Figures 4.32, 4.33, 4.34 show the results for all experiments run with this setup

when the GA was seeded with C4.5 rule sets. On MAINT, the results were better

than those obtained with roulette-wheel and double-point on both the training and the

testing sets. Again, this might be due to the fact that more rules are surviving to the

next generation and hence more combinations of conditions are possible. Compared
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to SETUP III, it gave very similar results on the training set (slightly lower on the

testing set) showing that the choice of double-point or single-point crossover did not

affect the behavior of the GA (compared to single-point).
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Figure 4.32. MAINT-Accuracy (C) and J index (J) of C4.5 and GA gen-
erated rule sets on both the testing and the training sets. Experiments were
run with the following parameters: ℵ = 0.9, µ = 0.1, f(R) = C(R), ε = 10,
G = 300, selection technique=rank selection and crossover=double-point

crossover.

STAB1 leads the GA to converge to the majority classifier (in most of the runs).

On STAB2, the results are similar to those obtained with roulette wheel (SETUP

II).

Figures 4.35, 4.36, 4.37 show the results of the experiments when the GA was

seeded with random rule sets. Differences from SETUP II can be seen on MAINT

(accuracy of 65% on the testing set compared to 61% in SETUP II and J index equal

to 60% compared to 56% in SETUP II).

4.6. Discussion and Summary. In Table 4.13, we summarize the results ob-

tained with the GA with each of the three data sets MAINT, STAB1 and STAB2.

The first three rows show the results of the GA when seeded with C4.5 rule sets. The

last three rows show the results of the GA when seeded with random rule sets. For

each experiment, we record the accuracy measured on the training and the testing

set and the J index measured on both sets.
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Figure 4.33. STAB1-Accuracy (C) and J index (J) of C4.5 and GA gen-
erated rule sets on both the testing and the training sets. Experiments were
run with the following parameters: ℵ = 0.9, µ = 0.1, f(R) = C(R), ε = 10,
G = 300, selection technique=rank selection and crossover=double-point

crossover.
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Figure 4.34. STAB2-Accuracy (C) and J index (J) of C4.5 and GA gen-
erated rule sets on both the testing and the training sets. Experiments were
run with the following parameters: ℵ = 0.9, µ = 0.1, f(R) = C(R), ε = 10,
G = 300, selection technique=rank selection and crossover=double-point

crossover.

In summary, in the case of MAINT, in all four experimental setups, the GA

resulted in an improvement in the accuracy measured on the training set while the

previous GA (described in Section 1) was always converging to the best rule set
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Figure 4.35. MAINT-Accuracy (C) and J index (J) of a random rule set
and the GA generated rule set on both the testing and the training sets.
Experiments were run with the following parameters: ℵ = 0.9, µ = 0.1,
f(R) = C(R), ε = 10, G = 300, selection technique=rank selection and
crossover=double-point crossover.

C(Initial−test) C(Initial−train) C(GA−test) C(GA−train)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

J(Initial−test) J(Initial−train) J(GA−test) J(GA−train)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Figure 4.36. STAB1-Accuracy (C) and J index (J) of a random rule set
and the GA generated rule set on both the testing and the training sets.
Experiments were run with the following parameters: ℵ = 0.9, µ = 0.1,
f(R) = C(R), ε = 10, G = 300, selection technique=rank selection and
crossover=double-point crossover.

already in the initial population. This shows that the granularity at which the oper-

ators were allowed to perform in the previous GA was indeed a problem. This also
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Figure 4.37. STAB2-Accuracy (C) and J index (J) of a random rule set
and the GA generated rule set on both the testing and the training sets.
Experiments were run with the following parameters: ℵ = 0.9, µ = 0.1,
f(R) = C(R), ε = 10, G = 300, selection technique=rank selection and
crossover=double-point crossover.

SETUP I SETUP II SETUP III SETUP IV

c C j J c C j J c C j J c C j J

MAINT 54 85 53 80.5 54 85 49 82 59 87 54 85 57 87 52 85

STAB1 85.5 86 59 60.5 85.5 86 57 59 85.5 86 59 61 85.5 86 59 62

STAB2 70 74.5 60.5 65 70 74 60 64 69 74 60 64 70 74 60 64

MAINT-R 61 94 55 91 61 92 56 90 60 90 55 88 65 90 60 86

STAB1-R 85 85.5 55.5 56 85.5 86 55 55.5 85 85 50.5 50.5 85 85 50.5 51

STAB2-R 69 73 60 65 69 74 60 66 64 68 56 61 69 74 60 65

Table 4.13. Summary of the results obtained with the GA in the four
different setups. For each setup, values are recorded for the accuracy on
the training set (C), the accuracy on the testing set (c)), the J index on the
training set (J) and the J index on the testing set (j).

underlines the impact that the representation of a solution can have on the perfor-

mance of the GA. Moreover, except for the case of the maintainability data with the

roulette wheel selection technique, the GA could always improve on the accuracy on

the testing set of the best rule set constructed by C4.5. We suspect that such an

improvement did not happen on the maintainability data because of its small size.
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On STAB1, the GA outperformed C4.5 and the majority classifier with respect

to the J index.

In the case of STAB2, the improvement was not as big as in the case of MAINT

but was consistent in both the accuracy and the J index not only on the training set

but on the testing set, also.

The experiments presented in this section prove that the GA performs well on a

balanced data set and at least as well as the majority classifier on an imbalanced data

set. In Figure 4.38, we show an example of the learning curves for both SETUP I and

SETUP III. The curves plot the best accuracy on the training set at every generation.

As the figure shows, the convergence of the GA with the roulette-wheel is faster than

with the rank selection. As a matter of fact, the GA finds a rule set with an accuracy

of 73% around the 110th generation when roulette-wheel is used and around the 160th

generation when rank selection is used. At the end of the experiment, the accuracy

of the best rule set on the training is 74.5% in the first case and 73.5% in the second.

These results are taken from experiments run when seeding the GA with C4.5 rule

sets.
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Figure 4.38. STAB2-Learning curves showing the accuracy on the training
set for both the roulette-wheel (left hand side) and the rank-selection (right
hand side) techniques.
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CHAPTER 5

Second Approach: Optimizing a Single

Model

1. Overview

In Chapter 4, we proposed a genetic algorithm to combine and adapt several

software quality estimation models that take the form of rule sets to a new data set

in order to obtain one or more models of the same form, with a better prediction

accuracy. One question that comes to mind when considering software quality es-

timation models is how much can we do with one quality estimation model alone?

In other words, suppose we have a software quality estimation model that has been

constructed from a particular set of data, can we adapt it to a new set of data and

use it to estimate the desired software quality without incurring a decrease in the rule

set prediction accuracy? This is the question that motivates the work presented in

this chapter.

2. The Algorithm

The genetic algorithm that we designed for this approach starts with a single

quality estimation model that takes the form of a rule set. For this GA, a rule

set represents a population of chromosomes, each rule being a chromosome. Each

condition in a rule, as well as the classification label, are genes in the chromosomes.



5.2 THE ALGORITHM

Similar to the refined GA described in Chapter 4, Section 3, the genetic operators that

we designed for this GA operate on the level of conditions and classification labels.

Below, we describe the different design issues that were involved in this algorithm.

Again, we focus on what we designed in a way specific to our problem and different

from the two GAs presented in the previous chapter. We refer the reader to the

appropriate literature when traditional methods were used.

2.1. Chromosomes and Fitness Function. Figure 5.1 shows a rule set

that has three rules and a default classification label. It constitutes a population of

three chromosomes. The default classification label is not included in the population

but will be re-instated into the rule set at a later stage (explained later). The first

and second chromosomes in this population have three genes, each - two conditions

and one classification label. The third chromosome has two genes - one condition and

a classification label.

A <= 10 ^ B <= 7 −> class 0
A > 3 ^ C <= 2  −> class  1
B <= 4 −>  class 0
Default class: 0

Figure 5.1. This is a rule set with three rules and a default classification
label. This constitutes a population of three chromosomes. The first and
the second one have three genes each and the third one has two.

It is important to point out that traditionally, chromosomes represent solutions

to the optimization problem that the GA is tackling. As such, the ‘goodness’ of

the solution is usually directly linked with the fitness function (for example, in the

previous approach to the problem, we defined the fitness of the chromosomes to be

equal to the accuracy of the underlying rule set). In this approach, this is not the

case. Here, a chromosome represents a rule but a rule is not a solution (a rule set is).

For this, we need to define what a ‘good’ rule is in the context of the rule set of which

it is part. We define a good rule as one that has a high accuracy and, at the same

time, classifies a large number of cases1. Since each chromosome in the population

1A rule that is highly accurate but barely matches any of the cases is not very useful.
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encodes a rule, the fitness of a chromosome should reflect both the accuracy of the

rule represented by the chromosome and its coverage, that is, the fraction of cases in

the data set classified by the rule. With this in mind, we define two different fitness

functions, f1 and f2, as shown in equations ( 5.1) and ( 5.2). In the equations, C(l)

is the accuracy of rule l, t(l) is its coverage and C(R) is the accuracy of rule set R

containing rule l (all terms are formally defined in Chapter 2, Section 2).

f1(l) = C(l) ∗ t(l) (5.1)

f2(l) = C(l) ∗ t(l) + (1− t(l)) ∗ C(R) (5.2)

Note that both equations take into account the accuracy and the coverage of the rule

because, as previously explained, this is what defines what a good rule is. Equation

( 5.2) takes into account the accuracy of the rule set as well. With this fitness function,

rules with a coverage or accuracy of 0 get a higher chance to survive and produce

progeny than with f1. As we mentioned earlier, some conditions might be “fatal” in

one context but perform very well when combined with other conditions. In Section 3,

we compare the empirical behavior of these functions.

2.2. The Genetic Operators. To create a new population from the current

one, chromosomes are selected either by roulette-wheel or by rank selection. New

chromosomes are created by applying elitism, crossover and mutation. In this GA, we

implemented these operators to work in a way very similar to the operators described

in Chapter 4, Section 3. We highlight the small differences only.

We chose to do single-point crossover and this for two main reasons: the simplicity

of the operator and the small size of the chromosomes in the initial population when

the latter was derived from rule sets created by C4.5. As a matter of fact, the rules

that C4.5 creates are small in size (average of 3 conditions per rule). This does

not leave much room for double-point crossover which would have a greater effect

when the chromosomes are longer. In this algorithm also, we allowed chromosomes
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within a pair to be cut at different locations to allow a wider variety in the length

of the chromosomes and more possible recombinations. In this GA, crossover implies

a recombination of conditions in the rules that constitute the rule set2. Figures 5.2

and 5.3 show two examples of crossover. In the first one, the offspring have similar

length as their parents. In the second one, the offspring have different lengths from

their parents. The cut points are indicated with small arrows in the figures.

[ MDS <= 32 ^ NPPM <= 14 ^  Stress <= 0  −>  class  0]

[coh <= 0.1027 ^ NPPM < 16 −> class 1]

[MDS <= 32 ^  NPPM <= 14 ^ NPPM < 16 −> class 1]

[coh <= 0.1027 ^  Stress <= 0  −> class  0]

Parent 1

Parent 2

Offspring 2

Offspring 1

Figure 5.2. Crossover where cut points fall in different locations within a
pair of chromosomes. Offspring have the same lengths as their parents.

[ MDS <= 32 ^ NPPM <= 14 ^  Stress <= 0  −>  class  0]

[coh <= 0.1027 ^ NPPM < 16 −> class 1]

[MDS <= 32 −> class 1]

[coh <= 0.1027 ^ NPPM < 16 ^  NPPM <= 14 ^ Stress <= 0  −> class  0]

Parent 1

Parent 2

Offspring 2

Offspring 1

Figure 5.3. Crossover where cut points fall in different locations within a
pair of chromosomes. Offspring have different lengths from their parents.

We designed the mutation operator to be similar to the one in the refined com-

bining GA. Hence, mutation involves either the change of a class label or the value to

2In the refined GA, described in Chapter 4, Sectionsec:CombiningAdaptingRefined, crossover implied
a recombination of conditions in rules and of rules in rule sets.
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which an attribute is compared in a condition3. For example, mutating the first and

the last genes in offspring 2 in Figure 5.2 results in the rule shown in Figure 5.4.

Offspring after mutation    [coh <= 0.75 ^  Stress <= 0 −>  class  1]

Offspring before mutation    [coh <= 0.1027 ^  Stress <= 0 −>  class  0]

Figure 5.4. A chromosome before and after mutation. First and last genes
are mutated.

2.3. Trimming. Here also, one can easily imagine that crossover and muta-

tion, as we defined them above, might result in redundant and/or inconsistent rules

(defined in Chapter 4, Section 3.3). In this case, redundancy happens inside a rule

only. Figure 5.5 shows an example where crossover and mutation result in one in-

consistent and one redundant rule. As a matter of fact, offspring 1 in the figure,

represents a rule where condition MDS ≤ 1 implies condition MDS ≤ 3 hence the

rule is redundant. Offspring 2 represents an inconsistent rule because it contains the

conditions NOM ≤ 13 and NOM > 25 which cannot be true at the same time.

Parent 1  [MDS <= 1  ^  NOM > 22  ^ NMI <= 6  −>  class 1]

Parent 2  [Stress <= 0  ^  NOM <= 13  ^  NMI <= 6  ^  MDS <=3  −>  class 0]

Offspring 1   [MDS <=1  ^   NMI <= 6  ^  MDS <=3  −>  class 0]

Offspring 2   [Stress <= 0 ^ NOM <= 13 ^  NOM > 25 ^ NMI <= 6  −>  class 1]

Figure 5.5. Crossover and mutation that result in a redundant rule (off-

spring 1 ) and an inconsistent rule (offspring 2 ). The condition in bold is
the mutated gene.

3Unlike in the refined GA, mutation is not applied to the default classification label of the rule set
because in this GA, a rule is a chromosome as opposed to a rule set being one in the refined GA.
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A postprocessing step happens at two levels in the algorithm: between iterations,

to get rid of redundancy, and at the end, when the last rule set is generated, to elimi-

nate inconsistent rules. In order to eliminate redundancy, the offspring are trimmed

before being thrown into the next generation. Trimming consists of getting rid of all

redundant conditions in a rule. As such, conditions in the same rule are compared,

and if a condition ci implies a condition cj, the latter is dropped. Figure 5.6 shows

offspring 1 in Figure 5.5 trimmed.

Offspring 1 before trimming   [MDS <=1  ^   NMI <= 6  ^  MDS <=3  −>  class 0]

Offspring 1 after trimming    [MDS <=1  ^   NMI <= 6  −>  class 0]

Figure 5.6. A chromosome before and after trimming. Condition
MDS <= 3 is deleted because MDS <= 1 implies MDS <= 3.

The other postprocessing phase is after the last population is generated. At

this point, the algorithm deletes all chromosomes with fitness equal to 0. Let us

see what this means in the case of each of the fitness functions, f1 and f2 (defined

in Equations 5.1 and 5.2, respectively) and which chromosomes get deleted by this

process.

f(l) = f1(l) = C(l) ∗ t(l):

f(l) = 0⇒ C(l) = 0 or t(l) = 0, i.e. the rule constantly misclassifies all the cases that

it covers or does not classify any of the cases. With this fitness function, chromosomes

representing inconsistent rules also get a fitness equal to 0 (their accuracy is 0).

f(l) = f2(l) = C(l) ∗ t(l) + (1− t(l)) ∗ C(R):

Recall that C(l), t(l) and C(R) are all greater than or equal to 0.

f(l) = 0⇒

(i) C(l) ∗ t(l) = 0, which is the same as the previous case; and

(ii) (1− t(l)) ∗ C(R) = 0⇒
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(a) 1− t(l) = 0⇒ t(l) = 1 t(l) = 1 and C(l) = 0 (from (i)); in this case, l

is a rule that misclassifies all the cases in the data set.

or

(b) C(R) = 0; in this case the rule does not bring any ‘useful’ knowledge

to R.

As we can see from above, chromosomes with fitness equal to 0 represent rules that

are not needed for the classification process. Ideally, chromosomes with a fitness equal

to 0 would die during the process of evolution since the selection procedure rarely

allows them to be picked to survive or mate with other chromosomes. However,

in some rare cases, preliminary experiments showed that such chromosomes could

survive until the last generation. We did not design the GA to eliminate chromosomes

with fitness 0 as soon as they appear because we do not want to impoverish the

genetic pool. In the end, the algorithm prunes the last population and eliminates all

chromosomes with fitness 0.

One phenomenon that we noticed when experimenting with our GA is overcrowd-

ing: early in the evolutionary process, the population consists of similar chromosomes

of a relatively short size (involving one or two conditions only). We refer to this phe-

nomenon as overcrowding. This does not leave much room for improvement. The

algorithm deals with overcrowding by eliminating all duplicates at the end of each

iteration. Figure 5.7 shows a rule set before and after pruning. As a result, and unlike

what is most commonly the case in GAs, at iteration t, population P (t + 1) might

have size n′ 6= n, where n is the size of P (t).

2.4. From Rules to Rule Sets. At the end of each iteration, a rule set is

formed out of the rules. For this, we designed the GA to complement the rules with

a default classification label. This is chosen to be the majority classification label in

the data set.

It is important to point out that the accuracy of the rule set is dependent on the

order of the rules in it. Consider, for example, the following two rule sets that are
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used to estimate whether a software component is fault-prone or not according to the

metrics NOM and NOC:

RuleSet 1

R2 : NOM ≤ 3 ∧NOC ≤ 2→ class 1

R3 : NOM ≤ 4→ class 0

Default class : 0

and

RuleSet 2

R3 : NOM ≤ 4→ class 0

R2 : NOM ≤ 3 ∧NOC ≤ 2→ class 1

Default class : 0

They consist of the same rules. However, if we use them to classify a software com-

ponent where NOM = 2 and NOC = 1, by applying the sequential classification

procedure (where the top-most rule that fires on a case gives it its label) this com-

ponent will be classified as fault-prone (class 1) by Rule Set 1 and non fault-prone

Before Pruning

Rule 0
NOM <= 17.0  ^ Stress <=0.184 −> class 1

Rule 1
NOM <= 17.0 ^ Stress > 2.578 −> class 1

Rule 2
NOM <= 17.0 ^ Stress <= 0.184−> class 1

Rule 3
NPPM <= 2 −> class 0

Default class: 1

After Pruning

Rule 1
NOM <= 17.0 ^ Stress > 2.578 −> class 1

Rule 2
NOM <= 17.0 ^ Stress <= 0.184 −> class 1

Rule 3
NPPM <= 2 −> class0

Default class: 1

Figure 5.7. A rule set before after being pruned. Rule 0 and Rule 1 are
deleted because the former has a duplicate in the rule set (Rule 3) and the
chromosome representing Rule 1 has a fitness equal to 0.
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(class 0) by Rule Set 2. The GA does not take into consideration this ordering and

chromosomes generated first (copied by elitism or created by crossover, for example)

are inserted at the top of the new generation. There are two ways to account for the

importance of the order of rules. The first one is the voting scheme (described in

Chapter 2, Section 4). This technique is computationally expensive since all rules in

the rule set get to classify a case. The second way consists of sorting the chromosomes

in a population and applying the sequential classification procedure. This technique

gives priority to rules that appear first in the rule set and is computationally more

efficient than the previous one. This leads to the question of the criteria by which the

rules should be sorted. One choice would be to sort them by their fitnesses. However,

this cannot be done with f2 because in this case, the fitness depends on the accuracy

of the rule set and the accuracy of the rule set depends on the order of the rules hence,

their fitness. Another choice would be to sort them by the classification label (similar

to C4.5). This has two advantages: the order of rules for one classification label does

not matter, and the rule sets are easier to interpret by human experts [Quinlan, 1993].

In the experiments shown later in this chapter, we chose to sort the rules by their

classification label in order to be consistent when we compare both fitness functions.

3. Experiments and Results

We tested our algorithm on the three different data sets, STAB1, STAB2 and

MAINT, described in Chapter 4, Section 4.1. We give a brief summary of them in

Table 3. For each experiment, we start by describing the setup then we show and

interpret results obtained with the three data sets. Here also, each experiment was

repeated 30 times and the average over the 30 runs was reported for each. During

each run, 10-fold cross-validation is used whereby the training set is divided into 10

subsets, the GA is trained on 9 and tested on the remaining one.

3.1. SETUP I. The experiments described here had the following parame-

ters: Crossover probability (ℵ) was 0.9, mutation rate (µ) was 0.1 (applied uniformly
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Set Size Data Distribution Software Quality Assessed
STAB1 2920 imbalanced stability
STAB2 690 balanced stability
MAINT 83 balanced maintainability

Table 5.1. Data sets used in experiments. The first two contain data about
the stability of software components (classes) in an object-oriented system
and the last contains data about maintainability.

Parameter Value Parameter Value
crossover probability 0.9 Generations 50
mutation rate 0.1 Selection technique Roulette Wheel
Elitism 0 f(l) C(l) ∗ t(l)

Table 5.2. Experiment SETUP I: f(l) = C(l) ∗ t(l).

throughout a chromosome), the fitness value was f(l) = C(l) ∗ t(l) (Equation 5.1),

the elitism flag was de-activated (ε = 0), the number of generations (G) was set to 50

and roulette-wheel selection technique was used. When the algorithm evaluated the

rule set, it complemented it with the majority class as the default classification label

and the sequential classification procedure (with sorting the rules by the classification

label) was applied. Table 5.2 summarizes these parameters.

3.1.1. STAB1. We ran 40 experiments seeding the GA with a different rule

set in STAB1, each time. Figure 5.8 shows the average accuracy and J index, re-

spectively, of all the experiments4. As we can see, the GA could achieve an average

accuracy of 85% on both the training and the testing sets whereas the initial rule set

(constructed by C4.5) had an average accuracy of about 73% on both sets. However,

it is important to recall that the data set in STAB1 is imbalanced. Hence, we com-

pare the results to the majority classifier. As we can see in Figure 5.9, the GA gives

results very close to the majority classifier. As a matter of fact, most of the times,

the rule set that the GA converged to was, itself, the majority classifier.

4Each experiment was repeated 30 times.
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Figure 5.8. STAB1-Accuracy (C) and J index (J) of C4.5 and GA gener-
ated rule set on both the testing and the training sets. Experiments were
run with the following parameters: ℵ = 0.9, µ = 0.1, f(l) = c(l)∗ t(l), ε = 0,
G = 50, selection technique is roulette wheel, sorting of rules in the rule set
is by classification label and classification procedure is sequential.
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Figure 5.9. STAB1-Accuracy of the constant classifier (CF ) and the GA
generated rule set on both the testing and the training sets. Experiments
were run with the following parameters: ℵ = 0.9, µ = 0.1, f(l) = c(l) ∗ t(l),
ε = 0, G = 50, selection technique is roulette wheel, sorting of rules in the
rule set is by classification label and classification procedure is sequential.

Figure 5.9 shows that the GA achieves better accuracy than C4.5 although the

latter achieves a better J index (not suprisingly, since the GA was trained to optimize

the accuracy and not the J index).
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3.1.2. STAB2. The same experiments were repeated with STAB2 to demon-

strate the behavior of the GA on a balanced data set. Figure 5.10 shows the accuracy

and J index of the rule set generated by C4.5 and that generated by the GA on both

the testing and the training sets. The figure shows that the rule set generated by the

GA has an accuracy of 66% on the training set and 56% on the testing set whereas

C4.5 rule set had an accuracy of 62% on the training set and 55% on the testing set.

A small improvement in the J index can also be seen on both sets.
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Figure 5.10. STAB2-Accuracy (C) and J index (J) of C4.5 and GA gen-
erated rule set on both the testing and the training sets. Experiments were
run with the following parameters: ℵ = 0.9, µ = 0.1, f(l) = c(l)∗ t(l), ε = 0,
G = 50, selection technique is roulette wheel, sorting of rules in the rule set
is by classification label and classification procedure is sequential.

3.1.3. MAINT. The same experiments were repeated on the data set MAINT.

Results are shown in Figure 5.11. On this data set, also, the GA was able to improve

the accuracy of the rule set on the training set only (68% versus 66% for C4.5).

The J index of the rule set obtained by the GA is lower than that of the rule set

constructed by C4.5. Such a deterioration is not surprising since the J index is the

average per classification label and has a meaning for rule sets but not for rules (a

rule can predict one classification label only). The fitness function does not take into

consideration the average classification per class label.
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Figure 5.11. MAINT-Accuracy (C) and J index (J) of C4.5 and GA gen-
erated rule set on both the testing and the training sets. Experiments were
run with the following parameters: ℵ = 0.9, µ = 0.1, f(l) = c(l)∗ t(l), ε = 0,
G = 50, selection technique is roulette wheel, sorting of rules in the rule set
is by classification label and classification procedure is sequential.

3.1.4. A Note on Results. The experiments described above demonstrated the

behavior of the GA on three data sets: a small one and two larger ones - one im-

balanced and the other balanced. Results proved that our algorithm could improve

the initial rule sets constructed by C4.5 on the three data sets. However, most of the

time, the rule set was formed of one rule that included one attribute only. This rule

has a higher accuracy than the longer rules in the initial rule set. On the one hand,

this is appealing from a complexity point of view: The GA reduced the number of

attributes in a rule set without compromising its accuracy, i.e., the end result was a

rule set that is easier to interpret by human experts than C4.5 rule sets. On the other

hand, the size of the rule set hinders the evolution beyond the best found accuracy

(in case a better one is possible). When the rule set includes one attribute only,

there is not enough room for improvement anymore. We suspect that this is due to

the small size of the rule sets with which the GA was seeded. One can imagine a

typical scenario where this can happen. Consider a population of three chromosomes

encoding the three rules shown below:
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R1 : NOM ≤ 2→ class 0 f = 88.81

R2 : NOC > 1 ∧ COM ≤ 2→ class 1 f = 91.95

R3 : NOC > 3→ class 0 f = 90.95

Suppose that the two chromosomes selected for crossover are those encoding the last

two rules, R2 and R3 and then R3 is selected by elitism to be copied to the next

population. This results in the following three rules:

R4 : NOC > 1 ∧NOC > 3→ class 0

R5 : COM ≤ 2→ class 1

R6 : NOC > 3→ class 0

At this point, R4 is trimmed and the three rules are now:

R4 : NOC > 3→ class 0

R5 : COM ≤ 2→ class 1

R6 : NOC > 3→ class 0

We can already see that, at this point, we already lost the attribute NOM , and NOC

starts to overcrowd the population. The algorithm will prune such a population the

only two chromosomes remaining are R5 and R6 as shown below:

R5 : COM ≤ 2→ class 1

R6 : NOC > 3→ class 0

It is possible for R6 to breed with itself5 and to be selected again to be copied to

the next generation. This results in the following population formed of chromosomes

that encode the same rule6.

5It is always possible for a chromosome to breed with itself but as the size of the population shrinks,
the possibility increases.
6Even if R6 does not breed with itself, the attribute pool is too small and no more combinations are
possible.
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R7 : NOC > 3→ class 0

R8 : NOC > 3→ class 0

R9 : NOC > 3→ calss 0

Again, the algorithm eliminates all duplicates and the population becomes:

R10 : NOC > 3→ class 0

One way to prevent the attribute pool from shrinking in size is to include the

number of the attributes in the fitness function. By doing this, we can design the GA

to penalize short chromosomes. However, this favors rules with more conditions and

leads the GA into a search for longer rules, which defeats the purpose of simplicity in

building quality estimation models with simple, easy to interpret rule sets. Another

possibility is to generate rule sets from the entire set of attributes and use them to

seed it. This also helps us test our GA on rule sets other than those built by C4.5.

We explain this in more detail below.

3.1.5. Randomly Generated Rule Sets. The experiments described above assess

the behavior of our GA when seeded with a rule set constructed by C4.5. These are

rule sets that have already learned from common domain data and hence, have a

prediction accuracy that is relatively high. In order to assess the behavior of the GA

with any rule set, we generated random ones and we used them to seed the GA7.

Figures 5.12, 5.13 and 5.14 show the results for the three data sets, STAB1, STAB2

and MAINT.

The GA improved the accuracy significantly on STAB1 by reaching one of 85%

on the training set as well as the testing set. The initial rule set had an accuracy

of 15% on both sets. The GA achieved an accuracy of 85%. No deterioration of the

J index was perceived. On STAB2, the GA could obtain a rule set with accuracy

equal to 65% on both sets where the initial rule set had an accuracy of 53% hence,

resulting in an improvement not only on the training set but on the testing set as

7For a description of how the rule sets were generated, the reader can refer to Chapter 4, Section 4.2.
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Figure 5.12. STAB1-Accuracy (C) and J index (J) of a random rule set
and the GA generated rule set on both the testing and the training sets.
Experiments were run with the following parameters: ℵ = 0.9, µ = 0.1,
f(l) = c(l)∗ t(l), ε = 0, G = 50, selection technique is roulette wheel, sorting
of rules in the rule set is by classification label and classification procedure

is sequential.

well. The J index also improved on both sets and the GA achieved 52% while the

random rule set had a J index around 44%. The accuracy obtained by the GA is

higher than that of C4.5 on the same data set (55% on the testing set and 62% on the

training set). On MAINT, the GA reached an accuracy of 65% on the testing set

and slightly more on the training set, hence improving on the accuracy of the initial

rule set (50%) and reaching the accuracy of C4.5 on MAINT. The J index, however,

deteriorated and reached 50% whereas the initial random rule set had one equal to

50% on the testing set and 60% on the training set.

It is also important to compare the results obtained with the GA seeded with

random rule sets to those constructed by C4.5. On STAB1, the GA almost always

converged to the majority classifier (whether it was seeded with a random rule set

or one constructed by C4.5) and hence outperformed C4.5 with respect to the ac-

curacy but scores lower than it with respect to the J index. On STAB2, the GA

outperformed C4.5.
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Figure 5.13. STAB2-Accuracy (C) and J index (J) of a random rule set
and the GA generated rule set on both the testing and the training sets.
Experiments were run with the following parameters: ℵ = 0.9, µ = 0.1,
f(l) = c(l)∗ t(l), ε = 0, G = 50, selection technique is roulette wheel, sorting
of rules in the rule set is by classification label and classification procedure

is sequential.
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Figure 5.14. MAINT-Accuracy (C) and J index (J) of a random rule set
and the GA generated rule set on both the testing and the training sets.
Experiments were run with the following parameters: ℵ = 0.9, µ = 0.1,
f(l) = c(l)∗ t(l), ε = 0, G = 50, selection technique is roulette wheel, sorting
of rules in the rule set is by classification label and classification procedure

is sequential.

3.2. SETUP II. In order to compare both fitness functions f1 and f2 (Equa-

tions 5.1 and 5.2 respectively), we set up another set of experiments that differ from
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Parameter Value Parameter Value
crossover probability 0.9 Generations 50
mutation rate 0.1 Selection technique Roulette Wheel
Elitism 0 f(l) C(l) ∗ t(l) + (1− t(l)) ∗ C(R)

Table 5.3. Experiment SETUP II: f(l) = C(l) ∗ t(l) + (1− t(l)) ∗ C(R).

the previous one in the fitness function only. In this set of experiments, the fitness

function shown is f2(l) = C(l) ∗ t(l) + (1 − t(l)) ∗ C(R) (Equation 5.2). Everything

else is the same as in SETUP 1. Table 5.3 summarizes this setup.

3.2.1. STAB1. Figure 5.15 shows the accuracy and the J index of C4.5 and

the GA on the testing and the training sets. The GA achieved an accuracy of 85% on

both the training set and the testing set whereas C4.5 achieved an accuracy of 72%.

It also achieved a J index of 52% on both sets slightly better than the J index of the

majority classifier (J index of C4.5 was close to 60% on both sets).
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Figure 5.15. STAB1-Accuracy (C) and J index (J) of C4.5 and GA gen-
erated rule set on both the testing and the training sets. Experiments
were run with the following parameters: ℵ = 0.9, µ = 0.1, f(l) =
c(l) ∗ t(l) + (1 − t(l)) ∗ C(R), ε = 0, G = 50, selection technique is roulette
wheel, sorting of rules in the rule set is by classification label classification
procedure is sequential.

3.2.2. STAB2. Figure 5.16 shows the accuracy and the J index of C4.5 and the

GA on the testing and the training sets in the case of the balanced data set STAB2.
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Here, also, the GA improved the accuracy on both sets (slightly only on the testing

set) and a small improvement can be seen in the J index. The results are similar to

those obtained with the previous setup.
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Figure 5.16. STAB2-Accuracy (C) and J index (J) of C4.5 and GA gen-
erated rule set on both the testing and the training sets. Experiments
were run with the following parameters: ℵ = 0.9, µ = 0.1, f(l) =
c(l) ∗ t(l) + (1 − t(l)) ∗ C(R), ε = 0, G = 50, selection technique is roulette
wheel, sorting of rules in the rule set is by classification label classification
procedure is sequential.

3.2.3. MAINT. Figure 5.17 shows the results of the GA on the maintainability

data set. Compared to the previous setup, SETUP II achieved similar results. Hence,

accounting for the accuracy of the rule set in the fitness function did not affect the

performance of the GA when seeded with a rule set constructed by C4.5.

3.2.4. Randomly Generated Rule Sets. In the same setup, we performed exper-

iments seeding the GA with a random rule set. These were the same rule sets that

we tested the algorithm with in the previous setup (Section 3.1.5). Figures 5.18 show

the results on STAB1 and Figure 5.19 shows the results of these experiments on

STAB2. Again, on STAB1, the GA converged to the majority classifier and scored

the same accuracy and J index as it did in the previous setup.

On STAB2, the GA improved the accuracy on the training set and the testing

set and especially the J index. The improvement was slightly better than the one
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Figure 5.17. MAINT-Accuracy (C) and J index (J) of C4.5 and GA gen-
erated rule set on both the testing and the training sets. Experiments
were run with the following parameters: ℵ = 0.9, µ = 0.1, f(l) =
c(l) ∗ t(l) + (1 − t(l)) ∗ C(R), ε = 0, G = 50, selection technique is roulette
wheel, sorting of rules in the rule set is by classification label classification
procedure is sequential.

obtained in SETUP I. It is important to point out that the final rule sets obtained

with the GA have an accuracy higher than the rule sets that C4.5 constructed on the

same data set. Hence, the GA was able to adapt a randomly generated rule set to

STAB2 and achieve an accuracy (68% on training, 67% on testing) and a J index

(about 55% on both sets) higher than the rule set that C4.5 constructed (accuracy

on training equal to 62%, accuracy on testing equal to 55%, J index on training and

testing = 52%).

Figure 5.20 shows the results obtained on MAINT. In this setup also the GA

improved the accuracy and the J index. The rule set obtained had an accuracy of

72% on the training set and 65% on the testing set (compared to 51% and 50%,

respectively, in the case of the initial rule set) and a J index of 63% on the training

set and 56% on the testing set (compared to 60% and 56%, respectively, for the initial

rule set).

3.3. Comparison of SETUP I and SETUP II. When seeded with a rule

set constructed by C4.5, the GA performed similarly in both setups regardless of the
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Figure 5.18. STAB1- Accuracy (C) and J index (J) of a random rule set
and the GA generated rule set on both the testing and the training sets.
Experiments were run with the following parameters: ℵ = 0.9, µ = 0.1,
f(l) = c(l) ∗ t(l) + (1 − t(l)) ∗ C(R), ε = 0, G = 50, selection technique
is roulette wheel, sorting of rules in the rule set is by classification label
classification procedure is sequential.
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Figure 5.19. STAB2-Accuracy (C) and J index (J) of a random rule
set and the GA generated rule set on both the testing and the training
sets.Experiments were run with the following parameters: ℵ = 0.9, µ = 0.1,
f(l) = c(l) ∗ t(l) + (1 − t(l)) ∗ C(R), ε = 0, G = 50, selection technique
is roulette wheel, sorting of rules in the rule set is by classification label
classification procedure is sequential.

data set that we used. However, when the GA was seeded with a random rule set, it

gave a higher accuracy and a higher J index in SETUP II than it did in SETUP I on
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the balanced data sets STAB2 and MAINT. In our opinion, the reason is two-fold:

the size of the rule set and the fitness function. The rule sets constructed by C4.5

are small in size (small number of attributes and small number of rules). During the

evolutionary process, some rules get a very low fitness and eventually die (are never

picked to produce progeny). This depletes the attribute pool and the GA converges to

a rule set with one or two attributes only (in most of the cases, 1 attribute). Not much

improvement ca be expected beyond this point. However, when we generate random

rule sets, we pick attributes from the whole set describing the data set. Including

all (or most of) the attributes in the initial rule set gives the GA more possibilities

for constructing rules (and conditions). This prevents its premature convergence to

a small rule set and allows the process of evolution to proceed longer.

Why does the GA perform better with f2 than with f1 when seeded with a random

rule set? The reason is that f2 includes the accuracy of the rule set in the fitness

of a chromosome. Hence, a chromosome representing a rule with an accuracy or a

coverage of 0 will not be given a fitness of 0 and has a higher chance to survive (in the

case of f1 such a chromosome will have a fitness equal to 0). As already mentioned,

some conditions, although “fatal” when they appear in a combination might turn out

good when combined with other conditions. f2 gives a chance for such conditions to

survive and be combined with other conditions throughout the process of evolution.

f2 does not have the same influence when used with C4.5 rule sets because the number

of conditions is already very small. It is important to point out that when seeded with

random rule sets, our GA still constructs a rule set with fewer attributes than the

original one and in most cases, the number of attributes does not exceed 3. However,

such a convergence happens at a later stage in the evolutionary process than it does

when the GA is seeded with C4.5 rule sets.

3.4. The Effect of Crossover and Mutation Rates. In order to show

the effect of different crossover and mutation rates on the performance of the GA,

we chose one rule set constructed by C4.5 and we seeded the GA with it. We ran

several experiments. They differ from each other in the crossover and/or the mutation
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Figure 5.20. MAINT-Accuracy (C) and J index (J) of a random rule set
and the GA generated rule set on both the testing and the training sets.
Experiments were run with the following parameters: ℵ = 0.9, µ = 0.1,
f(l) = c(l) ∗ t(l) + (1 − t(l)) ∗ C(R), ε = 0, G = 50, selection technique
is roulette wheel, sorting of rules in the rule set is by classification label
classification procedure is sequential.

rate. In all experiments, the number of generations was set to 1000 and elitism was

performed. The fitness function used was f1 (Equation 5.1). Each experiment was

repeated 30 times and the average over the 30 runs was reported. Figures 5.21 and 5.22

show the results (accuracy and J index) on both the training and the testing sets.

Each bar in the graph corresponds to one experiment (average over 30 runs). The first

bar in each figure indicates the accuracy (or the J index) of the initial rule set used to

seed all the experiments in this figure. The figures show that changing crossover and

mutation rates affect somehow the results (not much the training accuracy). Usually,

crossover and mutation rates are set after several experiments are run and the best

set of parameters for the particular problem is chosen.

4. Discussion and Summary

The GA outperforms C4.5 in both the complexity and the accuracy of the rule

sets that it builds especially on STAB1 and STAB2. As a matter of fact, not only

does the rule set obtained with our GA have a higher accuracy (on both the testing
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Figure 5.21. STAB2-Different experiments seeded with the same rule set.
Each bar shows the results of one experiment. Each experiment is run 30
times and the average and standard deviation are reported for each. The
first bar shows the accuracy of the initial rule set.
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Figure 5.22. STAB2-Different experiments seeded with the same rule set.
Each bar shows the results of one experiment. Each experiment is run 30
times and the average and standard deviation are reported for each. The
first bar shows the J index of the initial rule set.

and the training sets) than the one built by C4.5 but also this rule set has fewer

attributes and conditions. Hence, it is much easier to understand by human experts.

Feature reduction is a commonly studied problem in the field of classification systems

and a well-desired feature in building software quality estimation models. Another
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important feature of the GA is the speed with which it finds the “best” rule set. This

is obtained early during the evolution process (in most cases, within the first 10 to

15 generations when the seed is a C4.5 rule set, at a later iteration (35 and later)

when the seed is a random rule set). This is interesting since in most applications,

GAs suffer from the speed in discovering a “good” solution which is not the case with

ours.
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CHAPTER 6

Conclusion

1. Summary

This thesis has proposed two adaptive approaches to optimize existing software

quality estimation models. The first one starts with several rule sets and searches for

a combination of rules, derived from them, that makes better rule sets with respect

to a new data set. In real applications, this can be seen as taking rule sets built

from common domain knowledge and finding a combination of their “expertise” that

results in a rule set with a higher prediction accuracy when used on context specific

data. The second approach adapts a single rule set, built from a specific data set,

to a new one. In real applications, this can be seen as taking one rule set built

from common domain knowledge and adapting it to context specific knowledge. In

both approaches, the knowledge learnt at the time the initial rule sets were built is

incorporated in the final one. To the best of our knowledge, ours is the first work that

aims at optimizing the performance of already-existing software quality estimation

models on new, unseen data.

Both approaches that we have presented are derived from the genetic algorithm

methodology. Our experience with this technique proved that the choice of the rep-

resentation of the models in the GA affected to a great extent the performance of the

algorithm. As a matter of fact, it is widely recognized that setting up a problem to

be solved by GAs is not straightforward.



6.1 SUMMARY

We have conducted experiments with three different data sets. Two involved the

stability of classes in an object-oriented system and one involved maintainability of

C++ classes. One of the two stability data sets was imbalanced. The maintainability

data set had a smaller size than the other two. In the first approach (combining

multiple estimation models) the GA outperformed C4.5 by achieving higher accuracy

and J index on all three data sets. In the second approach (adapting a single model),

the GA achieved a better J index (on both, the training and the testing sets) than

the majority classifier on the imbalanced data set. It achieved higher accuracy and

J index than C4.5 on the balanced stability data set. On the maintainability data

set, it achieved a better accuracy on the training set only (due to the small size of

the data set).

We have also experimented with randomly generated rule sets and our technique

outperformed random guess on the two larger data sets. It also outperformed the

majority classifier on the imbalanced data set.

The end result of our technique consists of rule sets. These provide two separate

utilities: an estimation of a quality characteristic and guidelines that can help software

engineers attain the predicted quality characteristic.

Our technique guarantees no damage to results. In all cases, the GA finds a

software quality estimation model that is at least as accurate as the initial one. In

most cases, the rule set found by the GA is different from the initial one and hence,

can be used as an additional guideline during the development phase of a software

product. In the experiments that we presented, the adaptive GA found rule sets that

not only are more accurate but also have fewer attributes in the rules. Rule sets with

fewer attributes are easier to interpret by human experts. We must admit, however,

that the reduction in the complexity of the rule set was a “by-product” of the GA

that we were not aiming at achieving when we designed the algorithm. Nonetheless,

in our design, we made sure not to guide the GA, in its search, to more complex rule

sets.
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Our technique is general and not tied to any specific type of rules or type of

attributes (i.e. the GA can perform well with continuous and discrete attributes and

with rules other than attribute-value rules). Although it has been validated with

object-oriented metrics and data, our technique should also be applicable to other

types of software systems since it is independent of the metrics or the type of data.

2. Limitations

The running time of the GA is polynomial in the size of the data set, the number of

rule sets in each population, the size of rule sets (number of rules per rule set), the size

of rules (number of conditions per rule) and the number of generations. For example,

the algorithm implementing the combining approach executes in approximately 23

minutes in a run over 300 generations on STAB2, with a population of 23 rule sets, a

total of 90 rules or 181 conditions. When we benchmarked the algorithm, we found

that most of the time is spent evaluating the fitness function (which is usually the case

in GAs). The execution time is not too bad regarding the benefits that an optimized

model can bring. Nonetheless, one way to optimize this running time would be by

parallelizing the evaluation of the fitness of the chromosomes in one population.

The results obtained with the maintainability data set indicate that a set with a

decent size is still needed in the adaptive approach that considers a single model.

Another limitation of this technique is that neither of the approaches that we

presented considers the gain ratio associated with each attribute (defined in Chapter 2,

Page 5) whereby the algorithm chooses the attribute test that seems most promising

in terms of dividing the training set. We think that incorporating such knowledge

into the GA will improve the results significantly.

3. Future Work

There are a few paths that derive from this work and are worth exploring. One

path that we have already embarked on is the design of a genetic algorithm that is

based on a different representation of the rule sets. More precisely, we have started

122



6.3 FUTURE WORK

laying the ground for a GA that represents rule sets as graphs. Genetic operators

(crossover and mutation) are defined to be simple graph operations (changing edge

weights, drawing edges between vertices, etc.). This new design differs from the ones

we have seen in this thesis in two major ways: 1. simplicity of implementation and

2. strong effect of mutation and crossover on the rules and hence, the rule sets.

Its strength, as we expect it, lies in the capability of the GA to add attributes to

rule sets during the process of adaptation. This is important as it is often the case

in the field of software quality for new metrics to be proposed. Incorporating them

into the adapted models would be highly desirable. An overview of this new design

can be found in Appendix A. The algorithm presented in the appendix considers the

approach of adapting a single rule set to a data set. It can be extended to consider

combining several rule sets.

Another work that could be extended from this thesis is building a hybrid-

approach in which a genetic algorithm will combine and mutate rule sets while another

type of algorithms (simulated annealing, hill-climbing, or even another GA) optimizes

the rules.

Finally, a third direction would be the use of the GA to create rule sets from

scratch by deriving them directly from the data set instead of optimizing existing

models. This direction can be considered orthogonal to the current one since it does

not allow the incorporation of already acquired knowledge into the new models - a

characteristic of core interest in our current work.
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APPENDICES

APPENDIX A

In this appendix, we describe a genetic algorithm based on a graph representation

of the chromosomes. As we describe the technique, we will see that its strengths lie

in three major points:

(i) Implementation simplicity. The graph representation leads to a very

simple implementation of crossover and mutation.

(ii) Ease to incorporate new attributes. A rule set built with a specific

set of attributes can be adapted to a data set with more attributes.

(iii) More variation in the conditions making the rules. The mutation

operator changes not only the values involved in the conditions but also the

attributes and the operators.

A.1. Overview

We consider the approach of optimizing a single model. Similar to the GA pre-

sented in Chapter 5, a rule set represents a population of chromosomes. The major

difference compared to the previous approach is the representation of a chromosome.

Here, a rule set is a graph and a rule in the rule set is a subgraph.

A.2. Representation and Fitness Function

A rule set is represented as a bipartite graph.



6.A.2 REPRESENTATION AND FITNESS FUNCTION

Definition A.2.1. An independent set in a graph is a set of pairwise nonad-

jacent vertices [West, 1996].

Definition A.2.2. A graph G is bipartite if the set of vertices V (G) is the

union of two disjoint (possibly empty) independent sets called bipartite sets [West,

1996].

Figure A.2.1 shows an example of a graph and a bipartite graph.

Bipartite GraphGraph

Figure A.2.1. An example of a graph and a bipartite graph.

Our representation consists of mapping a rule set to a bipartite graph. One

independent set, A, is formed of vertices that represent attributes ai (1 ≤ i ≤ n)

where ai is one attribute in the data set from which the rule set is built. All the

attributes are represented by vertices. The other independent set, V , is formed of

vertices that represent values, vj (1 ≤ j ≤ m) where vj is a value in a condition. We

draw an edge, E, between two vertices, ai ∈ A and vj ∈ V , if and only if a condition

including the attribute ai and the value vj is found in the rule set. Each condition

in the rule set is represented by exactly one edge in the graph. Hence, if a value

appears more than once in the rule set, it will appear more than once in a value

vertex in the graph. We call the vertex ai the attribute-vertex of edge E and vj its

value-vertex. We assign to each edge in the graph a weight w ∈ {0, 1}. w is 0 if the

condition ai ≤ vj is in the rule, and 1 if the condition ai > vj is found in the rule. We
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6.A.2 REPRESENTATION AND FITNESS FUNCTION

assign to all the edges representing one rule a unique color that identifies this rule.

We use the notation E(ai, vj, w, c) to designate the edge connecting vertices ai and

vj such that the edge is assigned a weight w and a color c. Hence, each subgraph

representing a rule has a unique color. We complement each rule subgraph with a

class vertex ck which represents the classification label of the rule that the subgraph

represents. To attach the vertex ck to the subgraph, we draw an edge between ck and

exactly one of the attribute vertices, ai, in the subgraph. We give to this edge the

color that identifies the subgraph. We assign to all edges that connect a class vertex

to an attribute vertex a weight of -1 (this is equivalent to assigning no weight to the

edge). We call such edges special edges. One can easily see that the graph remains

bipartite. Figure A.2.2 shows a rule set and its graph representation.

Rule 1:
LCOMB  > 22
NPPM <= 10
−> class 0
Rule2:
LCOMB <= 16
−> class 1
Default class: 1

LCOMB 10

1

0

NPPM 16

0

1

0

22

Figure A.2.2. A rule set and its bipartite graph representation. Each rule
in the rule set is represented with a different type of line in the graph. A
node representing a classification label is assigned to each rule. The default
classification label of the rule set is saved in a separate field.

Similar to the algorithm described in Chapter 5, a chromosome is evaluated in

terms of the accuracy and the coverage of the rule that it represents using fitness

functions ( 5.1) and ( 5.2).

A.2.1. Crossover. In this GA, each rule is a chromosome represented as a

subgraph. Genes are edges in the subgraph. Crossover consists of exchanging colors

between two edges (of a different color and different from the special edges) in the
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6.A.2 REPRESENTATION AND FITNESS FUNCTION

graph. This is equivalent to exchanging conditions between two rules in the rule set.

More formally, if we consider the following two chromosomes:

Chromosome 1 (a11, v11, w11, l1), (a12, v12, w12, l1), (a13, v13, w13, l1), (a11, c1,−1, l1)

Chromosome 2 (a21, v21, w21, l2), (a22, v22, w22, l2), (a23, v23, w23, l2), (a21, c2,−1, l2)

One way of performing crossover between them is to exchange the color between

the first edge in Chromosome 1 and the third in Chromosome 2. This will give the

following two offspring:

Offspring 1 (a23, v23, w23, l2), (a12, v12, w12, l1), (a13, v13, w13, l1), (a11, c1,−1, l1)

Offspring 2 (a21, v21, w21, l2), (a22, v22, w22, l2), (a11, v11, w11, l1), (a21, c2,−1, l2)

Figure A.2.3 shows a more specific example on a graph representation. In this figure,

we designate by 0 the ‘less than or equal operator’ and by 1 the ‘greater than’ operator,

exchanging colors1 between the two edges, (LCOMB, 16, 0, 0) and (LCOMB, 22, 1, 1)

results in the conditions LCOMB ≤ 16 and LCOMB > 22 being exchanged between

two rules.

A.2.2. Mutation. The mutation operator that we define for this represen-

tation changes not only the conditions to which attributes are compared but the

relations as well. We define three different types of mutation:

(i) Weight mutation changes the weight assigned to an edge E = (ai, vj, w, l).

This is equivalent to changing the relational operator in a condition. Fig-

ure A.2.4 shows an example.

(ii) Edge insertion adds an edge to the graph by connecting an attribute vertex

ai to value vertex vj where vj is a value chosen randomly from the set of

cutpoints for attribute ai. The weight and the color of the edge are chosen

randomly. This is equivalent to adding a condition to a rule.

1Different line types indicate different colors in the figure.
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LCOMB 10

1

0

NPPM 16

0

1

0

22

Rule 1:
LCOMB  > 22
NPPM <= 10
−> class 0
Rule2:
LCOMB <= 16
−> class 1
Default class: 1

LCOMB 10

1

0

NPPM 16

0

1

0

22

Rule 1:
LCOMB  <= 16
NPPM <= 10
−> class 0
Rule2:
LCOMB > 22
−> class 1
Default class: 1

Figure A.2.3. Crossover. Exchanging colors (line types) between two edges
results in the two conditions in bold being swapped.

LCOMB 10

1

0

NPPM 16

0

1

0

22

Rule 1:
LCOMB  > 22
NPPM <= 10
−> class 0
Rule2:
LCOMB <= 16
−> class 1
Default class: 1

LCOMB 10

1

0

NPPM 16

0

0

22

Rule 1:
LCOMB  <=  22
NPPM <= 10
−> class 0
Rule2:
LCOMB <= 16
−> class 1
Default class: 1

0

Figure A.2.4. Weight mutation operator. Changing the weight of edge
(LCOMB, 22, 1, 1) from 1 to 0 changes the condition LCOMB > 22 to
LCOMB ≤ 22 in the first rule.

(iii) Value mutation operates on the level of the value vertices. It changes the

value associated with such a vertex to an adjacent one on the cutpoint list.
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6.A.2 REPRESENTATION AND FITNESS FUNCTION

For this, we associate with each attribute ai an ordered set of cutpoint

values, V = {v1, v2, ...vn} where vi < vi+1, ∀i < n. If we designate by

adj(vi) the set of values adjacent to vi then, ∀vi ∈ V , where i 6= 1 and

i 6= n, adj(vi) = {vi−1, vi+1}, adj(v1) = {v2} and adj(vn) = {vn−1}. When

value mutation is applied to (ai, vj, w, l), this will change into (ai, vk, w, l)

where vk ∈ adj(vj). This is a conservative approach that does not result in

big changes. A value in a condition is slightly modified to see how much it

can affect the rule set as a whole. Figure A.2.5 shows an example.

LCOMB 10

1

0

NPPM 16

0

1

0

22

Rule 1:
LCOMB  > 22
NPPM <= 10
−> class 0
Rule2:
LCOMB <= 16
−> class 1
Default class: 1

LCOMB

1

0

NPPM 16

1

0

22

Rule 1:
LCOMB  > 22
NPPM <= 5
−> class 0
Rule2:
LCOMB <= 16
−> class 1
Default class: 1

10

5

0

Figure A.2.5. Value mutation operator. Replacing a vertex value with
another replaces the condition NPPM ≤ 10 with NPPM ≤ 5.

(iv) Class mutation is similar to value mutation but is applied to special edges

only. The value associated with the class vertex is changed to a different one

chosen randomly from the set of classification labels. Figure A.2.6 shows

an example where the classification label of Rule2 is changed from 1 to 0.

A.2.3. Postprocessing. We can see that the way we defined crossover and

mutation above results in syntactically correct rules all the time. However, it is

possible that the graph represents rules that contain redundancy and inconsistency
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LCOMB 10

1

0

NPPM 16

0

1

0

22

Rule 1:
LCOMB  > 22
NPPM <= 10
−> class 0
Rule2:
LCOMB <= 16
−> class 1
Default class: 1

LCOMB 10

0

NPPM 16

0

1

0

22

Rule 1:
LCOMB  > 22
NPPM <= 10
−> class 0
Rule2:
LCOMB <= 16
−> class 0
Default class: 1

0

Figure A.2.6. Class mutation operator. The vertex representing the mu-
tated classification label is highlighted.

(see definitions in Section 2.3). Solving these two problems is very simple with this

representation. We say that edge (ai, vi, wi, li) is greater than edge (aj, vj, wj, lj) if

and only if the value that vi represents is greater than the value that vj represents.

For each vertex ai, for each color c, we sort in an increasing order all edges incident

with ai with a weight of 1 and we sort in a decreasing order all edges with a weight

of 0. These represent all the conditions involving the attribute represented by ai in

a rule. Among the sorted edges with a weight of 1, we keep the one connecting ai

to the vertex with the highest value. Among those with a weight of 0, we keep the

one connecting ai to the vertex with the lowest value. All edges incident at a class

vertex c are kept. We delete all the others. This eliminates redundancy by removing

a condition li if it is subsumed by at least one other condition lj in the same rule. It

is also possible that the rules contain contradicting conditions. These are kept until

the end of the evolutionary cycle. They are removed from the last rule set in case

they survive.
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A.3. Motivations for This Technique

(i) Simple crossover and mutation operators. Representing the rule set

as a graph leads to a simple implementation of crossover and mutation.

As a matter of fact, crossover consists of just a change in the edge color.

Mutation consists of a modification in the value vertices, the weights of

edges or the addition of new edges. These are operators very simple to

implement as opposed to the crossover operator (especially double point

crossover) for the GA described in Chapter 4.

(ii) Strength of the mutation operator.

The mutation operator used previously in this thesis, produced a change

only in the value to which an attribute is a compared in a condition and

the class labels. In this implementation, mutation leads to a change in the

value (value mutation), the relational operator (weight mutation), and the

classification label (class mutation). Moreover, edge insertion mutation cre-

ates new conditions, from scratch, by including edges between an attribute

vertex and a value vertex. The adaptive GA that we presented in Chap-

ter 5 resulted in a depletion of the condition pool at a certain point during

the evolution process. No further improvement was possible due to this

behavior. The algorithm that we present in this appendix overcomes this

problem by keeping the disconnected attribute vertices in the graph, making

it possible to draw an edge between an attribute vertex and a disconnected

value vertex. Hence, if an attribute disappears from a population, it is still

possible for it to re-emerge in future populations.

(iii) Ease of incorporating new attributes.

With this GA, it is possible to take a rule set built on one data set with a

set of attributes and adapt it to a different set of data with more attributes.

The new attributes are included in the graph as disconnected vertices which

can become connected by the edge insertion mutation. This is especially
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important in software engineering where new metrics are constantly pro-

posed and older metrics can become deprecated.

Extending this technique to combine several rule sets should not be too difficult.
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