
1/29

Efficient Evaluation of Lazy Programs,
or Compilation of Call-by-Need

Junyoung Jang
junyoung.jang@mail.mcgill.ca

McGill University



2/29

Declaimer

This presentation is based on
Simon P. Jones and David R. Lester’s

Implementing Functional Languages: a Tutorial

For a “modernized” version of its appendix,
one can see https://github.com/Ailrun/core-lang-haskell



2/29

Declaimer

This presentation is based on
Simon P. Jones and David R. Lester’s

Implementing Functional Languages: a Tutorial

For a “modernized” version of its appendix,
one can see https://github.com/Ailrun/core-lang-haskell



3/29

Advantages of Lazy Programs

▶ Make it easier to deal with recursion when using combinator libraries
▶ Bring us efficient persistent data structures
▶ Provide a way to encode co-data (e.g. streams)



3/29

Advantages of Lazy Programs

▶ Make it easier to deal with recursion when using combinator libraries

▶ Bring us efficient persistent data structures
▶ Provide a way to encode co-data (e.g. streams)



3/29

Advantages of Lazy Programs

▶ Make it easier to deal with recursion when using combinator libraries
▶ Bring us efficient persistent data structures

▶ Provide a way to encode co-data (e.g. streams)



3/29

Advantages of Lazy Programs

▶ Make it easier to deal with recursion when using combinator libraries
▶ Bring us efficient persistent data structures
▶ Provide a way to encode co-data (e.g. streams)



4/29

The Question

Are these advantages real?Is it possible to efficiently execute a lazy program?



4/29

The Question

Are these advantages real?Is it possible to efficiently execute a lazy program?



5/29

Difficulties of Efficient Evaluation of Lazy Programs

1 Sharing
2 (Redirection)
3 Instantiation

▶ What are These Difficulties?
▶ How to Solve These Difficulties?



5/29

Difficulties of Efficient Evaluation of Lazy Programs

1 Sharing

2 (Redirection)
3 Instantiation

▶ What are These Difficulties?
▶ How to Solve These Difficulties?



5/29

Difficulties of Efficient Evaluation of Lazy Programs

1 Sharing
2 (Redirection)

3 Instantiation

▶ What are These Difficulties?
▶ How to Solve These Difficulties?



5/29

Difficulties of Efficient Evaluation of Lazy Programs

1 Sharing
2 (Redirection)
3 Instantiation

▶ What are These Difficulties?
▶ How to Solve These Difficulties?



5/29

Difficulties of Efficient Evaluation of Lazy Programs

1 Sharing
2 (Redirection)
3 Instantiation

▶ What are These Difficulties?

▶ How to Solve These Difficulties?



5/29

Difficulties of Efficient Evaluation of Lazy Programs

1 Sharing
2 (Redirection)
3 Instantiation

▶ What are These Difficulties?
▶ How to Solve These Difficulties?



6/29

The First Difficulty: Sharing - 1

square x = x * x
main = square (square 3)

AST for main

$

square $

square 3

How can we reduce this tree into 81?



6/29

The First Difficulty: Sharing - 1

square x = x * x
main = square (square 3)

AST for main

$

square $

square 3

How can we reduce this tree into 81?



6/29

The First Difficulty: Sharing - 1

square x = x * x
main = square (square 3)

AST for main

$

square $

square 3

How can we reduce this tree into 81?



7/29

The First Difficulty: Sharing - 2

square x = x * x
main = square (square 3)

$

square $

square 3

square x = x * x
main = square (square 3)

$

$

* $

square 3

$

square 3

We wastefully repeat the computation!



7/29

The First Difficulty: Sharing - 2

square x = x * x
main = square (square 3)

$

square $

square 3

square x = x * x
main = square (square 3)

$

$

* $

square 3

$

square 3

We wastefully repeat the computation!



7/29

The First Difficulty: Sharing - 2

square x = x * x
main = square (square 3)

$

square $

square 3

square x = x * x
main = square (square 3)

$

$

* $

square 3

$

square 3

We wastefully repeat the computation!



8/29

The First Difficulty: Sharing - 3

Let’s share x part

square x = x * x
main = square (square 3)

$

square $

square 3

Let’s share x part

square x = x * x
main = square (square 3)

$

square $

square 3

square x = x * x
main = square (square 3)

$

$

*

$

square 3

square x = x * x
main = square (square 3)

$

$

*

$

square 3

$

$

*

9



8/29

The First Difficulty: Sharing - 3

Let’s share x part

square x = x * x
main = square (square 3)

$

square $

square 3

Let’s share x part

square x = x * x
main = square (square 3)

$

square $

square 3

square x = x * x
main = square (square 3)

$

$

*

$

square 3

square x = x * x
main = square (square 3)

$

$

*

$

square 3

$

$

*

9



8/29

The First Difficulty: Sharing - 3

Let’s share x part

square x = x * x
main = square (square 3)

$

square $

square 3

Let’s share x part

square x = x * x
main = square (square 3)

$

square $

square 3

square x = x * x
main = square (square 3)

$

$

*

$

square 3

square x = x * x
main = square (square 3)

$

$

*

$

square 3

$

$

*

9



8/29

The First Difficulty: Sharing - 3

Let’s share x part

square x = x * x
main = square (square 3)

$

square $

square 3

Let’s share x part

square x = x * x
main = square (square 3)

$

square $

square 3

square x = x * x
main = square (square 3)

$

$

*

$

square 3

square x = x * x
main = square (square 3)

$

$

*

$

square 3

$

$

*

9



8/29

The First Difficulty: Sharing - 3

Let’s share x part

square x = x * x
main = square (square 3)

$

square $

square 3

Let’s share x part

square x = x * x
main = square (square 3)

$

square $

square 3

square x = x * x
main = square (square 3)

$

$

*

$

square 3

square x = x * x
main = square (square 3)

$

$

*

$

square 3

$

$

*

9



9/29

The Solution for Sharing

We reduces a (directed) graph, not a tree.

Moreover, we need to update a node
(so that multiple refereces share the evaluation cost)



10/29

Efficiency Requirement

Each graph reduction step should be as local and small as possible
(for further optimizations, machine-compilability, etc.)



11/29

The Second Difficulty: Redirection - 1

id x = x
square x = (id x) * x
main = square (square 3)

id x = x
square x = (id x) * x
main = square (square 3)

$

square $

square 3

id x = x
square x = (id x) * x
main = square (square 3)

$

$

* $

id

$

square 3

How should we reduce the
application node for id?

id x = x
square x = (id x) * x
main = square (square 3)

$

$

* $

square 3

$

square 3
We lose sharing!

$

$

* $

square 3

We need to modify an ancestor
(depending on the depth of id)

$

$

* $

id

$

square 3

How should we handle this?



11/29

The Second Difficulty: Redirection - 1

id x = x
square x = (id x) * x
main = square (square 3)

id x = x
square x = (id x) * x
main = square (square 3)

$

square $

square 3

id x = x
square x = (id x) * x
main = square (square 3)

$

$

* $

id

$

square 3

How should we reduce the
application node for id?

id x = x
square x = (id x) * x
main = square (square 3)

$

$

* $

square 3

$

square 3
We lose sharing!

$

$

* $

square 3

We need to modify an ancestor
(depending on the depth of id)

$

$

* $

id

$

square 3

How should we handle this?



11/29

The Second Difficulty: Redirection - 1

id x = x
square x = (id x) * x
main = square (square 3)

id x = x
square x = (id x) * x
main = square (square 3)

$

square $

square 3

id x = x
square x = (id x) * x
main = square (square 3)

$

$

* $

id

$

square 3

How should we reduce the
application node for id?

id x = x
square x = (id x) * x
main = square (square 3)

$

$

* $

square 3

$

square 3
We lose sharing!

$

$

* $

square 3

We need to modify an ancestor
(depending on the depth of id)

$

$

* $

id

$

square 3

How should we handle this?



11/29

The Second Difficulty: Redirection - 1

id x = x
square x = (id x) * x
main = square (square 3)

id x = x
square x = (id x) * x
main = square (square 3)

$

square $

square 3

id x = x
square x = (id x) * x
main = square (square 3)

$

$

* $

id

$

square 3

How should we reduce the
application node for id?

id x = x
square x = (id x) * x
main = square (square 3)

$

$

* $

square 3

$

square 3
We lose sharing!

$

$

* $

square 3

We need to modify an ancestor
(depending on the depth of id)

$

$

* $

id

$

square 3

How should we handle this?



11/29

The Second Difficulty: Redirection - 1

id x = x
square x = (id x) * x
main = square (square 3)

id x = x
square x = (id x) * x
main = square (square 3)

$

square $

square 3

id x = x
square x = (id x) * x
main = square (square 3)

$

$

* $

id

$

square 3

How should we reduce the
application node for id?

id x = x
square x = (id x) * x
main = square (square 3)

$

$

* $

square 3

$

square 3
We lose sharing!

$

$

* $

square 3

We need to modify an ancestor
(depending on the depth of id)

$

$

* $

id

$

square 3

How should we handle this?



11/29

The Second Difficulty: Redirection - 1

id x = x
square x = (id x) * x
main = square (square 3)

id x = x
square x = (id x) * x
main = square (square 3)

$

square $

square 3

id x = x
square x = (id x) * x
main = square (square 3)

$

$

* $

id

$

square 3

How should we reduce the
application node for id?

id x = x
square x = (id x) * x
main = square (square 3)

$

$

* $

square 3

$

square 3
We lose sharing!

$

$

* $

square 3

We need to modify an ancestor
(depending on the depth of id)

$

$

* $

id

$

square 3

How should we handle this?



11/29

The Second Difficulty: Redirection - 1

id x = x
square x = (id x) * x
main = square (square 3)

id x = x
square x = (id x) * x
main = square (square 3)

$

square $

square 3

id x = x
square x = (id x) * x
main = square (square 3)

$

$

* $

id

$

square 3

How should we reduce the
application node for id?

id x = x
square x = (id x) * x
main = square (square 3)

$

$

* $

square 3

$

square 3
We lose sharing!

$

$

* $

square 3

We need to modify an ancestor
(depending on the depth of id)

$

$

* $

id

$

square 3

How should we handle this?



11/29

The Second Difficulty: Redirection - 1

id x = x
square x = (id x) * x
main = square (square 3)

id x = x
square x = (id x) * x
main = square (square 3)

$

square $

square 3

id x = x
square x = (id x) * x
main = square (square 3)

$

$

* $

id

$

square 3

How should we reduce the
application node for id?

id x = x
square x = (id x) * x
main = square (square 3)

$

$

* $

square 3

$

square 3
We lose sharing!

$

$

* $

square 3

We need to modify an ancestor
(depending on the depth of id)

$

$

* $

id

$

square 3

How should we handle this?



11/29

The Second Difficulty: Redirection - 1

id x = x
square x = (id x) * x
main = square (square 3)

id x = x
square x = (id x) * x
main = square (square 3)

$

square $

square 3

id x = x
square x = (id x) * x
main = square (square 3)

$

$

* $

id

$

square 3

How should we reduce the
application node for id?

id x = x
square x = (id x) * x
main = square (square 3)

$

$

* $

square 3

$

square 3
We lose sharing!

$

$

* $

square 3

We need to modify an ancestor
(depending on the depth of id)

$

$

* $

id

$

square 3

How should we handle this?



12/29

The Second Difficulty: Redirection - 2

id x = x
square x = (id x) * x
main = square (square 3)

$

$

* $

id

$

square 3

$

$

* # $

square 3

We follow this redirection node (#)
when we reduce the parent



12/29

The Second Difficulty: Redirection - 2

id x = x
square x = (id x) * x
main = square (square 3)

$

$

* $

id

$

square 3

$

$

* # $

square 3

We follow this redirection node (#)
when we reduce the parent



12/29

The Second Difficulty: Redirection - 2

id x = x
square x = (id x) * x
main = square (square 3)

$

$

* $

id

$

square 3

$

$

* # $

square 3

We follow this redirection node (#)
when we reduce the parent



13/29

The Solution for Redirection

We introduce an “run-time only” node (#) to handle it



14/29

Efficiency Requirement - Again

Each graph reduction step should be as local and small as possible



15/29

Unfortunate “Change-all” Step

square x = x * x
main = square (square 3)

$

square $

square 3

$

$

*

$

square 3

This changes almost entire structure of graph!



15/29

Unfortunate “Change-all” Step

square x = x * x
main = square (square 3)

$

square $

square 3

$

$

*

$

square 3

This changes almost entire structure of graph!



15/29

Unfortunate “Change-all” Step

square x = x * x
main = square (square 3)

$

square $

square 3

$

$

*

$

square 3

This changes almost entire structure of graph!



16/29

Unfortunate “Change-all” Step - Specifically

When we instantiate a function definition as a part of a graph,
we need to analyze the current graph

and
to construct a new graph



17/29

The Main Difficulty: Instantiation

How can we divide this huge step into smaller steps?



18/29

The First Solution for Instantiation: G-Machine - 1

square x = x * x
main = square (square 3)

Let’s start with construction of graph of main itself

$

square $

square 3

square x = x * x
main = square (square 3)

We construct it in a argument-first way, so start at 3

square x = x * x
main = square (square 3)

and then square

square x = x * x
main = square (square 3)

Now we can form an application node

square x = x * x
main = square (square 3)

Once we add another square

square x = x * x
main = square (square 3)

We can finish the main graph by constructing an application node



18/29

The First Solution for Instantiation: G-Machine - 1

square x = x * x
main = square (square 3)

Let’s start with construction of graph of main itself

$

square $

square 3

square x = x * x
main = square (square 3)

We construct it in a argument-first way, so start at 3

square x = x * x
main = square (square 3)

and then square

square x = x * x
main = square (square 3)

Now we can form an application node

square x = x * x
main = square (square 3)

Once we add another square

square x = x * x
main = square (square 3)

We can finish the main graph by constructing an application node



18/29

The First Solution for Instantiation: G-Machine - 1

square x = x * x
main = square (square 3)

Let’s start with construction of graph of main itself

$

square $

square 3

square x = x * x
main = square (square 3)

We construct it in a argument-first way, so start at 3

square x = x * x
main = square (square 3)

and then square

square x = x * x
main = square (square 3)

Now we can form an application node

square x = x * x
main = square (square 3)

Once we add another square

square x = x * x
main = square (square 3)

We can finish the main graph by constructing an application node



18/29

The First Solution for Instantiation: G-Machine - 1

square x = x * x
main = square (square 3)

Let’s start with construction of graph of main itself

$

square $

square 3

square x = x * x
main = square (square 3)

We construct it in a argument-first way, so start at 3

square x = x * x
main = square (square 3)

and then square

square x = x * x
main = square (square 3)

Now we can form an application node

square x = x * x
main = square (square 3)

Once we add another square

square x = x * x
main = square (square 3)

We can finish the main graph by constructing an application node



18/29

The First Solution for Instantiation: G-Machine - 1

square x = x * x
main = square (square 3)

Let’s start with construction of graph of main itself

$

square $

square 3

square x = x * x
main = square (square 3)

We construct it in a argument-first way, so start at 3

square x = x * x
main = square (square 3)

and then square

square x = x * x
main = square (square 3)

Now we can form an application node

square x = x * x
main = square (square 3)

Once we add another square

square x = x * x
main = square (square 3)

We can finish the main graph by constructing an application node



18/29

The First Solution for Instantiation: G-Machine - 1

square x = x * x
main = square (square 3)

Let’s start with construction of graph of main itself

$

square $

square 3

square x = x * x
main = square (square 3)

We construct it in a argument-first way, so start at 3

square x = x * x
main = square (square 3)

and then square

square x = x * x
main = square (square 3)

Now we can form an application node

square x = x * x
main = square (square 3)

Once we add another square

square x = x * x
main = square (square 3)

We can finish the main graph by constructing an application node



19/29

The First Solution for Instantiation: G-Machine - 2

square x = x * x
main = square (square 3)

Now let’s apply square
$

square $

square 3

$

$

*

square x = x * x
main = square (square 3)

We construct the arugment first

square x = x * x
main = square (square 3)

To construct its application node, we need to construct the function node

square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)

and then the top-level application nodeNow, clean up the old root

square x = x * x
main = square (square 3)

After visual rearrange, it is clear that we get the expected graph

$

$

*

$

square 3



19/29

The First Solution for Instantiation: G-Machine - 2

square x = x * x
main = square (square 3)

Now let’s apply square
$

square $

square 3

$

$

*

square x = x * x
main = square (square 3)

We construct the arugment first

square x = x * x
main = square (square 3)

To construct its application node, we need to construct the function node

square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)

and then the top-level application nodeNow, clean up the old root

square x = x * x
main = square (square 3)

After visual rearrange, it is clear that we get the expected graph

$

$

*

$

square 3



19/29

The First Solution for Instantiation: G-Machine - 2

square x = x * x
main = square (square 3)

Now let’s apply square
$

square $

square 3

$

$

*

square x = x * x
main = square (square 3)

We construct the arugment first

square x = x * x
main = square (square 3)

To construct its application node, we need to construct the function node

square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)

and then the top-level application nodeNow, clean up the old root

square x = x * x
main = square (square 3)

After visual rearrange, it is clear that we get the expected graph

$

$

*

$

square 3



19/29

The First Solution for Instantiation: G-Machine - 2

square x = x * x
main = square (square 3)

Now let’s apply square
$

square $

square 3

$

$

*

square x = x * x
main = square (square 3)

We construct the arugment first

square x = x * x
main = square (square 3)

To construct its application node, we need to construct the function node

square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)

and then the top-level application nodeNow, clean up the old root

square x = x * x
main = square (square 3)

After visual rearrange, it is clear that we get the expected graph

$

$

*

$

square 3



19/29

The First Solution for Instantiation: G-Machine - 2

square x = x * x
main = square (square 3)

Now let’s apply square
$

square $

square 3

$

$

*

square x = x * x
main = square (square 3)

We construct the arugment first

square x = x * x
main = square (square 3)

To construct its application node, we need to construct the function node

square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)

and then the top-level application nodeNow, clean up the old root

square x = x * x
main = square (square 3)

After visual rearrange, it is clear that we get the expected graph

$

$

*

$

square 3



19/29

The First Solution for Instantiation: G-Machine - 2

square x = x * x
main = square (square 3)

Now let’s apply square
$

square $

square 3

$

$

*

square x = x * x
main = square (square 3)

We construct the arugment first

square x = x * x
main = square (square 3)

To construct its application node, we need to construct the function node

square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)

and then the top-level application nodeNow, clean up the old root

square x = x * x
main = square (square 3)

After visual rearrange, it is clear that we get the expected graph

$

$

*

$

square 3



19/29

The First Solution for Instantiation: G-Machine - 2

square x = x * x
main = square (square 3)

Now let’s apply square
$

square $

square 3

$

$

*

square x = x * x
main = square (square 3)

We construct the arugment first

square x = x * x
main = square (square 3)

To construct its application node, we need to construct the function node

square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)

and then the top-level application nodeNow, clean up the old root

square x = x * x
main = square (square 3)

After visual rearrange, it is clear that we get the expected graph

$

$

*

$

square 3



19/29

The First Solution for Instantiation: G-Machine - 2

square x = x * x
main = square (square 3)

Now let’s apply square
$

square $

square 3

$

$

*

square x = x * x
main = square (square 3)

We construct the arugment first

square x = x * x
main = square (square 3)

To construct its application node, we need to construct the function node

square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)

and then the top-level application nodeNow, clean up the old root

square x = x * x
main = square (square 3)

After visual rearrange, it is clear that we get the expected graph

$

$

*

$

square 3



20/29

The First Solution for Instantiation: G-Machine - 3

square x = x * x
main = square (square 3)

Can we translate this into recordable code pieces?
Then we can “compile” main and square into those.Let’s repeat the main construction first.

PushInt 3
PushGlobal square
MakeApp
PushGlobal square
MakeApp
Unwind

square x = x * x
main = square (square 3)

We construct it in a bottom-up way, so start at 3

square x = x * x
main = square (square 3)

and then square

square x = x * x
main = square (square 3)

Now we can form an application node

square x = x * x
main = square (square 3)

Once we add another square

square x = x * x
main = square (square 3)

We can finish the main graph by constructing an application node

square x = x * x
main = square (square 3)

One more step here: we need to continue the graph reduction process



20/29

The First Solution for Instantiation: G-Machine - 3

square x = x * x
main = square (square 3)

Can we translate this into recordable code pieces?
Then we can “compile” main and square into those.Let’s repeat the main construction first.

PushInt 3
PushGlobal square
MakeApp
PushGlobal square
MakeApp
Unwind

square x = x * x
main = square (square 3)

We construct it in a bottom-up way, so start at 3

square x = x * x
main = square (square 3)

and then square

square x = x * x
main = square (square 3)

Now we can form an application node

square x = x * x
main = square (square 3)

Once we add another square

square x = x * x
main = square (square 3)

We can finish the main graph by constructing an application node

square x = x * x
main = square (square 3)

One more step here: we need to continue the graph reduction process



20/29

The First Solution for Instantiation: G-Machine - 3

square x = x * x
main = square (square 3)

Can we translate this into recordable code pieces?
Then we can “compile” main and square into those.Let’s repeat the main construction first.

PushInt 3

PushGlobal square
MakeApp
PushGlobal square
MakeApp
Unwind

square x = x * x
main = square (square 3)

We construct it in a bottom-up way, so start at 3

square x = x * x
main = square (square 3)

and then square

square x = x * x
main = square (square 3)

Now we can form an application node

square x = x * x
main = square (square 3)

Once we add another square

square x = x * x
main = square (square 3)

We can finish the main graph by constructing an application node

square x = x * x
main = square (square 3)

One more step here: we need to continue the graph reduction process



20/29

The First Solution for Instantiation: G-Machine - 3

square x = x * x
main = square (square 3)

Can we translate this into recordable code pieces?
Then we can “compile” main and square into those.Let’s repeat the main construction first.

PushInt 3
PushGlobal square

MakeApp
PushGlobal square
MakeApp
Unwind

square x = x * x
main = square (square 3)

We construct it in a bottom-up way, so start at 3

square x = x * x
main = square (square 3)

and then square

square x = x * x
main = square (square 3)

Now we can form an application node

square x = x * x
main = square (square 3)

Once we add another square

square x = x * x
main = square (square 3)

We can finish the main graph by constructing an application node

square x = x * x
main = square (square 3)

One more step here: we need to continue the graph reduction process



20/29

The First Solution for Instantiation: G-Machine - 3

square x = x * x
main = square (square 3)

Can we translate this into recordable code pieces?
Then we can “compile” main and square into those.Let’s repeat the main construction first.

PushInt 3
PushGlobal square
MakeApp

PushGlobal square
MakeApp
Unwind

square x = x * x
main = square (square 3)

We construct it in a bottom-up way, so start at 3

square x = x * x
main = square (square 3)

and then square

square x = x * x
main = square (square 3)

Now we can form an application node

square x = x * x
main = square (square 3)

Once we add another square

square x = x * x
main = square (square 3)

We can finish the main graph by constructing an application node

square x = x * x
main = square (square 3)

One more step here: we need to continue the graph reduction process



20/29

The First Solution for Instantiation: G-Machine - 3

square x = x * x
main = square (square 3)

Can we translate this into recordable code pieces?
Then we can “compile” main and square into those.Let’s repeat the main construction first.

PushInt 3
PushGlobal square
MakeApp
PushGlobal square

MakeApp
Unwind

square x = x * x
main = square (square 3)

We construct it in a bottom-up way, so start at 3

square x = x * x
main = square (square 3)

and then square

square x = x * x
main = square (square 3)

Now we can form an application node

square x = x * x
main = square (square 3)

Once we add another square

square x = x * x
main = square (square 3)

We can finish the main graph by constructing an application node

square x = x * x
main = square (square 3)

One more step here: we need to continue the graph reduction process



20/29

The First Solution for Instantiation: G-Machine - 3

square x = x * x
main = square (square 3)

Can we translate this into recordable code pieces?
Then we can “compile” main and square into those.Let’s repeat the main construction first.

PushInt 3
PushGlobal square
MakeApp
PushGlobal square
MakeApp

Unwind

square x = x * x
main = square (square 3)

We construct it in a bottom-up way, so start at 3

square x = x * x
main = square (square 3)

and then square

square x = x * x
main = square (square 3)

Now we can form an application node

square x = x * x
main = square (square 3)

Once we add another square

square x = x * x
main = square (square 3)

We can finish the main graph by constructing an application node

square x = x * x
main = square (square 3)

One more step here: we need to continue the graph reduction process



20/29

The First Solution for Instantiation: G-Machine - 3

square x = x * x
main = square (square 3)

Can we translate this into recordable code pieces?
Then we can “compile” main and square into those.Let’s repeat the main construction first.

PushInt 3
PushGlobal square
MakeApp
PushGlobal square
MakeApp
Unwind

square x = x * x
main = square (square 3)

We construct it in a bottom-up way, so start at 3

square x = x * x
main = square (square 3)

and then square

square x = x * x
main = square (square 3)

Now we can form an application node

square x = x * x
main = square (square 3)

Once we add another square

square x = x * x
main = square (square 3)

We can finish the main graph by constructing an application node

square x = x * x
main = square (square 3)

One more step here: we need to continue the graph reduction process



21/29

The First Solution for Instantiation: G-Machine - 4

square x = x * x
main = square (square 3)

Now let’s compile square too

Push 0
Push 1
PushGlobal *
MakeApp
MakeApp
Update 2
Pop 2
Unwind

square x = x * x
main = square (square 3)

We construct the arugment first

square x = x * x
main = square (square 3)

To construct its application node, we need to construct the function node

square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)

and then the top-level application nodeNow, clean up the old root

square x = x * x
main = square (square 3)

Note that we Update the root here to share the workAgain, for the further evaluation, we need to add the Unwind instruction



21/29

The First Solution for Instantiation: G-Machine - 4

square x = x * x
main = square (square 3)

Now let’s compile square too

Push 0

Push 1
PushGlobal *
MakeApp
MakeApp
Update 2
Pop 2
Unwind

square x = x * x
main = square (square 3)

We construct the arugment first

square x = x * x
main = square (square 3)

To construct its application node, we need to construct the function node

square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)

and then the top-level application nodeNow, clean up the old root

square x = x * x
main = square (square 3)

Note that we Update the root here to share the workAgain, for the further evaluation, we need to add the Unwind instruction



21/29

The First Solution for Instantiation: G-Machine - 4

square x = x * x
main = square (square 3)

Now let’s compile square too

Push 0
Push 1

PushGlobal *
MakeApp
MakeApp
Update 2
Pop 2
Unwind

square x = x * x
main = square (square 3)

We construct the arugment first

square x = x * x
main = square (square 3)

To construct its application node, we need to construct the function node

square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)

and then the top-level application nodeNow, clean up the old root

square x = x * x
main = square (square 3)

Note that we Update the root here to share the workAgain, for the further evaluation, we need to add the Unwind instruction



21/29

The First Solution for Instantiation: G-Machine - 4

square x = x * x
main = square (square 3)

Now let’s compile square too

Push 0
Push 1
PushGlobal *

MakeApp
MakeApp
Update 2
Pop 2
Unwind

square x = x * x
main = square (square 3)

We construct the arugment first

square x = x * x
main = square (square 3)

To construct its application node, we need to construct the function node

square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)

and then the top-level application nodeNow, clean up the old root

square x = x * x
main = square (square 3)

Note that we Update the root here to share the workAgain, for the further evaluation, we need to add the Unwind instruction



21/29

The First Solution for Instantiation: G-Machine - 4

square x = x * x
main = square (square 3)

Now let’s compile square too

Push 0
Push 1
PushGlobal *
MakeApp

MakeApp
Update 2
Pop 2
Unwind

square x = x * x
main = square (square 3)

We construct the arugment first

square x = x * x
main = square (square 3)

To construct its application node, we need to construct the function node

square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)

and then the top-level application nodeNow, clean up the old root

square x = x * x
main = square (square 3)

Note that we Update the root here to share the workAgain, for the further evaluation, we need to add the Unwind instruction



21/29

The First Solution for Instantiation: G-Machine - 4

square x = x * x
main = square (square 3)

Now let’s compile square too

Push 0
Push 1
PushGlobal *
MakeApp
MakeApp

Update 2
Pop 2
Unwind

square x = x * x
main = square (square 3)

We construct the arugment first

square x = x * x
main = square (square 3)

To construct its application node, we need to construct the function node

square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)

and then the top-level application nodeNow, clean up the old root

square x = x * x
main = square (square 3)

Note that we Update the root here to share the workAgain, for the further evaluation, we need to add the Unwind instruction



21/29

The First Solution for Instantiation: G-Machine - 4

square x = x * x
main = square (square 3)

Now let’s compile square too

Push 0
Push 1
PushGlobal *
MakeApp
MakeApp
Update 2
Pop 2

Unwind

square x = x * x
main = square (square 3)

We construct the arugment first

square x = x * x
main = square (square 3)

To construct its application node, we need to construct the function node

square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)

and then the top-level application nodeNow, clean up the old root

square x = x * x
main = square (square 3)

Note that we Update the root here to share the workAgain, for the further evaluation, we need to add the Unwind instruction



21/29

The First Solution for Instantiation: G-Machine - 4

square x = x * x
main = square (square 3)

Now let’s compile square too

Push 0
Push 1
PushGlobal *
MakeApp
MakeApp
Update 2
Pop 2

Unwind

square x = x * x
main = square (square 3)

We construct the arugment first

square x = x * x
main = square (square 3)

To construct its application node, we need to construct the function node

square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)

and then the top-level application nodeNow, clean up the old root

square x = x * x
main = square (square 3)

Note that we Update the root here to share the workAgain, for the further evaluation, we need to add the Unwind instruction



21/29

The First Solution for Instantiation: G-Machine - 4

square x = x * x
main = square (square 3)

Now let’s compile square too

Push 0
Push 1
PushGlobal *
MakeApp
MakeApp
Update 2
Pop 2
Unwind

square x = x * x
main = square (square 3)

We construct the arugment first

square x = x * x
main = square (square 3)

To construct its application node, we need to construct the function node

square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)
square x = x * x
main = square (square 3)

and then the top-level application nodeNow, clean up the old root

square x = x * x
main = square (square 3)

Note that we Update the root here to share the workAgain, for the further evaluation, we need to add the Unwind instruction



22/29

Problem Solved! Or... Did It? - 1

What does Unwind at the end of square do?

square x = x * x
main = square (square 3)

$

$

*

x

It first checks whether the root is a global/primitive valueOtherwise, it steps into the function sideUntil it reaches a global/primitive valueAnd jump to the code for the global

square x = x * x
main = square (square 3)



22/29

Problem Solved! Or... Did It? - 1

What does Unwind at the end of square do?

square x = x * x
main = square (square 3)

$

$

*

x

It first checks whether the root is a global/primitive valueOtherwise, it steps into the function sideUntil it reaches a global/primitive valueAnd jump to the code for the global

square x = x * x
main = square (square 3)



22/29

Problem Solved! Or... Did It? - 1

What does Unwind at the end of square do?

square x = x * x
main = square (square 3)

$

$

*

x

It first checks whether the root is a global/primitive valueOtherwise, it steps into the function sideUntil it reaches a global/primitive valueAnd jump to the code for the global

square x = x * x
main = square (square 3)



22/29

Problem Solved! Or... Did It? - 1

What does Unwind at the end of square do?

square x = x * x
main = square (square 3)

$

$

*

x

It first checks whether the root is a global/primitive valueOtherwise, it steps into the function sideUntil it reaches a global/primitive valueAnd jump to the code for the global

square x = x * x
main = square (square 3)



22/29

Problem Solved! Or... Did It? - 1

What does Unwind at the end of square do?

square x = x * x
main = square (square 3)

$

$

*

x

It first checks whether the root is a global/primitive valueOtherwise, it steps into the function sideUntil it reaches a global/primitive valueAnd jump to the code for the global

square x = x * x
main = square (square 3)



23/29

Problem Solved! Or... Did It? - 2

Unwind has linear time complexity to the length of a “spine”
(the curried applications on a function)



24/29

The Second Solution for Instantiation: TIM - 1

To avoid the problem of a spine, we will use “closures” to represent a call

square x = x * x

$

$

*

x

Not this

* · ·

x

But this



24/29

The Second Solution for Instantiation: TIM - 1

To avoid the problem of a spine, we will use “closures” to represent a call

square x = x * x

$

$

*

x

Not this

* · ·

x

But this



24/29

The Second Solution for Instantiation: TIM - 1

To avoid the problem of a spine, we will use “closures” to represent a call

square x = x * x

$

$

*

x

Not this

* · ·

x

But this



25/29

The Second Solution for Instantiation: TIM - 2

How can we build this?

square x = x * x

* · ·

x

First, we take an argument

square x = x * x

Then, we put it into stack twice for the * call

square x = x * x

Now we invoke *

square x = x * x



25/29

The Second Solution for Instantiation: TIM - 2

How can we build this?

square x = x * x

* · ·

x

First, we take an argument

square x = x * x

Then, we put it into stack twice for the * call

square x = x * x

Now we invoke *

square x = x * x



25/29

The Second Solution for Instantiation: TIM - 2

How can we build this?

square x = x * x

* · ·

x

First, we take an argument

square x = x * x

Then, we put it into stack twice for the * call

square x = x * x

Now we invoke *

square x = x * x



25/29

The Second Solution for Instantiation: TIM - 2

How can we build this?

square x = x * x

* · ·

x

First, we take an argument

square x = x * x

Then, we put it into stack twice for the * call

square x = x * x

Now we invoke *

square x = x * x



25/29

The Second Solution for Instantiation: TIM - 2

How can we build this?

square x = x * x

* · ·

x

First, we take an argument

square x = x * x

Then, we put it into stack twice for the * call

square x = x * x

Now we invoke *

square x = x * x



26/29

The Second Solution for Instantiation: TIM - 3

We can translate this into a code form

square x = x * x

Take 1
Push (Arg 0)
Push (Arg 0)
Enter (Label *)

First, we take an argument

square x = x * x

Then, we put it into stack twice for the * call

square x = x * x

Now we invoke *

square x = x * x



26/29

The Second Solution for Instantiation: TIM - 3

We can translate this into a code form

square x = x * x
Take 1

Push (Arg 0)
Push (Arg 0)
Enter (Label *)

First, we take an argument

square x = x * x

Then, we put it into stack twice for the * call

square x = x * x

Now we invoke *

square x = x * x



26/29

The Second Solution for Instantiation: TIM - 3

We can translate this into a code form

square x = x * x
Take 1
Push (Arg 0)

Push (Arg 0)
Enter (Label *)

First, we take an argument

square x = x * x

Then, we put it into stack twice for the * call

square x = x * x

Now we invoke *

square x = x * x



26/29

The Second Solution for Instantiation: TIM - 3

We can translate this into a code form

square x = x * x
Take 1
Push (Arg 0)
Push (Arg 0)

Enter (Label *)

First, we take an argument

square x = x * x

Then, we put it into stack twice for the * call

square x = x * x

Now we invoke *

square x = x * x



26/29

The Second Solution for Instantiation: TIM - 3

We can translate this into a code form

square x = x * x
Take 1
Push (Arg 0)
Push (Arg 0)
Enter (Label *)

First, we take an argument

square x = x * x

Then, we put it into stack twice for the * call

square x = x * x

Now we invoke *

square x = x * x



27/29

Now it is really done, right? …Right?

Note that we do not have anything corresponds to Update here.

In fact, only with these 3 instructions, we lose sharing of evaluations!

In fact, Update is one of the key issue of TIM.
It is quite costly to have a correct sharing with

TIM due to its machine-level representation details

Can we combine G-machine’s simple memory structure
(only pointers) and TIM’s “closure”-based approach?



27/29

Now it is really done, right? …Right?

Note that we do not have anything corresponds to Update here.

In fact, only with these 3 instructions, we lose sharing of evaluations!

In fact, Update is one of the key issue of TIM.
It is quite costly to have a correct sharing with

TIM due to its machine-level representation details

Can we combine G-machine’s simple memory structure
(only pointers) and TIM’s “closure”-based approach?



27/29

Now it is really done, right? …Right?

Note that we do not have anything corresponds to Update here.

In fact, only with these 3 instructions, we lose sharing of evaluations!

In fact, Update is one of the key issue of TIM.
It is quite costly to have a correct sharing with

TIM due to its machine-level representation details

Can we combine G-machine’s simple memory structure
(only pointers) and TIM’s “closure”-based approach?



28/29

Let there be GHC

▶ G. L. Burn, S. L. P. Jones, and J. D. Robson. “The spineless G-machine”.
LFP’88

▶ S. L. P. Jones and J. Salkild. “The spineless tagless G-machine”. FPCA’89
▶ S. L. P. Jones. “Implementing lazy functional languages on stock hardware:

the Spineless Tagless G-machine”. JFP’92

▶ L. Maurer, P. Downen, Z. M. Ariola, and S. L. P. Jones. “Compiling
without continuations”. PLDI’17



28/29

Let there be GHC

▶ G. L. Burn, S. L. P. Jones, and J. D. Robson. “The spineless G-machine”.
LFP’88

▶ S. L. P. Jones and J. Salkild. “The spineless tagless G-machine”. FPCA’89
▶ S. L. P. Jones. “Implementing lazy functional languages on stock hardware:

the Spineless Tagless G-machine”. JFP’92

▶ L. Maurer, P. Downen, Z. M. Ariola, and S. L. P. Jones. “Compiling
without continuations”. PLDI’17



28/29

Let there be GHC

▶ G. L. Burn, S. L. P. Jones, and J. D. Robson. “The spineless G-machine”.
LFP’88

▶ S. L. P. Jones and J. Salkild. “The spineless tagless G-machine”. FPCA’89
▶ S. L. P. Jones. “Implementing lazy functional languages on stock hardware:

the Spineless Tagless G-machine”. JFP’92

▶ L. Maurer, P. Downen, Z. M. Ariola, and S. L. P. Jones. “Compiling
without continuations”. PLDI’17



28/29

Let there be GHC

▶ G. L. Burn, S. L. P. Jones, and J. D. Robson. “The spineless G-machine”.
LFP’88

▶ S. L. P. Jones and J. Salkild. “The spineless tagless G-machine”. FPCA’89
▶ S. L. P. Jones. “Implementing lazy functional languages on stock hardware:

the Spineless Tagless G-machine”. JFP’92

▶ L. Maurer, P. Downen, Z. M. Ariola, and S. L. P. Jones. “Compiling
without continuations”. PLDI’17



29/29

In summary

▶ In lazy evaluation, graph reduction is the key to handle sharing
▶ G-machine solves instantiation inefficiency but is still inefficient in its Unwind
▶ TIM removes some inefficiency of G-machine, but it also adds some for

Update

▶ Their combinations can be more efficient…
For that, see spineless tagless G-machine and “compiling without
continuation”


