Efficient Evaluation of Lazy Programs,

or Compilation of Call-by-Need

Junyoung Jang
junyoung.jang@mail.mcgill.ca
McGill University

Declaimer

This presentation is based on

Simon P. Jones and David R. Lester’s
Implementing Functional Languages: a Tutorial

Declaimer

This presentation is based on

Simon P. Jones and David R. Lester’s
Implementing Functional Languages: a Tutorial

For a “modernized” version of its appendix,
one can see https://github.com/Ailrun/core-lang-haskell

Advantages of Lazy Programs

Advantages of Lazy Programs

Make it easier to deal with recursion when using combinator libraries

Advantages of Lazy Programs

Make it easier to deal with recursion when using combinator libraries

Bring us efficient persistent data structures

Advantages of Lazy Programs

Make it easier to deal with recursion when using combinator libraries
Bring us efficient persistent data structures

Provide a way to encode co-data (e.g. streams)

Are these advantages real?

Is it possible to efficiently execute a lazy program?

Difficulties of Efficient Evaluation of Lazy Programs

Difficulties of Efficient Evaluation of Lazy Programs

Sharing

Difficulties of Efficient Evaluation of Lazy Programs

Sharing
(Redirection)

Difficulties of Efficient Evaluation of Lazy Programs

Sharing
(Redirection)
Instantiation

Difficulties of Efficient Evaluation of Lazy Programs

Sharing
(Redirection)
Instantiation

What are These Difficulties?

Difficulties of Efficient Evaluation of Lazy Programs

Sharing
(Redirection)
Instantiation

What are These Difficulties?
How to Solve These Difficulties?

The First Difficulty: Sharing - 1

square X = X % X
main = square (square 3)

The First Difficulty: Sharing - 1

AST for main

$
VAR

square $

7N

square 3

square X = X % X
main = square (square 3)

The First Difficulty: Sharing - 1

AST for main

$
7N
square X = X % X square $
main = square (square 3) VAN
square 3

How can we reduce this tree into 817?

The First Difficulty: Sharing - 2

$
SN

square $

7N

square 3

square X = X ¥ X
main = square (square 3)

The First Difficulty: Sharing - 2

RN
- ~
// ~
square X = X % X $ & ~ $
main = square (square 3)
SN VRN
* $ square 3
YRRV

square 3

The First Difficulty: Sharing - 2

$
square X = X ¥ X $/ \$
main = square (square 3)
SN VRN
* $ square 3
YRR
square 3

We wastefully repeat the computation!

The First Difficulty: Sharing - 3

Let's share x part

$
VAR

square $

SN

square 3

square x = X % X
main = square (square 3)

The First Difficulty: Sharing - 3

Let's share x part

$
SN

square $

7N

square 3

square X = X ¥ X
main = square (square 3)

The First Difficulty: Sharing - 3

Let's share x part

$
VAN
square X = X % X $ - $
main = square (square 3) T
VAN

* square 3

The First Difficulty: Sharing - 3

Let's share x part

$
7N
square x = X ¥ X $ ~_ $
- 3
main = square (square 3) J/ VRN

* square 3

The First Difficulty: Sharing - 3

Let's share x part

square X = X ¥ X

. 9
main = square (square 3) $ ~

The Solution for Sharing

We reduces a (directed) graph, not a tree.

Moreover, we need to update a node
(so that multiple refereces share the evaluation cost)

Efficiency Requirement

Each graph reduction step should be as local and small as possible
(for further optimizations, machine-compilability, etc.)

The Second Difficulty: Redirection - 1

$
id x = X /\4
square x = (id x) % X square $
main = square (square 3) VAN

square 3

The Second Difficulty: Redirection - 1

$
id x = x /N
square x = (id x) % x square $
main = square (square 3) O\

square 3

The Second Difficulty: Redirection - 1

$
o

id x = x // N
square x = (id x) % x * $— 9%
main = square (square 3) / VAN

id square 3

The Second Difficulty: Redirection - 1

$
o

id x = x / N

square x = (id x) % x * $— 9%

main = square (square 3) / / \
id square 3

How should we reduce the
application node for id?

The Second Difficulty: Redirection - 1

$
o

id x = x // N
square x = (id x) % x * $ $
main = square (square 3) VAN / \

square 3 square 3

The Second Difficulty: Redirection - 1

$
o

id x = x / N\

square x = (id x) % x * $ $

main = square (square 3) VRN VRN
square 3 square 3

We lose sharing!

The Second Difficulty: Redirection - 1

$
5 - \
.
id x = x ’ -
0\

square x = (id x) * x
main = square (square 3)
square 3

The Second Difficulty: Redirection - 1
$
$\/ \
id x = x // \\\\\\
* 9%
VRN

square x = (id x) * x
main = square (square 3)
square 3

We need to modify an ancestor
(depending on the depth of id)

The Second Difficulty: Redirection - 1

$
o

id x = x / N

square x = (id x) * x * $— 9%

main = square (square 3) / / \
id square 3

How should we handle this?

The Second Difficulty: Redirection - 2

$
o

id x = x // N
square x = (id x) % x * $— 9%
main = square (square 3) / VAN

id square 3

The Second Difficulty: Redirection - 2

$
o

id x = x // N\
square x = (id x) % Xx * .
main = square (square 3) VRN

square 3

The Second Difficulty: Redirection - 2

$
o

id x = x / N

square x = (id x) % x * .

main = square (square 3) / \
square 3

We follow this redirection node (#)
when we reduce the parent

The Solution for Redirection

We introduce an “run-time only" node (#) to handle it

Efficiency Requirement - Again

Each graph reduction step should be as local and small as possible

Unfortunate “Change-all” Step

$
SN

square $

7N

square 3

square X = X % X
main = square (square 3)

Unfortunate “Change-all” Step

$
SN
square X = X % X (S
main = square (square 3) —
/ VAR

* square 3

Unfortunate “Change-all” Step

$
VAN
square X = X % X g $
main = square (square 3) / \/Q \
v square 3

This changes almost entire structure of graph!

Unfortunate “Change-all” Step - Specifically

When we instantiate a function definition as a part of a graph,
we need to analyze the current graph
and
to construct a new graph

The Main Difficulty: Instantiation

How can we divide this huge step into smaller steps?

The First Solution for Instantiation: G-Machine - 1

Let's start with construction of graph of main itself

square X = X % X
main = square (square 3)

The First Solution for Instantiation: G-Machine - 1

We construct it in a argument-first way, so start at 3

square X = X % X
main = square (square 3)

The First Solution for Instantiation: G-Machine - 1

and then square

square X = X % X
main = square (square 3)

square 3

The First Solution for Instantiation: G-Machine - 1

Now we can form an application node

square X = X % X $
main = square (square 3) VARN

square 3

The First Solution for Instantiation: G-Machine - 1

Once we add another square

square X = X ¥ X

U square $
main = square (square 3)

7N

square 3

The First Solution for Instantiation: G-Machine - 1

We can finish the main graph by constructing an application node

$
SN

square $

7N

square 3

square X = X % X
main = square (square 3)

The First Solution for Instantiation: G-Machine - 2

Now let's apply square
$
VAR

square $

7N

square 3
square X = X % X

main = square (square 3)

The First Solution for Instantiation: G-Machine - 2

We construct the arugment first
$
VAR

square $

square 3
square X = X ¥ X
main = square (square 3)

The First Solution for Instantiation: G-Machine - 2

To construct its application node, we need to construct the function node
$
7N\

square $

square 3
square X = X % X
main = square (square 3)

The First Solution for Instantiation: G-Machine - 2

$
VAR

square $

7N

square 3
square X = X * X
main = square (square 3)

The First Solution for Instantiation: G-Machine - 2

$
7N\
square $ -
VAN
square 3
square X = X ¥ X)
main = square (square 3) //
////
$ _—

The First Solution for Instantiation: G-Machine - 2

and then the top-level application node

square X = X ¥ X
main = square (square 3)

$
VAR

square $

N

square

The First Solution for Instantiation: G-Machine - 2

Now, clean up the old root

square X = X % X
main = square (square 3)

The First Solution for Instantiation: G-Machine - 2

After visual rearrange, it is clear that we get the expected graph

$
7N
square x = X ¥ X $ %
= 3
main = square (square 3) // 2N

* square 3

The First Solution for Instantiation: G-Machine - 3

Can we translate this into recordable code pieces?
Then we can “compile” main and square into those.

square X = X % X
main = square (square 3)

The First Solution for Instantiation: G-Machine - 3

Let's repeat the main construction first.

square X = X % X
main = square (square 3)

The First Solution for Instantiation: G-Machine - 3

We construct it in a bottom-up way, so start at 3

PushInt 3

square X = X % X
main = square (square 3)

The First Solution for Instantiation: G-Machine - 3

and then square

PushInt 3

square X = X % X PushGlobal square

main = square (square 3)

The First Solution for Instantiation: G-Machine - 3

Now we can form an application node

PushInt 3

square X = X % X PushGlobal square

main = square (square 3) MakeApp

The First Solution for Instantiation: G-Machine - 3

Once we add another square

PushInt 3
square X = X % X PushGlobal square
main = square (square 3) MakeApp

PushGlobal square

The First Solution for Instantiation: G-Machine - 3

We can finish the main graph by constructing an application node

square X = X % X
main = square (square 3)

PushInt 3
PushGlobal square
MakeApp
PushGlobal square
MakeApp

The First Solution for Instantiation: G-Machine - 3

One more step here: we need to continue the graph reduction process

square X = X % X
main = square (square 3)

PushInt 3
PushGlobal square
MakeApp
PushGlobal square
MakeApp

Unwind

The First Solution for Instantiation: G-Machine - 4

Now let's compile square too

square X = X % X
main = square (square 3)

The First Solution for Instantiation: G-Machine - 4

We construct the arugment first

Push 0

square X = X ¥ X
main = square (square 3)

The First Solution for Instantiation: G-Machine - 4

To construct its application node, we need to construct the function node

Push 0
Push 1

square X = X % X
main = square (square 3)

The First Solution for Instantiation: G-Machine - 4

Push 0

Push 1
square X = X ¥ X PushGlobal %
main = square (square 3)

The First Solution for Instantiation: G-Machine - 4

Push 0

Push 1
square x = x % X PushGlobal %
main = square (square 3) MakeApp

The First Solution for Instantiation: G-Machine - 4

and then the top-level application node

Push 0

Push 1
square X = X ¥ X PushGlobal
main = square (square 3) MakeApp

MakeApp

The First Solution for Instantiation: G-Machine - 4

Now, clean up the old root

Push 0

Push 1
square X = X % X PushGlobal =
main = square (square 3) MakeApp

MakeApp

Update 2

Pop 2

The First Solution for Instantiation: G-Machine - 4

Note that we update the root here to share the work

square X = X % X
main = square (square 3)

Push 0

Push 1
PushGlobal =
MakeApp
MakeApp
Update 2

Pop 2

The First Solution for Instantiation: G-Machine - 4

Again, for the further evaluation, we need to add the unwind instruction

square X = X % X
main = square (square 3)

Push 0

Push 1
PushGlobal =
MakeApp
MakeApp
Update 2

Pop 2

Unwind

Problem Solved! Or... Did It? - 1

What does unwind at the end of square do?

$
7N\
square X = X % X

X
main = square (square 3) / $~_~

*

Problem Solved! Or... Did It? - 1

It first checks whether the root is a global /primitive value

$
7N\
square X = X % X

X
main = square (square 3) // $~_~

*

Problem Solved! Or... Did It? - 1

Otherwise, it steps into the function side

$

/
square X = X ¥ X $ \x
main = square (square 3) ~

/

*

Problem Solved! Or... Did It? - 1

Until it reaches a global /primitive value

$
7N\
square X = X % X

X
main = square (square 3) // $~_~

*

Problem Solved! Or... Did It? - 1

And jump to the code for the global

$
square X = X % X / \

X
main = square (square 3) / $~_~

*

Problem Solved! Or... Did It? - 2

Unwind has linear time complexity to the length of a “spine”
(the curried applications on a function)

The Second Solution for Instantiation: TIM - 1

To avoid the problem of a spine, we will use “closures” to represent a call

The Second Solution for Instantiation: TIM - 1

To avoid the problem of a spine, we will use “closures” to represent a call

$
YRR
square X = X % X $~ x

/

*

Not this

The Second Solution for Instantiation: TIM - 1

To avoid the problem of a spine, we will use “closures” to represent a call

ENEN

square X = X ¥ X

But this

The Second Solution for Instantiation: TIM - 2

How can we build this?

square X = X ¥ X

The Second Solution for Instantiation: TIM - 2

First, we take an argument

square x = X ¥ X

The Second Solution for Instantiation: TIM - 2

Then, we put it into stack twice for the x call

square X = X ¥ X

The Second Solution for Instantiation: TIM - 2

Then, we put it into stack twice for the x call

square X = X ¥ X %

The Second Solution for Instantiation: TIM - 2

Now we invoke »

ENEN

square X = X ¥ X

The Second Solution for Instantiation: TIM - 3

We can translate this into a code form

square X = X ¥ X

The Second Solution for Instantiation: TIM - 3

First, we take an argument

Take 1
square x = X ¥ X

The Second Solution for Instantiation: TIM - 3

Then, we put it into stack twice for the x call

Take 1

square X = X % X Push (Arg 0)

The Second Solution for Instantiation: TIM - 3

Then, we put it into stack twice for the x call

Take 1
Push (Arg 0)
Push (Arg 0)

square X = X ¥ X

The Second Solution for Instantiation: TIM - 3

square X = X ¥ X

Now we invoke »

Take 1

Push (Arg 0)
Push (Arg 0)
Enter (Label %)

Now it is really done, right? ..Right?

Note that we do not have anything corresponds to update here.

In fact, only with these 3 instructions, we lose sharing of evaluations!

Now it is really done, right? ..Right?

In fact, update is one of the key issue of TIM.
It is quite costly to have a correct sharing with
TIM due to its machine-level representation details

Now it is really done, right? ..Right?

Can we combine G-machine's simple memory structure
(only pointers) and TIM's “closure”-based approach?

Let there be GHC

Let there be GHC

G. L. Burn, S. L. P. Jones, and J. D. Robson. “The spineless G-machine”.
LFP'88

Let there be GHC

G. L. Burn, S. L. P. Jones, and J. D. Robson. “The spineless G-machine”.
LFP'88
S. L. P. Jones and J. Salkild. “The spineless tagless G-machine”. FPCA’89

S. L. P. Jones. “Implementing lazy functional languages on stock hardware:
the Spineless Tagless G-machine”. JFP'92

Let there be GHC

G. L. Burn, S. L. P. Jones, and J. D. Robson. “The spineless G-machine”.
LFP'88

S. L. P. Jones and J. Salkild. “The spineless tagless G-machine”. FPCA’89
S. L. P. Jones. “Implementing lazy functional languages on stock hardware:
the Spineless Tagless G-machine”. JFP'92

L. Maurer, P. Downen, Z. M. Ariola, and S. L. P. Jones. “Compiling
without continuations”. PLDI'17

In summary

In lazy evaluation, graph reduction is the key to handle sharing

G-machine solves instantiation inefficiency but is still inefficient in its unwind
TIM removes some inefficiency of G-machine, but it also adds some for
Update

Their combinations can be more efficient...
For that, see spineless tagless G-machine and “compiling without

continuation”

