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Advantages of Lazy Programs

Make it easier to deal with recursion when using combinator libraries
Bring us efficient persistent data structures

Provide a way to encode co-data (e.g. streams)



Are these advantages real?



Is it possible to efficiently execute a lazy program?
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Difficulties of Efficient Evaluation of Lazy Programs

Sharing
(Redirection)
Instantiation

What are These Difficulties?
How to Solve These Difficulties?



The First Difficulty: Sharing - 1

square X = X % X
main = square (square 3)
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The First Difficulty: Sharing - 1

AST for main

$
7N
square X = X % X square $
main = square (square 3) VAN
square 3

How can we reduce this tree into 817?



The First Difficulty: Sharing - 2

$
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square $
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square 3

square X = X ¥ X
main = square (square 3)
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The First Difficulty: Sharing - 2

$
square X = X ¥ X $/ \$
main = square (square 3)
SN VRN
* $ square 3
YRR
square 3

We wastefully repeat the computation!
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Let's share x part
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The First Difficulty: Sharing - 3

Let's share x part

square X = X ¥ X

. 9
main = square (square 3) $ ~



The Solution for Sharing

We reduces a (directed) graph, not a tree.

Moreover, we need to update a node
(so that multiple refereces share the evaluation cost)



Efficiency Requirement

Each graph reduction step should be as local and small as possible
(for further optimizations, machine-compilability, etc.)



The Second Difficulty: Redirection - 1
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The Second Difficulty: Redirection - 1

$
o

id x = x / N

square x = (id x) % x * $— 9%

main = square (square 3) / / \
id square 3

How should we reduce the
application node for id?
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The Second Difficulty: Redirection - 1

$
o

id x = x / N\

square x = (id x) % x * $ $

main = square (square 3) VRN VRN
square 3 square 3

We lose sharing!



The Second Difficulty: Redirection - 1

$
5 - \
.
id x = x ’ -
0\

square x = (id x) * x
main = square (square 3)
square 3



The Second Difficulty: Redirection - 1
$
$\/ \
id x = x // \\\\\\
* 9%
VRN

square x = (id x) * x
main = square (square 3)
square 3

We need to modify an ancestor
(depending on the depth of id)



The Second Difficulty: Redirection - 1

$
o

id x = x / N

square x = (id x) * x * $— 9%

main = square (square 3) / / \
id square 3

How should we handle this?



The Second Difficulty: Redirection - 2
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The Second Difficulty: Redirection - 2

$
o

id x = x / N

square x = (id x) % x * .

main = square (square 3) / \
square 3

We follow this redirection node (#)
when we reduce the parent



The Solution for Redirection

We introduce an “run-time only" node (#) to handle it



Efficiency Requirement - Again

Each graph reduction step should be as local and small as possible



Unfortunate “Change-all” Step
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Unfortunate “Change-all” Step

$
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* square 3



Unfortunate “Change-all” Step

$
VAN
square X = X % X g $
main = square (square 3) / \/Q \
v square 3

This changes almost entire structure of graph!



Unfortunate “Change-all” Step - Specifically

When we instantiate a function definition as a part of a graph,
we need to analyze the current graph
and
to construct a new graph



The Main Difficulty: Instantiation

How can we divide this huge step into smaller steps?



The First Solution for Instantiation: G-Machine - 1

Let's start with construction of graph of main itself

square X = X % X
main = square (square 3)



The First Solution for Instantiation: G-Machine - 1

We construct it in a argument-first way, so start at 3

square X = X % X
main = square (square 3)



The First Solution for Instantiation: G-Machine - 1

and then square

square X = X % X
main = square (square 3)

square 3



The First Solution for Instantiation: G-Machine - 1

Now we can form an application node

square X = X % X $
main = square (square 3) VARN

square 3



The First Solution for Instantiation: G-Machine - 1
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The First Solution for Instantiation: G-Machine - 1

We can finish the main graph by constructing an application node

$
SN

square $

7N

square 3

square X = X % X
main = square (square 3)



The First Solution for Instantiation: G-Machine - 2

Now let's apply square
$
VAR

square $

7N

square 3
square X = X % X

main = square (square 3)



The First Solution for Instantiation: G-Machine - 2

We construct the arugment first
$
VAR

square $

square 3
square X = X ¥ X
main = square (square 3)



The First Solution for Instantiation: G-Machine - 2

To construct its application node, we need to construct the function node
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The First Solution for Instantiation: G-Machine - 2

$
VAR

square $

7N

square 3
square X = X * X
main = square (square 3)



The First Solution for Instantiation: G-Machine - 2

$
7N\
square $ -
VAN
square 3
square X = X ¥ X )
main = square (square 3) //
////
$ _—



The First Solution for Instantiation: G-Machine - 2

and then the top-level application node

square X = X ¥ X
main = square (square 3)

$
VAR

square $

N

square




The First Solution for Instantiation: G-Machine - 2

Now, clean up the old root

square X = X % X
main = square (square 3)




The First Solution for Instantiation: G-Machine - 2

After visual rearrange, it is clear that we get the expected graph

$
7N
square x = X ¥ X $ %
= 3
main = square (square 3) // 2N

* square 3



The First Solution for Instantiation: G-Machine - 3

Can we translate this into recordable code pieces?
Then we can “compile” main and square into those.

square X = X % X
main = square (square 3)



The First Solution for Instantiation: G-Machine - 3

Let's repeat the main construction first.

square X = X % X
main = square (square 3)



The First Solution for Instantiation: G-Machine - 3

We construct it in a bottom-up way, so start at 3

PushInt 3

square X = X % X
main = square (square 3)



The First Solution for Instantiation: G-Machine - 3

and then square

PushInt 3

square X = X % X PushGlobal square

main = square (square 3)



The First Solution for Instantiation: G-Machine - 3

Now we can form an application node

PushInt 3

square X = X % X PushGlobal square

main = square (square 3) MakeApp



The First Solution for Instantiation: G-Machine - 3

Once we add another square

PushInt 3
square X = X % X PushGlobal square
main = square (square 3) MakeApp

PushGlobal square



The First Solution for Instantiation: G-Machine - 3

We can finish the main graph by constructing an application node

square X = X % X
main = square (square 3)

PushInt 3
PushGlobal square
MakeApp
PushGlobal square
MakeApp



The First Solution for Instantiation: G-Machine - 3

One more step here: we need to continue the graph reduction process

square X = X % X
main = square (square 3)

PushInt 3
PushGlobal square
MakeApp
PushGlobal square
MakeApp

Unwind



The First Solution for Instantiation: G-Machine - 4

Now let's compile square too

square X = X % X
main = square (square 3)



The First Solution for Instantiation: G-Machine - 4

We construct the arugment first

Push 0

square X = X ¥ X
main = square (square 3)



The First Solution for Instantiation: G-Machine - 4

To construct its application node, we need to construct the function node

Push 0
Push 1

square X = X % X
main = square (square 3)



The First Solution for Instantiation: G-Machine - 4

Push 0

Push 1
square X = X ¥ X PushGlobal %
main = square (square 3)



The First Solution for Instantiation: G-Machine - 4

Push 0

Push 1
square x = x % X PushGlobal %
main = square (square 3) MakeApp



The First Solution for Instantiation: G-Machine - 4

and then the top-level application node

Push 0

Push 1
square X = X ¥ X PushGlobal
main = square (square 3) MakeApp

MakeApp



The First Solution for Instantiation: G-Machine - 4

Now, clean up the old root

Push 0

Push 1
square X = X % X PushGlobal =
main = square (square 3) MakeApp

MakeApp

Update 2

Pop 2



The First Solution for Instantiation: G-Machine - 4

Note that we update the root here to share the work

square X = X % X
main = square (square 3)

Push 0

Push 1
PushGlobal =
MakeApp
MakeApp
Update 2

Pop 2



The First Solution for Instantiation: G-Machine - 4

Again, for the further evaluation, we need to add the unwind instruction

square X = X % X
main = square (square 3)

Push 0

Push 1
PushGlobal =
MakeApp
MakeApp
Update 2

Pop 2

Unwind



Problem Solved! Or... Did It? - 1

What does unwind at the end of square do?

$
7N\
square X = X % X

X
main = square (square 3) / $~_~

*



Problem Solved! Or... Did It? - 1

It first checks whether the root is a global /primitive value

$
7N\
square X = X % X

X
main = square (square 3) // $~_~

*



Problem Solved! Or... Did It? - 1

Otherwise, it steps into the function side

$

/
square X = X ¥ X $ \x
main = square (square 3) ~

/

*



Problem Solved! Or... Did It? - 1

Until it reaches a global /primitive value

$
7N\
square X = X % X

X
main = square (square 3) // $~_~

*



Problem Solved! Or... Did It? - 1

And jump to the code for the global

$
square X = X % X / \

X
main = square (square 3) / $~_~

*



Problem Solved! Or... Did It? - 2

Unwind has linear time complexity to the length of a “spine”
(the curried applications on a function)



The Second Solution for Instantiation: TIM - 1

To avoid the problem of a spine, we will use “closures” to represent a call
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To avoid the problem of a spine, we will use “closures” to represent a call

$
YRR
square X = X % X $~ x

/

*

Not this



The Second Solution for Instantiation: TIM - 1

To avoid the problem of a spine, we will use “closures” to represent a call

ENEN

square X = X ¥ X

But this



The Second Solution for Instantiation: TIM - 2

How can we build this?

square X = X ¥ X



The Second Solution for Instantiation: TIM - 2

First, we take an argument

square x = X ¥ X



The Second Solution for Instantiation: TIM - 2

Then, we put it into stack twice for the x call
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The Second Solution for Instantiation: TIM - 2

Then, we put it into stack twice for the x call

square X = X ¥ X %




The Second Solution for Instantiation: TIM - 2

Now we invoke »

ENEN

square X = X ¥ X



The Second Solution for Instantiation: TIM - 3

We can translate this into a code form

square X = X ¥ X



The Second Solution for Instantiation: TIM - 3

First, we take an argument

Take 1
square x = X ¥ X



The Second Solution for Instantiation: TIM - 3

Then, we put it into stack twice for the x call

Take 1

square X = X % X Push (Arg 0)



The Second Solution for Instantiation: TIM - 3

Then, we put it into stack twice for the x call

Take 1
Push (Arg 0)
Push (Arg 0)

square X = X ¥ X



The Second Solution for Instantiation: TIM - 3

square X = X ¥ X

Now we invoke »

Take 1

Push (Arg 0)
Push (Arg 0)
Enter (Label %)



Now it is really done, right? ..Right?

Note that we do not have anything corresponds to update here.

In fact, only with these 3 instructions, we lose sharing of evaluations!



Now it is really done, right? ..Right?

In fact, update is one of the key issue of TIM.
It is quite costly to have a correct sharing with
TIM due to its machine-level representation details



Now it is really done, right? ..Right?

Can we combine G-machine's simple memory structure
(only pointers) and TIM's “closure”-based approach?
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G. L. Burn, S. L. P. Jones, and J. D. Robson. “The spineless G-machine”.
LFP'88

S. L. P. Jones and J. Salkild. “The spineless tagless G-machine”. FPCA’89
S. L. P. Jones. “Implementing lazy functional languages on stock hardware:
the Spineless Tagless G-machine”. JFP'92

L. Maurer, P. Downen, Z. M. Ariola, and S. L. P. Jones. “Compiling
without continuations”. PLDI'17



In summary

In lazy evaluation, graph reduction is the key to handle sharing

G-machine solves instantiation inefficiency but is still inefficient in its unwind
TIM removes some inefficiency of G-machine, but it also adds some for
Update

Their combinations can be more efficient...
For that, see spineless tagless G-machine and “compiling without

continuation”



