Efficient Evaluation of Lazy Programs, or Compilation of Call-by-Need

Junyoung Jang

junyoung.jang@mail.mcgill.ca
McGill University

Declaimer

This presentation is based on
Simon P. Jones and David R. Lester's Implementing Functional Languages: a Tutorial

Declaimer

This presentation is based on
Simon P. Jones and David R. Lester's Implementing Functional Languages: a Tutorial

For a "modernized" version of its appendix, one can see https://github.com/Ailrun/core-lang-haskell

Advantages of Lazy Programs

－Make it easier to deal with recursion when using combinator libraries

Advantages of Lazy Programs

- Make it easier to deal with recursion when using combinator libraries
$>$ Bring us efficient persistent data structures

Advantages of Lazy Programs

- Make it easier to deal with recursion when using combinator libraries
- Bring us efficient persistent data structures
\Rightarrow Provide a way to encode co-data (e.g. streams)

The Question

Are these advantages real?

The Question

Is it possible to efficiently execute a lazy program?

Difficulties of Efficient Evaluation of Lazy Programs

Difficulties of Efficient Evaluation of Lazy Programs

1 Sharing

Difficulties of Efficient Evaluation of Lazy Programs

11 Sharing
[(Redirection)

Difficulties of Efficient Evaluation of Lazy Programs

1 Sharing
2 （Redirection）
3 Instantiation

Difficulties of Efficient Evaluation of Lazy Programs

1 Sharing
2（Redirection）
What are These Difficulties？
3 Instantiation

Difficulties of Efficient Evaluation of Lazy Programs

1 Sharing
2 (Redirection)

- What are These Difficulties?
- How to Solve These Difficulties?

3 Instantiation

The First Difficulty: Sharing - 1
square $x=x * x$
main $=$ square (square 3)

The First Difficulty: Sharing - 1
square $x=x * *$
main = square (square 3)

The First Difficulty: Sharing - 1
square $x=x * *$
main = square (square 3)

How can we reduce this tree into 81 ?

The First Difficulty: Sharing - 2

```
square x = x * x
main = square (square 3)
```

The First Difficulty: Sharing - 2

```
square x = x * x
main = square (square 3)
```


The First Difficulty: Sharing - 2
square $x=x * x$
main $=$ square (square 3)

We wastefully repeat the computation!

The First Difficulty: Sharing - 3

Let's share \times part
square $x=x * x$
main $=$ square (square 3)

The First Difficulty: Sharing - 3

Let's share \times part

```
square x = x * x
main = square (square 3)
```


The First Difficulty: Sharing - 3

Let's share \times part
square $x=x * x$
main $=$ square (square 3)

The First Difficulty: Sharing - 3

Let's share \times part
square $x=x * x$
main = square (square 3)

The First Difficulty: Sharing - 3

Let's share \times part
square $x=x * x$
main = square (square 3)

The Solution for Sharing

We reduces a (directed) graph, not a tree.
Moreover, we need to update a node (so that multiple refereces share the evaluation cost)

Efficiency Requirement

Each graph reduction step should be as local and small as possible (for further optimizations, machine-compilability, etc.)

The Second Difficulty: Redirection - 1

```
id x = x
square x = (id x) * x
main = square (square 3)
```


The Second Difficulty: Redirection - 1

```
id x = x
square x = (id x) * x
main = square (square 3)
```


The Second Difficulty：Redirection－ 1

$$
\begin{aligned}
& \text { id } x=x \\
& \text { square } x=(\text { id } x) * x \\
& \text { main }=\text { square (square } 3 \text {) }
\end{aligned}
$$


```
id x = x
square x = (id x) * x
main = square (square 3)
```


How should we reduce the application node for id?

The Second Difficulty: Redirection - 1

$$
\begin{aligned}
& \text { id } x=x \\
& \text { square } x=(\text { id } x) * x \\
& \text { main }=\text { square (square } 3 \text {) }
\end{aligned}
$$

The Second Difficulty: Redirection - 1

$$
\begin{aligned}
& \text { id } x=x \\
& \text { square } x=(\text { id } x) * x \\
& \text { main }=\text { square (square } 3 \text {) }
\end{aligned}
$$

The Second Difficulty: Redirection - 1
id $x=x$
square $x=(i d x) * x$
main = square (square 3)

The Second Difficulty：Redirection－ 1

```
id x = x
square x = (id x) * x
main = square (square 3)
```


We need to modify an ancestor （depending on the depth of id）

```
id x = x
square x = (id x) * x
main = square (square 3)
```


How should we handle this?

The Second Difficulty: Redirection - 2

```
id x = x
square x = (id x) * x
main = square (square 3)
```


The Second Difficulty: Redirection - 2

```
id x = x
square x = (id x) * x
main = square (square 3)
```


The Second Difficulty：Redirection－ 2

```
id x = x
square x = (id x) * x
main = square (square 3)
```


We follow this redirection node（\＃） when we reduce the parent

The Solution for Redirection

We introduce an "run-time only" node (\#) to handle it

Efficiency Requirement - Again

Each graph reduction step should be as local and small as possible

Unfortunate "Change-all" Step

square $x=x * x$
main $=$ square (square 3)

Unfortunate "Change-all" Step

square $x=x * x$
main $=$ square (square 3)

Unfortunate "Change-all" Step

```
square x = x * x
main = square (square 3)
```


This changes almost entire structure of graph!

Unfortunate "Change-all" Step - Specifically

When we instantiate a function definition as a part of a graph, we need to analyze the current graph and
to construct a new graph

The Main Difficulty: Instantiation

How can we divide this huge step into smaller steps?

Let's start with construction of graph of main itself

```
square x = x * x
main = square (square 3)
```

We construct it in a argument-first way, so start at 3

```
square x = x * x
main = square (square 3)
```


and then square

```
square x = x * x
main = square (square 3)
```

Now we can form an application node

```
square x = x * x
main = square (square 3)
```


Once we add another square

```
square x = x * x
main = square (square 3)
```


We can finish the main graph by constructing an application node

```
square x = x * x
main = square (square 3)
```


The First Solution for Instantiation: G-Machine - 2

Now let's apply square


```
square x = x * x
main = square (square 3)
```


The First Solution for Instantiation: G-Machine - 2

We construct the arugment first


```
square x = x * x
main = square (square 3)
```


The First Solution for Instantiation: G-Machine - 2

To construct its application node, we need to construct the function node


```
square x = x * x
main = square (square 3)
```


The First Solution for Instantiation: G-Machine - 2

square $x=x * x$
main $=$ square (square 3)

The First Solution for Instantiation: G-Machine - 2

```
square x = x * x
main = square (square 3)
```


The First Solution for Instantiation: G-Machine - 2

The First Solution for Instantiation: G-Machine - 2

Now, clean up the old root

```
square x = x * x
main = square (square 3)
```


The First Solution for Instantiation: G-Machine - 2

After visual rearrange, it is clear that we get the expected graph

```
square x = x * x
main = square (square 3)
```


The First Solution for Instantiation: G-Machine - 3

Can we translate this into recordable code pieces?
Then we can "compile" main and square into those.

```
square x = x * x
main = square (square 3)
```

Let's repeat the main construction first.

```
square x = x * x
main = square (square 3)
```


The First Solution for Instantiation: G-Machine - 3

We construct it in a bottom-up way, so start at 3

PushInt 3

```
square x = x * x
main = square (square 3)
```

and then square

```
PushInt 3
PushGlobal square
square x = x * x
main = square (square 3)
```

Now we can form an application node

```
                                    PushInt 3
PushGlobal square
MakeApp
```

```
square x = x * x
```

square x = x * x
main = square (square 3)
main = square (square 3)
MakeApp

```

Once we add another square
```

PushInt 3
PushGlobal square
MakeApp
PushGlobal square

```

\section*{The First Solution for Instantiation：G－Machine－ 3}

We can finish the main graph by constructing an application node
```

square x = x * x
main = square (square 3)

```

PushInt 3
PushGlobal square
MakeApp
PushGlobal square
MakeApp

\section*{The First Solution for Instantiation: G-Machine - 3}

One more step here: we need to continue the graph reduction process
```

square x = x * x
main = square (square 3)

```

\author{
PushInt 3 \\ PushGlobal square \\ MakeApp \\ PushGlobal square \\ MakeApp \\ Unwind
}

\section*{The First Solution for Instantiation: G-Machine - 4}

Now let's compile square too
```

square x = x * x
main = square (square 3)

```

\section*{The First Solution for Instantiation：G－Machine－ 4}

\section*{We construct the arugment first}

\section*{Push 0}
```

square x = x * x
main = square (square 3)

```

\section*{The First Solution for Instantiation: G-Machine - 4}

To construct its application node, we need to construct the function node
```

square x = x * x
main = square (square 3)

```

\section*{The First Solution for Instantiation: G-Machine - 4}
```

Push 0
Push 1
PushGlobal *
square x = X * X

```

\section*{The First Solution for Instantiation: G-Machine - 4}
```

Push 0
Push 1
PushGlobal *
MakeApp
square x = x * x
MakeApp

```

\section*{The First Solution for Instantiation: G-Machine - 4}
and then the top-level application node
```

Push 0
Push 1
PushGlobal *
MakeApp
MakeApp

```

\section*{The First Solution for Instantiation：G－Machine－ 4}

Now，clean up the old root
```

Push 0
Push 1
PushGlobal *
MakeApp
MakeApp
Update 2
Pop 2

```

\section*{The First Solution for Instantiation：G－Machine－ 4}

Note that we Update the root here to share the work
```

Push 0
Push 1
PushGlobal *
MakeApp
MakeApp
Update 2
Pop 2

```

\section*{The First Solution for Instantiation: G-Machine - 4}

Again, for the further evaluation, we need to add the Unwind instruction
```

 Push 0
 Push 1
 PushGlobal *
 MakeApp
 MakeApp
 Update 2
 Pop 2
 Unwind
    ```

\section*{Problem Solved! Or... Did It? - 1}

What does Unwind at the end of square do?
```

square x = x * x
main = square (square 3)

```


\section*{Problem Solved! Or... Did It? - 1}

It first checks whether the root is a global/primitive value
```

square x = x * x
main = square (square 3)

```


\section*{Problem Solved! Or... Did It? - 1}

\section*{Otherwise, it steps into the function side}
```

square x = x * x
main = square (square 3)

```


\section*{Problem Solved！Or．．．Did It？－ 1}

Until it reaches a global／primitive value
```

square x = x * x
main = square (square 3)

```


\section*{Problem Solved! Or... Did It? - 1}

\section*{And jump to the code for the global}
square \(\mathrm{x}=\mathrm{x} * \mathrm{x}\)
main = square (square 3 )


Unwind has linear time complexity to the length of a＂spine＂ （the curried applications on a function）

\section*{The Second Solution for Instantiation：TIM－ 1}

To avoid the problem of a spine，we will use＂closures＂to represent a call

\section*{The Second Solution for Instantiation：TIM－ 1}

To avoid the problem of a spine，we will use＂closures＂to represent a call
\[
\text { square } x=x * x
\]


Not this

\section*{The Second Solution for Instantiation: TIM - 1}

To avoid the problem of a spine, we will use "closures" to represent a call
\[
\text { square } x=x * x
\]


But this

How can we build this?
square \(x=x * x\)

First，we take an argument
square \(x=x * x\)

Then, we put it into stack twice for the * call
```

square x = x * x

```


Then, we put it into stack twice for the * call
```

square x = x * x

```


\section*{The Second Solution for Instantiation: TIM - 2}

Now we invoke *
square \(x=x * x\)


We can translate this into a code form
```

square x = x * x

```

First, we take an argument
square \(x=x * x\)

\section*{The Second Solution for Instantiation: TIM - 3}

Then, we put it into stack twice for the * call

Take 1
square \(x=x * x\)
Push (Arg 0)

\section*{The Second Solution for Instantiation: TIM - 3}

Then, we put it into stack twice for the * call
```

Take 1
square x = x * x
Push (Arg 0)
Push (Arg 0)

```

Now we invoke *

Take 1
square \(x=x * x\)
Push (Arg 0)
Push (Arg 0)
Enter (Label *)

\section*{Now it is really done, right? ...Right?}

Note that we do not have anything corresponds to Update here. In fact, only with these 3 instructions, we lose sharing of evaluations!

\section*{Now it is really done，right？．．．Right？}

In fact，Update is one of the key issue of TIM．
It is quite costly to have a correct sharing with TIM due to its machine－level representation details

\section*{Now it is really done，right？．．．Right？}

Can we combine G－machine＇s simple memory structure （only pointers）and TIM＇s＂closure＂－based approach？

Let there be GHC

\section*{Let there be GHC}
- G. L. Burn, S. L. P. Jones, and J. D. Robson. "The spineless G-machine". LFP'88

\section*{Let there be GHC}
－G．L．Burn，S．L．P．Jones，and J．D．Robson．＂The spineless G－machine＂． LFP＇88
－S．L．P．Jones and J．Salkild．＂The spineless tagless G－machine＂．FPCA＇89
\(>\) S．L．P．Jones．＂Implementing lazy functional languages on stock hardware： the Spineless Tagless G－machine＂．JFP＇92

\section*{Let there be GHC}
－G．L．Burn，S．L．P．Jones，and J．D．Robson．＂The spineless G－machine＂． LFP＇88
－S．L．P．Jones and J．Salkild．＂The spineless tagless G－machine＂．FPCA＇89
\(>\) S．L．P．Jones．＂Implementing lazy functional languages on stock hardware： the Spineless Tagless G－machine＂．JFP＇92
\(>\) L．Maurer，P．Downen，Z．M．Ariola，and S．L．P．Jones．＂Compiling without continuations＂．PLDI＇17

\section*{In summary}
- In lazy evaluation, graph reduction is the key to handle sharing
- G-machine solves instantiation inefficiency but is still inefficient in its Unwind
- TIM removes some inefficiency of G-machine, but it also adds some for Update
- Their combinations can be more efficient... For that, see spineless tagless G-machine and "compiling without continuation"```

