A Gentle Introduction to Session Types

Chuta Sano

McGill University

July 9, 2024



Roadmap: an analogy with the A-calculus

e functions ® processes



Roadmap: an analogy with the A-calculus

e functions ® processes

® )-calculus ® r-calculus



Roadmap: an analogy with the A-calculus

e functions ® processes
® )\-calculus ® m-calculus
® type system to prevent ® type system to prevent
nontermination deadlocks
® type preservation ® session fidelity

® progress ® deadlock freedom



Roadmap: an analogy with the A-calculus

® functions ® processes
® )\-calculus e r-calculus
® type system to prevent ® type system to prevent
nontermination deadlocks
® type preservation ® session fidelity
® progress ® deadlock freedom
® extensions to the type ® extensions to the type

system system



Roadmap: an analogy with the A-calculus

e functions ® processes
® )-calculus ® 7-calculus
® type system to prevent ® type system to prevent
nontermination deadlocks
® type preservation ® session fidelity
® progress ® deadlock freedom
® extensions to the type ® extensions to the type
system system
® recursion, subtyping, ® (equi-)recursion,
substructural subtyping
® dependent types and ® polymorphism, sharing,

polymorphism etc.



The 7-calculus?

A process P is given by the following grammar:

P|lQ (Concurrently execute P and Q)
vx.P (Allocate fresh channel x)
x < recv(c); P (Receive a channel from ¢ and bind to x)
send(c) a; P (Send the channel a across ¢)
0 (A nullary process that does nothing)

"Milner 1980.



The 7-calculus?

A process P is given by the following grammar:

P|lQ (Concurrently execute P and Q)
vx.P (Allocate fresh channel x)
x < recv(c); P (Receive a channel from ¢ and bind to x)
send(c) a; P (Send the channel a across ¢)
0 (A nullary process that does nothing)

Fun fact: The untyped m-calculus can embed the untyped
A-calculus!

"Milner 1980.



Problems with the m-calculus



Problems with the m-calculus

Deadlock (kinda):

vx.(0 | y < recv(x);0)



Problems with the m-calculus

Deadlock (kinda):
vx.(0 | y < recv(x);0)
Nondeterminism:

vx, y1, y2.(send(x) y1; send(x) y2;0 | z1 < recv(x); 0 | z» < recv(x);0)



Type systems to the rescue!?

Key ideas:

2Honda 1993; Honda, Vasconcelos, and Kubo 1998.



Type systems to the rescue!?

Key ideas:

® Every free channel must be assigned a session type —
something that “encodes” the protocol

2Honda 1993; Honda, Vasconcelos, and Kubo 1998.



Type systems to the rescue!?

Key ideas:

® Every free channel must be assigned a session type —
something that “encodes” the protocol

® Channels cannot be duplicated

2Honda 1993; Honda, Vasconcelos, and Kubo 1998.



Type systems to the rescue!?

Key ideas:

® Every free channel must be assigned a session type —
something that “encodes” the protocol

® Channels cannot be duplicated

® Channels cannot be freely thrown away

2Honda 1993; Honda, Vasconcelos, and Kubo 1998.



Type systems to the rescue!?

Key ideas:

® Every free channel must be assigned a session type —
something that “encodes” the protocol

® Channels cannot be duplicated

® Channels cannot be freely thrown away

Note: | am not showing the original syntax...

2Honda 1993; Honda, Vasconcelos, and Kubo 1998.



Type systems to the rescue!?

Key ideas:

® Every free channel must be assigned a session type —
something that “encodes” the protocol

® Channels cannot be duplicated

® Channels cannot be freely thrown away

Note: | am not showing the original syntax...
Let's just move on...

2Honda 1993; Honda, Vasconcelos, and Kubo 1998.



Typing the m-calculus



Typing the m-calculus

“P is a process that communicates alongside channels ay, ..., ap

Plai: A, ...,an: Ay
A




Typing the m-calculus

“P is a process that communicates alongside channels ay, ..., ap

Plai: A, ...,an: Ay

A

Parallel composition and channel abstraction:



Typing the m-calculus

“P is a process that communicates alongside channels ay, ..., a,"

Plai: A, ...,an: Ay

A

Parallel composition and channel abstraction:

PEA, QFAy PHAX:A
PlQFA1,A, vxAPEA




Typing the m-calculus

“P is a process that communicates alongside channels ay, ..., a,"

Plai: A, ...,an: Ay

A

Parallel composition and channel abstraction:

PEDL QFDy PHAX:A
PIQFALA, wvxAPFA

Sending and receiving channels:



Typing the m-calculus

“P is a process that communicates alongside channels ay, ..., a,"

Plai: A, ...,an: Ay

A

Parallel composition and channel abstraction:

PEDL QFDy PHAX:A
PIQFALA, wvxAPFA

Sending and receiving channels:

PHAc:B,x: A PHAc:B
x<recv(c);PFA,c: A®B send(c)a;PFA,c:A®B,a: A




Typing the m-calculus

“P is a process that communicates alongside channels ay, ..., a,"

Plai: A, ...,an: Ay

A

Parallel composition and channel abstraction:

PEDL QFDy PHAX:A
PIQFALA, wvxAPFA

Sending and receiving channels:

PHAc:B,x: A PHAc:B
x<recv(c);PFA,c: A®B send(c)a;PFA,c:A®B,a: A

Null process:



Typing the m-calculus

“P is a process that communicates alongside channels ay, ..., a,"

Plai: A, ...,an: Ay

A

Parallel composition and channel abstraction:

PEDL QFDy PHAX:A
PIQFALA, wvxAPFA

Sending and receiving channels:

PHAc:B,x: A PHAc:B
x<recv(c);PFA,c: A®B send(c)a;PFA,c:A®B,a: A

Null process:

0F-



Problem with channel abstraction

Recall:
PHA; QFA, PEAXx:A

P|QRFA;, Ay vxAPEA




Problem with channel abstraction

Recall:
PHA; QFA, PEAXx:A

P|QRFA;, Ay vxAPEA

Problem: All channels must have two endpoints! Consider:

vx:A%® B.(y < recv(x);... | 0)



Problem with channel abstraction

Recall:
PHA; QFA, PEAXx:A

P|QRFA;, Ay vxAPEA

Problem: All channels must have two endpoints! Consider:
vx:A%® B.(y < recv(x);... | 0)

Any ideas?



Attempt: combine channel abstraction
and composition

PEA,xA QF As x:A?
vx:A.(P| Q) F Aq, Ay




Attempt: combine channel abstraction
and composition

PEA,xA QF As x:A?
vx:A.(P| Q) F Aq, Ay

What should the type of x be in Q?




Attempt: combine channel abstraction
and composition

PHALXA QF Ay xA
vx:A(P| Q) F Ay, Ay

What should the type of x be in Q7 Duality!

A®B

A% B

||
PN Y

2
@

W ol



Choices



Choices

“Send and receive labels”

Pl A, x:A i) Pi - A, x:A

(v
xli PHAx:@ {I: A} case(x){/ = P} F A, x:&{I: A}



Summary:3

Type Interpretation (provider) Process Term Cont.
1 Close channel (terminate) close(x) -

1 Wait for channel to close wait(x); P -
A®B Send channel of type A send(x) y; P B
A% B Receive channel of type A y «recv(x); P B
@{l: A} Send alabel i€/ x.I; P A
&{I: A} Receive and branchon i € | case(x){/ = P} A

3Caires and Pfenning 2010; Wadler 2012.



Equi-recursion and examples



Equi-recursion and examples

Natural numbers:

nat = ®{succ :nat

zero :1}



Equi-recursion and examples

Natural numbers:

nat = ®{succ :nat

zero :1}
Queue:

queue = &{enq : A —o queue
deq : A® queue}



Drawing time



Drawing time

Audience: shout out any reasonable natural number.



Anyway...

(Message-passing) process calculi model concurrent
computation via processes that communicate across channels

® Session types apply to channels and are “protocols” that
processes must follow when interacting with channels

® Channels are linear; they cannot be duplicated nor thrown
away

® See also: sharing®, multiparty session types®, GV°

*Balzer and Pfenning 2017.
®Carbone, Honda, and Yoshida 2008.
Gay and Vasconcelos 2010.



