Generalized Policy Iteration
&
Evaluating Value Fcts without dynamics:
Monte-Carlo,
Temporal Difference Learning

Recall: Agent-Environment Interface

'_l Agent J
state reward action

St Rt At
Rt+1 (
S.. | Environment J<

\.

Agent and environment interact at discrete time steps: #=10,1,2,3,...

Agent observes state at stept: S, €8
produces action at step 7 : A, € A(S,)
gets resulting reward: R, € R C R

and resulting next state: §,,, € §*

r+1

Recall: Return

Agent wants to maximize it’s return:

Gt = Rt+1 +)/Rt+2 + yth+3 +L = EykRHkH’
k=0

where y,0 <y =<1, is the discount rate.

shortsighted 0 <y — 1 farsighted

4 value functions

state action

______________________ values i values
prediction U dr
control Uy g«

» All theoretical objects, expected values

« Distinct from their estimates: %(3) Qt(57 a)

Today: Algorithms to Estimate v, g

1 Generalized Policy Iteration (improving a policy)

1 MC: Monte-Carlo

1 TD: Temporal Difference Learning

Bellman Equations

Bellman Eqn:
v (8) = Z m(als) Zp(s', rls,a) {'r — *va(s’)]

Bellman Optimality Eqn:
V4 (8)= max Zp(s’, r|s,a)|r + v« (s)]

*Also as many equations as unknowns (non-linear, this time though).

Policy Iteration — One array version (+ policy)

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation
Repeat
A+—0,v<V
For each s € 8:

V(s) « Y p(s'.rls, z(s)[r + yv(s)]
until A < 6 (a small positive number)

3. Policy Improvement
policy-stable <— true
For each s € S:
a < 7(s)
7(s) < argmax, ZS,’Tp(s’, s, a) [7“ + ny(s’)]
If a # 7(s), then policy-stable < false
If policy-stable, then stop and return V' and 7; else go to 2

Generalized Policy Iteration

Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement,
independent of their granularity.

evaluation
m
A geometric metaphor for
T V
convergence of GPI:
7~ greedy (V)

improvement

Value Iteration

Recall the full policy-evaluation backup:
Vpt1(8) = Zw(a|s) Zp(s’, rls,a) [7‘ + ka(s’)] Vs € 8
Here is the full value-iteration backup:

V41(8) = m;xep(s', rls,a) [?“ + va(s’)] Vs € 8

s’,r

Value Iteration — One array version

Initialize array V' arbitrarily (e.g., V(s) =0 for all s € 8%)

Repeat
A+—0,v<V
For each s € &:

V(s) <« max Zp(s’, r|s,a) [r + yv(s’)]
A max(A, o)V (s)))

until A < @ (a small positive number)

Output a deterministic policy, m, such that
m(s) = arg max, ZS,’T p(s',rls,a) [7“ + ny(s’)}

Gambler’s Problem

1 Gambler can repeatedly bet $ on a coin flip
1 Heads he wins his stake, tails he loses it
1 Initial capital € {$1, $2, ... $99}

1 Gambler wins if his capital becomes $100
loses if it becomes $0

1 Coin is unfair

= Heads (gambler wins) with probability p = 4

1 States, Actions, Rewards? Discounting?

Gambler’s Problem Solution

1 -

0.8
Value %97 sweep 32
estimates
0.4 -
0.2 7 |=— sweep 1
P sweep 2
0 /;/ 5' sweep 3
I 25 50 75 99
Capital
50+
_ 40
Final ,_
policy
(stake) 207
10 -
1 R I I 1 I |
1 25 50 75 99

Capital

Gambler’s Problem Solution

1 -

0.8
Value %97 sweep 32
estimates
0.4 -
0.2 7 |=— sweep 1
P sweep 2
0 /;/ 5' sweep 3
I 25 50 75 99
Capital
50+
_ 40
Final ,_
policy
(stake) 207
10 -
1 R I I 1 I |
1 25 50 75 99

Capital

Herd Management

1 You are a consultant to a farmer managing a herd of cows
1 Herd consists of 5 kinds of cows:
" Young
= Milking
* Breeding
= Old
= Sick
1 Number of each kind is the State
1 Number sold of each kind is the Action
1 Cows transition from one kind to another

1 Young cows can be born

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Asynchronous DP

1 All the DP methods described so far require exhaustive
sweeps of the entire state set.

1 Asynchronous DP does not use sweeps. Instead it works like
this:

= Repeat until convergence criterion 1s met:

— Pick a state at random and apply the appropriate
backup

1 Still need lots of computation, but does not get locked into
hopelessly long sweeps

1 Can you select states to backup intelligently? YES: an agent’s
experience can act as a guide.

Efficiency of DP

1 To find an optimal policy is polynomial in the number of
states...

1 BUT, the number of states is often astronomical, e.g., often
growing exponentially with the number of state variables
(what Bellman called “the curse of dimensionality™).

1 In practice, classical DP can be applied to problems with a
few millions of states.

1 Asynchronous DP can be applied to larger problems, and is
appropriate for parallel computation.

1 It is surprisingly easy to come up with MDPs for which DP
methods are not practical.

Summary

1 Policy evaluation: backups without a max

1 Policy improvement: form a greedy policy, if only locally
1 Policy iteration: alternate the above two processes

1 Value iteration: backups with a max

1 Full backups (to be contrasted later with sample backups)
1 Generalized Policy Iteration (GPI)

1 Asynchronous DP: a way to avoid exhaustive sweeps

1 Bootstrapping: updating estimates based on other
estimates

1 Biggest limitation of DP is that it requires a probability
model (as opposed to a generative or simulation model)

Dynamic Programming Policy Evaluation

V(S) < E,[R,, +7V(S,)] =D m@l$) > p(s', 1S, a)lr + 4V ()]

/

o o o
O O O .i O
ROERK O LQ};\Q olie

\ / /7 \
\ / \ / \

/
/

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1R

From Planning to Learning

1 DP requires a probability model (as opposed to a
generative or simulation model)

1 We can interact with the world, learning a model (rewards
and transitions) and then do DP

1 This approach is called model-based RL
1 Full probability model may hard to learn though
1 Direct learning of the value function from interaction

1 Still focusing on evaluating a fixed policy

24

What if we don't have the transition probs?

1Sample!

N

1
I:I[E[f(StH’ rap |81 = ZP(SHI’ Feat | S(Sii1 Trp1) & N Zf(Stk+l’ rtk+1)

Sit1 k=1

20

Monte Carlo Methods

1 Monte Carlo is a neighbourhood of the country of Monaco

1 Monte Carlo methods are named after the Monte Carlo Casino

o
M TOURNAMENTS & CASH GAMES RESTAURANTS LOUNGE BARS PRICES AND CONDITIONS OF

LE CASINO

MONTE:CARLO

21

Simple Monte Carlo

V(S,) < V(S)+a|G, - V(S,))]

St
()

\ | / \
\ \ /

/
/

@ O ©
LI

S

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

N

\

M

Monte Carlo Methods

1 Monte Carlo methods are learning methods
Experience — values, policy

1 Monte Carlo methods can be used in two ways:
" model-free: No model necessary and still attains optimality
» simulated: Needs only a simulation, not a full model

1 Monte Carlo methods learn from complete sample returns
= Defined for episodic tasks (in the book)

1 Like an associative version of a bandit method

Backup diagram for Monte Carlo

1 Entire rest of episode included O

1 Only one choice considered at O
each state (unlike DP) C

= thus, there will be an ®
explore/exploit dilemma C

/

/

™ Does not bootstrap from

) [
successor states’s values
(unlike DP)
1 Time required to estimate one ®

state does not depend on the
total number of states

terminal state

Monte Carlo Policy Evaluation

1 Goal: learn v, (s)
1 Given: some number of episodes under st which contain s

1 Idea: Average returns observed after visits to s

A Every-Visit MC: average returns for every time s is visited
In an episode

A First-visit MC: average returns only for first time s 1s
visited 1n an episode

1 Both converge asymptotically

First-visit Monte Carlo policy evaluation

Initialize:
m <— policy to be evaluated
V < an arbitrary state-value function
Returns(s) < an empty list, for all s € §

Repeat forever:
Generate an episode using 7
For each state s appearing in the episode:
G < return following the first occurrence of s
Append G to Returns(s)
V(s) <+ average(Returns(s))

MC vs supervised regression

1 Target returns can be viewed as a supervised label (true
value we want to fit)

1 State is the input

1 We can use any function approximator to fit a function
from states to returns! Neural nets, linear, nonparametric...

A Unlike supervised learning: there is strong correlation
between inputs and between outputs!

1 Due to the lack of iid assumptions, theoretical results from
supervised learning cannot be directly applied

27

Blackjack example

1 Object: Have your card sum be greater than the dealer’s
without exceeding 21.

[States (200 of them):
= current sum (12-21) i
= dealer’s showing card (ace-10) ET‘\
= do I have a useable ace? =

1 Reward: +1 for winning, O for a draw, -1 for losing

1 Actions: stick (stop receiving cards), hit (receive another
card)

1 Policy: Stick if my sum is 20 or 21, else hit
1 No discounting (y = 1)

Learned blackjack state-value functions

After 10,000 episodes After 500,000 episodes

T ——

ace 76

No
usable
ace

Simplest TD Method

V(S,) < V(S)+a|R

r+1

+yV(S,,)-V(S)]

SO

r+1

L

LN

e
l/
oo
// \\//

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 20

TD methods bootstrap and sample

@ Bootstrapping: update involves an estimate
@ MC does not bootstrap
@ DP bootstraps
@ TD bootstraps
@ Sampling: update does not involve an
expected value
@ MC samples
@ DP does not sample
@ TD samples

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 21

TD Prediction

Policy Evaluation (the prediction problem):
for a given policy m, compute the state-value function vy

Recall: Simple every-visit Monte Carlo method:

V(S1) « V(S) + |G = V(Sy)]

target: the actual return after time ¢

The simplest temporal-difference method TD(0):

V(Sy) 4 V(S:) | Rt +7V (Seva) = V(S)
|

target: an estimate of the return

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 29

Example: Driving Home

FElapsed Time Predicted Predicted

State (minutes) Time to Go Total Time
leaving office, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43

arrive home 43 0 43

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 23

Driving Home

Changes recommended by
Monte Carlo methods (a=1)

45 -
___actual outcome
\
_ 40 -
Predicted
total
travel 35 -
time
30

T T T T T T
leaving reach exiting 2ndary home arrive
office car highway road street home

Situation

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

_ 4
Predicted

total
travel
time

Changes recommended
by TD methods (a=1)

actual
outcome

leaving reach exiting 2ndary home arrive
office car highway road street home

Situation

34

Advantages of TD Learning

@ TD methods do not require a model of the environment,
only experience

@ TD, but not MC, methods can be fully incremental
@ You can learn before knowing the final outcome
@ Less memory
@ Less peak computation
@ You can learn without the final outcome
@ From incomplete sequences

@ Both MC and TD converge (under certain assumptions to
be detailed later), but which 1s faster?

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 25

Random Walk Example

~— OO —O—

start
0.8 -
100
0.6 - 1 10
Estimated (1) _——
value 0.4
true
values
Values learned by TD after 0.2 9
various numbers of episodes
0 : : | | |
A B C D E
State

V(S1) ¢ V(i) + | Ryt + 7V (Sea1) = V(Sy)]

TD and MC on the Random Walk

0.25

0.2\

RMS error, 0157
averaged
over states 0.1

o=.15 , N

0.05 -

o=.1

0 I I | |
0 25 50 75 100

Walks / Episodes

Data averaged over
100 sequences of episodes

Batch Updating in TD and MC methods

Batch Updating: train completely on a finite amount of data,
e.g., train repeatedly on 10 episodes until convergence.

Compute updates according to TD or MC, but only update
estimates after each complete pass through the data.

For any finite Markov prediction task, under batch updating,
TD converges for sufficiently small a.

Constant-oo MC also converges under these conditions, but to
a different answer!

Random Walk under Batch Updating

BATCH TRAINING

RMS error, .15
averaged
over states .14

D

.0 I I I]
0 25 50 75 100

Walks / Episodes

After each new episode, all previous episodes were treated as a batch,
and algorithm was trained until convergence. All repeated 100 times.

You are the Predictor

Suppose you observe the following 8 episodes:

A,0,B,0
B, 1

, A

vviivvilivvilvvilive

, A

B,0

V(B)?
V(A)?

Assume Markov states, no discounting (y = 1)

You are the Predictor

V(A)?

You are the Predictor

@ The prediction that best matches the training data is V(A)=0
@ This minimizes the mean-square-error on the training set
@ This 1s what a batch Monte Carlo method gets

@ If we consider the sequentiality of the problem, then we
would set V(A)=.75

@ This 1s correct for the maximum likelihood estimate of a
Markov model generating the data

@ 1i.e,1f we do a best fit Markov model, and assume it is
exactly correct, and then compute what it predicts (how?)

@ This is called the certainty-equivalence estimate
@ This 1s what TD gets

Application of TD
Dopamine neuron activity modelling

Empirical Data Complete Serial Compound
TD Model
1
Unpredicted A
Reward 0
-1 _
0 1 2
1
—
Predicted [-.%.; i\ TETRS R I g A
Reward [+, =%%] : w o
o
—
-1 _
0 1 2
1
Omitted . A
Reward

-1 -
0 1 2

Time

Cf. Shultz, Dayan et al, 1996; and lots of follow-up work including MNI, Psych.

Summary so far

> Introduced one-step tabular model-free TD methods

» These methods bootstrap and sample, combining aspects of

DP and MC methods

> TD methods are computationally congenial

» If the world is truly Markov, then TD methods will learn
faster than MC methods

» MC methods have lower error on past data, but higher error

on future data

Unified View

width
of backup i
Temporal- Dynamic |
difference programming
learning

Exhaustive

Monte .. search

Carlo

45

n-step TD Prediction

1-step TD co-step TD
and TD(0) 2-stepTD 3-step TD n-step TD and Monte Carlo

I 7 7T 17 7
1] I
[[
! !
!

O—eo+—D—eo+—)—o
v @+ —eo+——eo+—)—e

Idea: Look farther into the
future when you do TD — I
backup (1, 2, 3, ...,nsteps)l O

e

O -

Mathematics of n-step TD Returns/Targets

@ Monte Carlo: Gy = Ryy1 +yRiyo + v Res+ -+~ 1Ry

@ I'D: Gﬁl) = Riy1 +vVi(Se+1)

@ Use V; to estimate remaining return

@ n-step TD:
@ 2 step return: G\ = Ry1 +YRis2 +7*Vi(Siy2)

@ n-step return: G\ = Ry 1 +YRiyo + 42 + - + 9" Risn + 7" Vi(Sitn)

with G =G, ift+n>T

Forward View

@ Look forward from each state to determine update from
future states and rewards:

o

48R

n-step TD

@ Recall the n-step return:

G,gn) = Rip1+7Riqpo+-- -+7"_1Rt+n+7”‘/§5+n_1(St+n), n>1,0<t<T—n

@ Of course, this 1s not available until time 7+n

@ The natural algorithm is thus to wait until then:

W—I—n(st) = V;ﬁ—l—n—l(st) + « G§n) — V;H—n—l(st) 3 0<t<T

@ This 1s called n-step TD

49

n-step TD for estimating V =~ v,

Initialize V (s) arbitrarily, s € §
Parameters: step size a € (0, 1], a positive integer n
All store and access operations (for S; and R;) can take their index mod n

Repeat (for each episode):
Initialize and store Sy # terminal
T < oo
Fort=0,1,2,...:
| Ift < T, then:
| Take an action according to m(+|.S¢)
| Observe and store the next reward as R;1; and the next state as Sy
| If S¢yq is terminal, then T < ¢t + 1
| 7+ t—n+1 (7 is the time whose state’s estimate is being updated)
|
|
|
|

If > 0:
G «— Z;m:-l—:l—i_n 1) i_T_lR@'
If 7+n<T,then: G+ G+ "V (Srin) (ng))

V(S7) < V(S:) + a|G -V (S:)]
Until t=717 -1

Random Walk Examples

0 0 0 0 0 1
B—®—E—00=—0-——C—0

start

@ How does 2-step TD work here?
@ How about 3-step TD?

51

A Larger Example — 19-state Random Walk

0.55 ¢~ .
0.5+ W/
n-step TD
Average 0.45 -
RMS error results
over 19 states 04
and first 10
episodes %[

03 F

0'25 - 1 1 1 1 1)
0 0.2 04 06 0.8 1

@ An intermediate « 1s best
@ An intermediate n 1S best

@ Do you think there 1s an optimal n? for every task?
59

Conclusions Regarding n-step Methods (so far)

@ Generalize Temporal-Difference and Monte Carlo learning
methods, sliding from one to the other as n increases

en=11sTD(0) n=o1s MC
@ an intermediate 7 1s often much better than either extreme
@ applicable to both continuing and episodic problems
@ There 1s some cost in computation
@ need to remember the last n states
@ learning is delayed by n steps

@ per-step computation 1s small and uniform, like TD

573

How to do control? GPI!

Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement,
independent of their granularity.

evaluation

m

U V

7~ greedy (V)

improvement

i)

Monte Carlo Estimation of Action Values

Estimate gr for the current policy

| RN\ R/ Re
(Sf} s, O S, 050 (5) S
Q(Sta Ar) <« Q(Sp Az) + G(Gt — Q(Sp Ar))

T—t
where G, =) yY*"'R,,,
k=1

and T is the time of entering terminal state

Monte Carlo Estimation of Action Values (Q)

1 gx(s,a) - average return starting from state s and action a
following m

1 Converges asymptotically if every state-action pair is
visited

1 Exploring starts: Every state-action pair has a non-zero
probability of being the starting pair

On-policy Monte Carlo Control

O On-policy: learn about policy currently executing
1 How do we get rid of exploring starts?
= The policy must be eternally soft:
—m(als) > 0 for all s and a

= ¢.g. e-soft policy:
AL O T AR
non-max max (greedy)

— probability of an action =

1 Similar to GPI: move policy fowards greedy policy
(e.g., e-greedy)
1 Converges to best g-soft policy

On-policy MC Control

Initialize, for all s € §, a € A(s):
Q(s,a) < arbitrary
Returns(s,a) < empty list
m(a|s) <= an arbitrary e-soft policy

Repeat forever:
(a) Generate an episode using 7
(b) For each pair s, a appearing in the episode:
(G < return following the first occurrence of s, a
Append G to Returns(s,a)
Q(s,a) < average(Returns(s,a))
(c) For each s in the episode:
A* + argmax, Q(s,a)
For all a € A(s):
l—e+¢/|A(s)] ifa=A"
m(als) <_{ e/|A(s)] [if a4 A"

15

TD-Style Learning for Action-Values

Estimate gr for the current policy

Rt+1 m Rt+2 m Rt+3
- — S, —o St ® A\ ° (Sis p—o— - - -
t St,At " St+1’At+l w Sl‘+2;At+2 " St+3,At+3

After every transition from a nonterminal state, S, , do this:

0(S,.A) < 0O(S,,A)+a| R, +70(S,,.A4,)-0(,.A)]
If S,,, 1s terminal, then define Q(S,,,A,,,) =0

+1°

Sarsa: On-Policy TD Control

Turn this into a control method by always updating the
policy to be greedy with respect to the current estimate:

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize .S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
Q(S,4) < Q(S, 4) + a[R+7Q(5", 4") — Q(S, A)]
S« S A A

until S is terminal

Windy Gridworld

s G +

standard
moves

Wind: O O O 1 1 1 2 2 1 0

undiscounted, episodic, reward = —1 until goal

Results of Sarsa on the Windy Gridworld

170 -
150 -
S G
| .
100 -
Episodes 0 001 1 12210
50
04

0 1000 2000 3000 4000 5000 6000 7000 8000

Time steps

Q-Learning: Off-Policy TD Control

One-step Q-learning:

Q(St, At) + Q(St, Ar) + {Rtﬂ + 7y max Q(Si+1,a) — Q(Sy, At)} /%\

Initialize Q(s,a),Vs € §,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S, A) + a[R + ymax, QS a) — Q(S, A)]
S« S

until S is terminal

Cliffwalking

R=-1|) > safe path
> optimal path
S The Cliff G
R PW)W
e—greedy, € =0.1
Sarsa
=25-
Reward _so- _
per Q-learning
epsiode
~751
-100 T T T T 1
0 100 200 300 400 500

Episodes

Expected Sarsa

@ Instead of the sample value-of-next-state, use the expectation!

Q(St, A) + Q(St, Ay) + :Rt—l—l + YE[Q(St+1, At+1) | St+1] — Q(Sy, At)}

— QS Ar) + o :Rt+1 +7>_ m(a|S11)Q(Sk41,a) - Q(St,At)}

! !
A\ /N

Q-learning Expected Sarsa

@ Expected Sarsa’s performs better than Sarsa (but costs more)

van Seijen, van Hasselt, Whiteson, & Wiering 2009

Performance on the Cliff-walking Task

40 F
O = e S R S SUUNE CRRLP- Sh N~ S
Q-learning
Reward R O G anante o
per 80) e .V"'V‘,.g--‘D“"E'""D . Q-learning
episode x ¥V gt
= _;“_v‘ ‘_IZI‘
x .~ @ Interim Performance
100l -7 (after 100 episodes)
g
v
m

01 02 03 04 05 06 07
@

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

0.8

0.9

66

Off-policy Expected Sarsa

@ Expected Sarsa generalizes to arbitrary behavior policies u

@ 1n which case it includes Q-learning as the special case in
which m 1s the greedy policy

Q(St, Ar) < Q(St, At) + « :Rt+1 +YE[Q(St+1, At41) | Sev1] — Q(St, At)}
— QS Ar) + o :Rt+1 +7>_ m(a|S11)Q(St41,0) — Q(S:, At)}

e] !
A /N

Nothing
changes
here

Q-learning Expected Sarsa

@ This idea seems to be new

Maximization Bias Example

100% ¢

~ N(-0.1,1)
[\ 0 0
‘,r" AN . < ® KD *+—>
75% t | \ : A wrong \.__J right
." \ START
| N\
% ;' \
’v \
Wrong 50% .
actions \Q\-Iearnlng
25%| S
L .
B%f-—-————————— o —————— optimal
Ot . . .
1 100 200 300
Episodes

Tabular Q-learning: Q(St, Ay) + Q(St, Ar) + « [Rtﬂ + 7 max Q(St11,a) — Q(St, Ay)

Hado van Hasselt 2010
Double Q-Learning
Train 2 action-value functions, Q1 and Q>
Do Q-learning on both, but
® never on the same time steps (1 and (> are indep.)
® pick Q1 or (> at random to be updated on each step

If updating Q1, use Q> for the value of the next state:

Q1(St, Ar) < Q1(St, Ar) —I—Oé(RtH + Q2 (St+1, argmax Q1(S¢11, Cl)) —Q1(S;, At))

Action selections are (say) ¢-greedy with respect to the sum
of O1 and O»

Hado van Hasselt 2010

Double Q-Learning

Initialize Q1(s,a) and Q2(s,a),Vs € 8,a € A(s), arbitrarily
Initialize Q1 (terminal-state,-) = Qs (terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @1 and Qs (e.g., e-greedy in Q1 + Q2)
Take action A, observe R, S’
With 0.5 probabilility:

Q1(8,4) « Qu(S, 4) + a(R+7Qs (8", argmax, Q1 (5", a)) — Qu(S, 4))
else:

Q2(S, A) < Q2(S, A) + Oé(R + Q1 (9, argmax, Q2(S',a)) — Q2(S, A))
S« 5’

until S is terminal

Example of Maximization Bias

100% ¢

. N(—0.1,1)
[\ 0 0
‘,r" N : < ® KD -—>
75% | \. A wrong _/ right
|.' \ START
| N\
% !' \
r' N\
Wrong 50% " .
actions “Q-learning
\ Double AN
25% \Q-learning g
50/8 ___________ V __ e et e ann opt|ma|
1 100 200 300
Episodes

Double Q-learning;
Q1(St, Ar) < Q1(St, Ar) +a [Rt+1 +7Q2(St11, argmax Q1 (Si11,a)) — Q1(St, Ay)

Summary

> Introduced one-step tabular model-free TD methods

» These methods bootstrap and sample, combining aspects of

DP and MC methods

» TD methods are computationally congenial
o If the world 1s truly Markov, then TD methods will learn

faster than MC methods

» MC methods have lower error on past data, but higher error

on future data

> Extend prediction to control by employing some form of GPI

@ On-policy control: Sarsa, Expected Sarsa

@ Off-policy control: Q-learning, Expected Sarsa

» Avoiding maximization bias with Double Q-learning

