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Agent and environment interact at discrete time steps:  t = 0, 1, 2,K
     Agent observes state at step t:    St ∈
     produces action at step t :   At ∈ (St )
     gets resulting reward:    Rt+1 ∈

     and resulting next state:  St+1 ∈
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Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)
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R

! = s0, a0, s1, a1, . . .

The other random variables are a function of this sequence. The transitional
target rt+1 is a function of st, at, and st+1. The termination condition �t,
terminal target zt, and prediction yt, are functions of st alone.

R(n)
t = rt+1 + �t+1zt+1 + (1� �t+1)R

(n�1)
t+1

R(0)
t = yt

R�
t = (1� �)

1X

n=1

�n�1R(n)
t

⇢t =
⇡(st, at)

b(st, at)

�wo↵(!) = �won(!)
1Y

i=1

⇢i

�wt = ↵t(CtR
�
t � yt)rwyt

�wt = ↵t(R̄
�
t � yt)rwyt
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Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R, and
finds itself in a new state, St+1.3 Figure 3.1 diagrams the agent–environment
interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.
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Recall: Markov Decision Processes

❐ If a reinforcement learning task has the Markov Property, it is 
basically a Markov Decision Process (MDP).

❐ If state and action sets are finite, it is a finite MDP. 
❐ To define a finite MDP, you need to give:

 state and action sets
 one-step “dynamics” :

 there is also:
p(st+1, rt+1 |s1, …, st, a1, …, at) = p(st+1, rt+1 |st, at)



4

Recall: Return

Agent wants to maximize it’s return:

            Gt = Rt+1 + γ Rt+2 + γ
2Rt+3 +L = γ kRt+k+1,

k=0

∞

∑
where γ , 0 ≤ γ ≤1,  is the discount rate.

shortsighted  0 ←γ → 1  farsighted

...



4 value functions

• All theoretical objects, expected values 

• Distinct from their estimates:

state 
values

action 
values

prediction

control q⇤v⇤

v⇡ q⇡

Vt(s) Qt(s, a)



Algorithms to Estimate v, q

❐ DP: Dynamic Programming

❐ MC: Monte-Carlo

❐ TD: Temporal Difference Learning

6

}Next time



Values are expected returns
• The value of a state, given a policy: 

• The value of a state-action pair, given a policy: 

• The optimal value of a state: 

• The optimal value of a state-action pair: 

• Optimal policy:       is an optimal policy if and only if 

• in other words,      is optimal iff it is greedy wrt

v⇡(s) = E{Gt | St = s,At:1⇠⇡} v⇡ : S ! <

q⇡(s, a) = E{Gt | St = s,At = a,At+1:1⇠⇡} q⇡ : S⇥A ! <

v⇤(s) = max
⇡

v⇡(s) v⇤ : S ! <

⇡⇤(a|s) > 0 only where q⇤(s, a) = max
b

q⇤(s, b)

⇡⇤

⇡⇤ q⇤

8s 2 S

q⇤(s, a) = max
⇡

q⇡(s, a) q⇤ : S⇥A ! <



Value Functions

State - value function for policy π :

vπ (s) = Eπ Gt St = s{ } = Eπ γ kRt+k+1 St = s
k=0

∞

∑
%
&
'

(
)
*

Action - value function for policy π :

qπ (s,a) = Eπ Gt St = s,At = a{ } = Eπ γ kRt+k+1 St = s,At = a
k=0

∞

∑
%
&
'

(
)
*

❐ The value of a state is the expected return starting from 
that state; depends on the agent’s policy:

❐ The value of an action (in a state) is the expected return 
starting after taking that action from that state; depends on 
the agent’s policy:



Policy Evaluation: for a given policy π, compute the 
                                state-value function vπ

Policy Evaluation

Recall:  State-value function for policy π

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

.



Bellman Equation for a Policy π

Gt = Rt+1 + γ Rt+2 + γ
2Rt+3 + γ

3Rt+4L
= Rt+1 + γ Rt+2 + γ Rt+3 + γ

2Rt+4L( )
= Rt+1 + γGt+1

The basic idea: 

So: vπ (s) = Eπ Gt St = s{ }
= Eπ Rt+1 + γ vπ St+1( ) St = s{ }

Or, writing out the expectation sum explicitly: 

...+

...+

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

i



More on the Bellman Equation

This is a set of equations (in fact, linear), one for each state.
The value function for π  is its unique solution*.

* In the usual case where the system of equations is invertible, 
but in the current context you would really need to work 
hard to make it non-invertible.

vπ(s) = ∑
a

π(a ∣ s)∑
s′ ,r

p(s′ , r ∣ s, a)[r + γvπ(s′ )]

vπ =

vπ(s1)
vπ(s2)

⋯
vπ(sn)

Ms,s′ = γ∑
a

π(a ∣ s)∑
r

p(s′ , r ∣ s, a)

c(s) = ∑
a

π(a ∣ s)∑
s′ ,r

p(s′ , r ∣ s, a)r



More on the Bellman Equation

vπ(s) = ∑
a

π(a ∣ s)∑
s′ ,r

p(s′ , r ∣ s, a)[r + γvπ(s′ )]

vπ =

vπ(s1)
vπ(s2)

⋯
vπ(sn)

Ms,s′ = γ∑
a

π(a ∣ s)∑
r

p(s′ , r ∣ s, a)

c(s) = ∑
a

π(a ∣ s)∑
s′ ,r

p(s′ , r ∣ s, a)r

vπ(s) = c(s) + ∑
s′ 

Ms,s′ vπ(s′ )

vπ = c + M ⋅ vπ



Q-Function
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termination.

Exercise 4.1 If ⇡ is the equiprobable random policy, what is q⇡(11, down)?
What is q⇡(7, down)?

Exercise 4.2 Suppose a new state 15 is added to the gridworld just below
state 13, and its actions, left, up, right, and down, take the agent to states
12, 13, 14, and 15, respectively. Assume that the transitions from the original
states are unchanged. What, then, is v⇡(15) for the equiprobable random
policy? Now suppose the dynamics of state 13 are also changed, such that
action down from state 13 takes the agent to the new state 15. What is v⇡(15)
for the equiprobable random policy in this case?

Exercise 4.3 What are the equations analogous to (4.3), (4.4), and (4.5) for
the action-value function q⇡ and its successive approximation by a sequence of
functions q0, q1, q2, . . . ?

Exercise 4.4 In some undiscounted episodic tasks there may be policies
for which eventual termination is not guaranteed. For example, in the grid
problem above it is possible to go back and forth between two states forever.
In a task that is otherwise perfectly sensible, v⇡(s) may be negative infinity
for some policies and states, in which case the algorithm for iterative policy
evaluation given in Figure 4.1 will not terminate. As a purely practical matter,
how might we amend this algorithm to assure termination even in this case?
Assume that eventual termination is guaranteed under the optimal policy.

4.2 Policy Improvement

Our reason for computing the value function for a policy is to help find better
policies. Suppose we have determined the value function v⇡ for an arbitrary
deterministic policy ⇡. For some state s we would like to know whether or not
we should change the policy to deterministically choose an action a 6= ⇡(s).
We know how good it is to follow the current policy from s—that is v⇡(s)—but
would it be better or worse to change to the new policy? One way to answer
this question is to consider selecting a in s and thereafter following the existing
policy, ⇡. The value of this way of behaving is

q⇡(s, a) = E⇡[Rt+1 + �v⇡(St+1) | St =s, At =a] (4.6)

=
X

s0,r

p(s0
, r|s, a)

h
r + �v⇡(s0)

i
.

The key criterion is whether this is greater than or less than v⇡(s). If it is
greater—that is, if it is better to select a once in s and thereafter follow ⇡



Iterative Methods

a “sweep”

A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:

v0 ! v1 ! · · · ! vk ! vk+1 ! · · · ! v⇡

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �vk(s

0)
i

8s 2 S

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i
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h
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i

8s 2 S

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·
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⇤
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=
X

a
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X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

* Guaranteed to converge due to 
Banach Fixed Point Theorem



Iterative Policy Evaluation – One array version
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Input ⇡, the policy to be evaluated
Initialize an array V (s) = 0, for all s 2 S+

Repeat
� 0
For each s 2 S:

v  V (s)
V (s) 

P
a
⇡(a|s)

P
s0,r p(s0

, r|s, a)
⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number)
Output V ⇡ v⇡

Figure 4.1: Iterative policy evaluation.

Another implementation point concerns the termination of the algorithm.
Formally, iterative policy evaluation converges only in the limit, but in practice
it must be halted short of this. A typical stopping condition for iterative policy
evaluation is to test the quantity maxs2S |vk+1(s)�vk(s)| after each sweep and
stop when it is su�ciently small. Figure 4.1 gives a complete algorithm for
iterative policy evaluation with this stopping criterion.

Example 4.1 Consider the 4⇥4 gridworld shown below.

actions

r  =  !1

on all transitions

1 2 3

4 5 6 7

8 9 10 11

12 13 14

R

The nonterminal states are S = {1, 2, . . . , 14}. There are four actions pos-
sible in each state, A = {up, down, right, left}, which deterministically
cause the corresponding state transitions, except that actions that would take
the agent o↵ the grid in fact leave the state unchanged. Thus, for instance,
p(6|5, right) = 1, p(10|5, right) = 0, and p(7|7, right) = 1. This is an undis-
counted, episodic task. The reward is �1 on all transitions until the terminal
state is reached. The terminal state is shaded in the figure (although it is
shown in two places, it is formally one state). The expected reward function is
thus r(s, a, s

0) = �1 for all states s, s
0 and actions a. Suppose the agent follows

the equiprobable random policy (all actions equally likely). The left side of
Figure 4.2 shows the sequence of value functions {vk} computed by iterative
policy evaluation. The final estimate is in fact v⇡, which in this case gives for
each state the negation of the expected number of steps from that state until

, v ← V

V(s) ← ∑
s′ ,r

p(s′ , r |s, π(s))[r + γv(s′ )]
(s) - 
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Also as many equations as unknowns (non-linear, this time though). 


