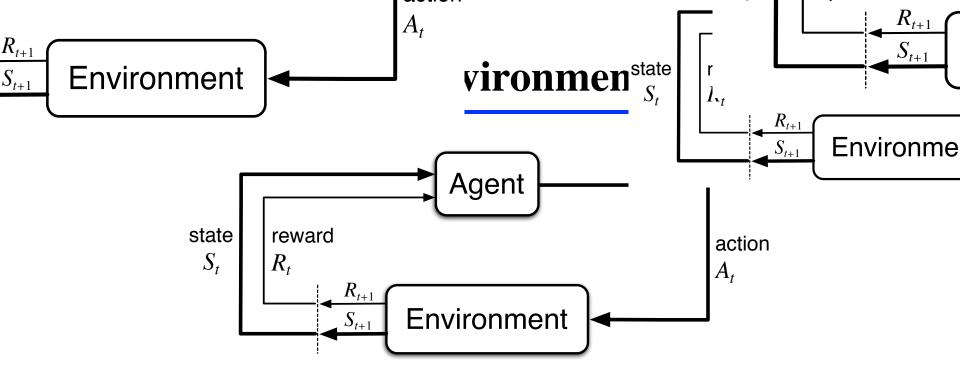
Evaluating Value Fcts: Dynamic Programming



Agent and environment interact at discrete time steps: t = 0, 1, 2, 3, ...Agent observes state at step t: $S_t \in S$ produces action at step t: $A_t \in \mathcal{A}(S_t)$ gets resulting reward: $R_{t+1} \in \mathcal{R} \subset \mathbb{R}$ and resulting next state: $S_{t+1} \in S^+$

Recall: Markov Decision Processes

- ☐ If a reinforcement learning task has the Markov Property, it is basically a **Markov Decision Process (MDP)**.
- □ If state and action sets are finite, it is a **finite MDP**.
- □ To define a finite MDP, you need to give:
 - state and action sets
 - one-step "dynamics" :

$$p(s_{t+1}, r_{t+1} | s_1, \dots, s_t, a_1, \dots, a_t) = p(s_{t+1}, r_{t+1} | s_t, a_t)$$

Recall: Return

Agent wants to maximize it's return:

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + L = \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1},$$

. . .

where $\gamma, 0 \le \gamma \le 1$, is the **discount rate**.

shortsighted $0 \leftarrow \gamma \rightarrow 1$ farsighted

4 value functions

	state values	action values
prediction	v_{π}	q_{π}
control	v_*	q_*

- All theoretical objects, expected values
- Distinct from their estimates: $V_t(s) = Q_t(s,a)$

Algorithms to Estimate v, q

- **OP:** Dynamic Programming
- □ MC: Monte-Carlo
- **TD**: Temporal Difference Learning

Values are *expected* returns

• The value of a state, given a policy:

 $v_{\pi}(s) = \mathbb{E}\{G_t \mid S_t = s, A_{t:\infty} \sim \pi\} \qquad v_{\pi} : S \to \Re$

- The value of a state-action pair, given a policy: $q_{\pi}(s, a) = \mathbb{E}\{G_t \mid S_t = s, A_t = a, A_{t+1:\infty} \sim \pi\}$ $q_{\pi}: S \times \mathcal{A} \to \Re$
- The optimal value of a state:

$$v_*(s) = \max_{\pi} v_{\pi}(s) \qquad v_* : \mathcal{S} \to \Re$$

• The optimal value of a state-action pair:

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a) \qquad q_* : \mathcal{S} \times \mathcal{A} \to \Re$$

- Optimal policy: π_* is an optimal policy if and only if $\pi_*(a|s) > 0$ only where $q_*(s, a) = \max_b q_*(s, b) \quad \forall s \in S$
 - in other words, π_* is optimal iff it is *greedy* wrt q_*

Value Functions

☐ The value of a state is the expected return starting from that state; depends on the agent's policy:

State - value function for policy
$$\pi$$
:
 $v_{\pi}(s) = E_{\pi} \left\{ G_t \mid S_t = s \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right\}$

The value of an action (in a state) is the expected return starting after taking that action from that state; depends on the agent's policy:

Action - value function for policy
$$\pi$$
:
 $q_{\pi}(s,a) = E_{\pi} \left\{ G_t \mid S_t = s, A_t = a \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a \right\}$

Policy Evaluation

Policy Evaluation: for a given policy π , compute the state-value function v_{π}

Recall: State-value function for policy π

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s\right]$$

Bellman Equation for a Policy $\boldsymbol{\pi}$

The basic idea:

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

= $R_{t+1} + \gamma \left(R_{t+2} + \gamma R_{t+3} + \gamma^{2} R_{t+4} + \cdots \right)$
= $R_{t+1} + \gamma G_{t+1}$

So:

$$v_{\pi}(s) = E_{\pi} \{ G_t | S_t = s \}$$

$$= E_{\pi} \{ R_{t+1} + \gamma v_{\pi} (S_{t+1}) | S_t = s \}$$

Or, writing out the expectation sum explicitly:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]$$

More on the Bellman Equation

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s', r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s') \right]$$

This is a set of equations (in fact, linear), one for each state. The value function for π is its unique solution*.

* In the usual case where the system of equations is invertible, but in the current context you would really need to work hard to make it non-invertible.

$$v_{\pi} = \begin{bmatrix} v_{\pi}(s_1) \\ v_{\pi}(s_2) \\ \cdots \\ v_{\pi}(s_n) \end{bmatrix} \qquad M_{s,s'} = \gamma \sum_{a} \pi(a \mid s) \sum_{r} p(s',r \mid s,a)$$
$$c(s) = \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a)r$$

More on the Bellman Equation

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a) [r + \gamma v_{\pi}(s')]$$
$$v_{\pi}(s) = c(s) + \sum_{s'} M_{s,s'} v_{\pi}(s')$$

$$v_{\pi} = c + M \cdot v_{\pi}$$

$$v_{\pi} = \begin{bmatrix} v_{\pi}(s_1) \\ v_{\pi}(s_2) \\ \cdots \\ v_{\pi}(s_n) \end{bmatrix} \qquad \begin{array}{l} M_{s,s'} = \gamma \sum_{a} \pi(a \mid s) \sum_{r} p(s',r \mid s,a) \\ c(s) = \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a)r \end{array}$$

Q-Function

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = a] \\ = \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_{\pi}(s') \Big].$$

Iterative Methods

$$v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_k \rightarrow v_{k+1} \rightarrow \cdots \rightarrow v_{\pi}$$

a "sweep"

A sweep consists of applying a **backup operation** to each state.

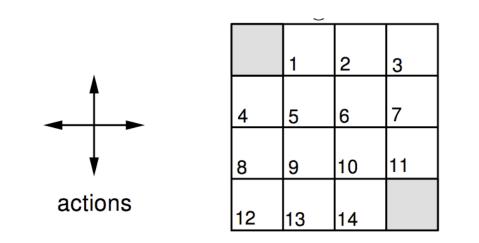
A full policy-evaluation backup:

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s')\right] \qquad \forall s \in \mathcal{S}$$

* Guaranteed to converge due to Banach Fixed Point Theorem Input π , the policy to be evaluated Initialize an array V(s) = 0, for all $s \in S^+$ Repeat

 $\Delta \leftarrow 0, v \leftarrow V$ For each $s \in S$: $V(s) \leftarrow \sum_{s',r} p(s', r | s, \pi(s)) [r + \gamma v(s')]$ $\Delta \leftarrow \max(\Delta, |v(s) \cdot V(s)|)$ until $\Delta < \theta$ (a small positive number) Output $V \approx v_{\pi}$

A Small Gridworld



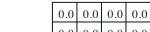


 $\gamma = 1$

- □ An undiscounted episodic task
- \square Nonterminal states: 1, 2, . . ., 14;
- One terminal state (shown twice as shaded squares)
- Actions that would take agent off the grid leave state unchanged
- □ Reward is −1 until the terminal state is reached

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_k(s') \Big] \qquad \forall s \in S$$

 π = equiprobable random action choices

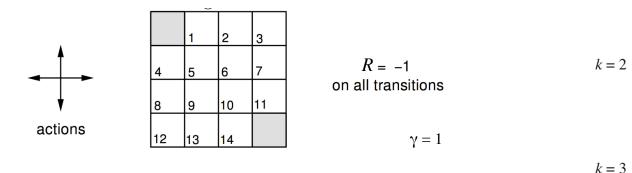


0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

 V_k for the Random Policy

$$k = 1$$

k = 0

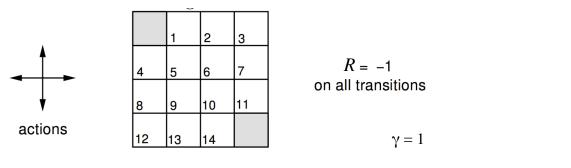


□ An undiscounted episodic task

- \square Nonterminal states: 1, 2, . . ., 14;
- $\Box \text{ One terminal state (shown twice as shaded squares)} \qquad k = 10$
- Actions that would take agent off the grid leave state unchanged
- \Box Reward is -1 until the terminal state is reached

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_k(s') \Big] \qquad \forall s \in \mathcal{S}$$

 π = equiprobable random action choices



 V_k for the Random Policy

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

k = 3

k = 0

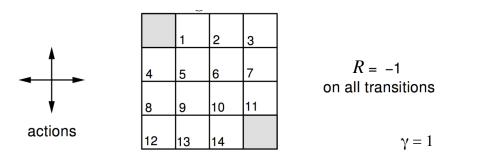
k = 1

k = 2

- □ An undiscounted episodic task
- \square Nonterminal states: 1, 2, . . ., 14;
- $\Box \text{ One terminal state (shown twice as shaded squares)} \qquad k = 10$
- Actions that would take agent off the grid leave state unchanged
- \Box Reward is -1 until the terminal state is reached

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_k(s') \Big] \qquad \forall s \in \mathcal{S}$$

 π = equiprobable random action choices



	V_k for the Random Policy		
<i>k</i> = 0	0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0		
k = 1	0.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0		
<i>k</i> = 2	0.0 -1.7 -2.0 -2.0 -1.7 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.7 -2.0 -2.0 -1.7 0.0		

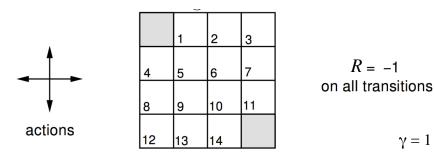
k = 3

k = 10

- □ An undiscounted episodic task
- \square Nonterminal states: 1, 2, . . ., 14;
- One terminal state (shown twice as shaded squares)
- Actions that would take agent off the grid leave state unchanged
- \Box Reward is -1 until the terminal state is reached

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s') \right] \qquad \forall s \in \mathcal{S}$$

 π = equiprobable random action choices



	Random Policy
<i>k</i> = 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
<i>k</i> = 1	0.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0
<i>k</i> = 2	0.0 -1.7 -2.0 -2.0 -1.7 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.7 -2.0 -2.0 -1.7 0.0
<i>k</i> = 3	0.0 -2.4 -2.9 -3.0 -2.4 -2.9 -3.0 -2.9 -2.9 -3.0 -2.9 -2.4 -3.0 -2.9 -2.4 0.0

 V_k for the

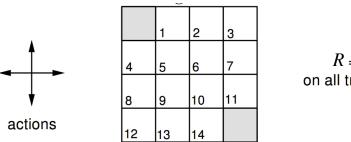
k = 10

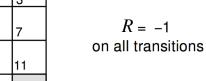
□ An undiscounted episodic task

- \square Nonterminal states: 1, 2, ..., 14;
- One terminal state (shown twice as shaded squares)
- Actions that would take agent off the grid leave state unchanged
- **Reward** is –1 until the terminal state is reached

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_k(s') \Big] \qquad \forall s \in \mathcal{S}$$

 π = equiprobable random action choices





γ	=	1
---	---	---

An undiscounted episodic task

- \square Nonterminal states: 1, 2, ..., 14;
- One terminal state (shown twice as shaded squares)
- Actions that would take agent off the grid leave state unchanged
- □ Reward is –1 until the terminal state is reached

V_k for the
Random Policy

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

k = 0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0
	0.0	-1.0	-1.0	-1.0
k = 1	-1.0	-1.0	-1.0	-1.0
$\kappa = 1$	-1.0	-1.0	-1.0	-1.0
	-1.0	-1.0	-1.0	0.0

k = 2

k = 3

k = 10

 $k = \infty$

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

0.0	-6.1	-8.4
-6.1	-7.7	-8.4
-8.4	-8.4	-7.7
-9.0	-8.4	-6.1

-8.4

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \underbrace{\sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]}_{s',r}$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \underbrace{\sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]}_{s',r}$$

$$v_*(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a)$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]$$

$$v_*(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a)$$
$$= \max_a \mathbb{E}_{\pi_*}[G_t \mid S_t = s, A_t = a]$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \underbrace{\sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]}_{s',r}$$
$$v_{*}(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_{*}}(s,a)$$
$$= \max_{a} \mathbb{E}_{\pi_{*}}[G_{t} \mid S_{t} = s, A_{t} = a]$$
$$= \max_{a} \mathbb{E}_{\pi_{*}}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s, A_{t} = a]$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \underbrace{\sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]}_{s',r}$$

$$v_{*}(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_{*}}(s,a)$$

$$= \max_{a} \mathbb{E}_{\pi_{*}}[G_{t} \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \mathbb{E}_{\pi_{*}}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{*}(S_{t+1}) \mid S_{t} = s, A_{t} = a]$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

$$v_{*}(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_{*}}(s,a)$$

$$= \max_{a} \mathbb{E}_{\pi_{*}}[G_{t} \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \mathbb{E}_{\pi_{*}}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{*}(S_{t+1}) \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma v_{*}(s')].$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]$$

$$v_*(s) = \max_a \sum_{s',r} p(s',r|s,a) [r + \gamma v_*(s')]$$

Also as many equations as unknowns (non-linear, this time though).