Multi-arm Bandits
Part 2

Sutton and Barto, Chapter 2

The simplest
reinforcement learning
problem

Recall: Multi-armed bandits

* No x, take an action, observe a reward immediately
* So, a degenerate tree (not truly sequential)
* This is what we call a simple (multi-arm) bandit problem

* Focus on exploration, not credit assighment

:]/UI\[: ATl

R P(- [A=0)
ecockt (Simple)

Recall: k-armed Bandit Problem

* On each of an infinite sequence of time steps,t=1,2, 3, ...,
you choose an action A; from k possibilities, and receive a real-
valued reward R;

* The reward depends only on the action taken;
it is identically, independently distributed (i.i.d.):

g«(a) =E|Ri|As = a], Vae{l,... k} true values
* These true values are unknown. The distribution is unknown
* Nevertheless, you must maximize your total reward

* You must both try actions to learn their values (explore),
and prefer those that appear best (exploit)

Recall: Action-Value Methods

* Methods that learn action-value estimates and construct a policy
based on them

* Estimates can be maintained incrementally, eg:
1
Qn—l—l = Qn + E [Rn — Qn}

* ϵ-greedy: choose the action with maximum Q _t with high
probability, uniformly randomly otherwise

» UCB: maintain an upper bound on the action value, choose greedily
based on value plus upper bound

Ay = arg max [Qt(a) +c]12%;)]

Formally:What do bandit algorithms
optimize!

The best possible action: a* = arg max g*(a)
a

The value of the best possible action: v = g*(a*)

Regret at time step t: [, = E[v* — g*(A,)]

Total regretup to time t: L, = 2 T4

Counting regret

The expected number of times action a has been chosen up to
time t: N(a)

The gap of action a: A, = v* — g*(a)
Note that the optimal action(s) has gap 0

Regret can then be computed from gaps and counts!
L=E [V* — q*(AI)]
=) E [N(@)](* - g%(a))

aed

_Z[E N{a)| A

aed

Observations

* Maximizing reward is equivalent to minimizing regret
* Worse actions lead to more regret

* ldeally, we minimize the number of time steps on which high
regret actions are chosen

Linear vs sublinear regret

greedy
e-greedy

Total regret
decaying e-greedy

Time-steps

m If an algorithm forever explores it will have linear total regret
m If an algorithm never explores it will have linear total regret

m |s it possible to achieve sublinear total regret?

Epsilon-greedy regret

With probability (1 — ¢) select greedy action
A, = argmax Q/a)

a

With probability € select uniformly at random
Selecting action a incurs regret A

Therefore, the probability of choosing any action at time step t
€

is at least:

€
So instantaneous regret is bounded as: E[/,] > m A,
a

5
€
And total regret: L, = 2 E[L] > z‘m 2 A,

=1

Improving on linear regret

Fixed € leads to linear regret !

What if we reduced the frequency of suboptimal actions over
time?

le introduce a decay:¢, = O as f = o

Let g = min A be the gap of the second-best action
a:A >0

cld|
g°t

Let €, = min <1, >where ¢ > 0 is a constant

We can show that this algorithm has logarithmic regret!

What is the optimal achievable
regret!?

* The difficulty of a bandit problem depends on how similar the
optimal arm is to all the rest

* The closer the means and the more similar the reward
distribution, the harder the problem

* Distribution similarity can be described by the KL divergence
between the reward distribution of arm a compared to the
optimal arm

* Lai and Robins (1979): for any multi-armed bandit asymptotic

regret is at least logarithmic in the number of steps:

A
lim L, > log ¢ Z - = O(log 1)

o> 0o KL R || R

Achieving optimal regret

* Decaying epsilon can do this, but requires knowledge of the
action gap (which is not known in practice)

* Are there other algorithms that achieve logarithmic asymptotic
regret!

Recall: Optimism in the face of uncertainty

* Choose actions about which you are very uncertain

p(Q)

Q) Q(a)

Q(a,)

UCB

. Choose greedily wrt A, = arg max(Q,(a) + U/(a))

log(t)
N(a)

. Where the upper bound: U, = ¢

* Why did we pick U this way?

Hoeffding Inequality

Theorem (Hoeffding's Inequality)

Aet Xi,..., Xt be i.i.d. random variables in [0,1], and let
X; = % 25:1 X, be the sample mean. Then

P[E[X] > X+ u] < e 2

From Hoeffding to UCB

Apply Hoeffding to a bandit problem for action a:
2
P [q*(a) > Qt(a) + Ut(a)] < 6_2Nt(a)Ut(a)

Pick a probability p that the true value exceed the upper bound
e—2Nt(a)Ut(a)2 =p

and solve for U: —log p
Ula) = \/

Now reduce p as we observe more rewards,eg p = %

Then you get the classic version of UCB!

Regret: lim L, < 8log(f)) A,

[— o0
a:A >0

Gradient-Bandit Algorithms

* Let H:(a) be a learned preference for taking action a
. et
Pridi=a} = SOy eHe(d) = m(a)

Note that this allows us to work with unnormalized preferences and turn
them into probabilities!

Same idea as using potentials in graphical models

Gradient-Bandit Algorithms

* Let H:(a) be a learned preference for taking action a

Pridi=a} = z’g_l CHi (D) m(@)

Ht_|_1(At) = Ht(At) —|— Q{(Rt — Rt) (]. — Wt(At))

Gradient-Bandit Algorithms

* Let H:(a) be a learned preference for taking action a

. el
Pridi=a} = SOy eHe(d) = m(a)

Hyi1(a) = Hi(a) + a(Ry — Ry) (1a=a, — m(a)), Va,

Gradient-Bandit Algorithms

* Let H:(a) be a learned preference for taking action a

Pr{d—a} = "
I‘{ t_a/} T 2]521 th(b)
Hiy1(a)
1 d
Ry = - Z R;
1=1
%
Optimal
action

= Hi(a) + a(Rt — Rt) (Lo=a, —
100% [
80%
60%
40%
20% |

0% L,

Wt(a)

me(a)), Va,

]

o= 01 - g
Wline
a =0.

i IR -

/ a=01__

f_,w*”"* without baseline
————————————§=0.

4

e A A b b

R

500 750

Steps

250

1000

Derivation of gradient-bandit algorithm

In exact gradient ascent:

OF [Ri]

Ht-l—l(a) = Ht(a) + 8Ht(a) y (1)

where:

E[R:] = Z m¢(b)q«(b),
b

OE[R:] O
OH:(a) OH:(a)

where X; does not depend on b, because) _, gzzgsg = 0.

OE[R:] 0 m(b)
(a) ~ 20)aHt(a)

O
= L r(b)a-(b)aHtE i/wt()

=K ((t) - Xt) 867;5(/4)) /Wt(At)]
— B[(R R) T)]

where here we have chosen X; = R; and substituted R; for g.(A;),
which is permitted because E[R;:|At] = g.(A¢).

For now assume: g:,igsg = 7¢(b)(1a=p — me(a)). Then:
=E|[(R: — Rt)ﬂ't(At)(la:At — m¢(a)) /me(Ar)]
=E[(R: — Re) (1aza, — me(a))] -

Hep1(a) = He(a) + (Re — Re) (1a—p, — me(a)), (from (1), QED)

Thus it remains only to show that

0 m(b)
OH:(a)

= 7¢(b) (]-a:b — ﬂt(a)).

Recall the standard quotient rule for derivatives:

%, [f(x)] _ Adg(x) — f(x) 5
Ox | g(x) |

Using this, we can write...

8f(><) ag(x)
Quotient Rule: 88 [f(x)] _ g(x) — f(X)
X

g(x) g(x)?
aﬂ't(b))
9H:(a) ~ oHe(a) "t P
9 oHe(b)
8Ht(a) Sk eti(e)
HeHt(b) c (b) O eHt(c)
8Ht(a) Zc 1 th() — e’ (5) Z Ht(a)

- 5 (Q.R.)
(Zlc(:l th(C))

B la:ber(a) Zlc(:l oHi(c) _ gHi(b) gHe(a) o -

— 9er _
(Zlc(:l th(C))2

He (b) eHe(b) gHe(2)

la:be

Sk eth(a) (Zlé:l th(c))2

= 1,_pm(b) — me(b)me(a)
= 7¢(b) (La=p — m(a)). (Q.E.D.)

Softmax (Boltzmann) Exploration

* Let H:(a) be a learned preference for taking action a
. et
Pridi=a} = SOy eHe(d) = m(a)

Consider H/(a) = Q(a)/T
This is Boltzmann or softmax exploration!
If the temperature T is very large (towards infinity) - same as uniform

If temperature T goes to 0, same as greedy

Summary Comparison of Bandit Algorithms

' UCB greedy with
optimistic
initialization

o =0.1

1.4}

Average ;|

e-greedy _— |
reward .\
: gradient\
over first ol bandit
1000 steps
1.1+
1-

1/128 1/64 1/32 1/16 1/

e/ a/c/ Qo

