
What is Reinforcement Learning for?



Reinforcement Learning

“Part of the appeal of reinforcement learning is that it is in 
a sense the whole AI problem in a microcosm.” 
– Sutton, 1992

http://incompleteideas.net/papers/challengeofRL.pdf


1. RL for understanding intelligence

● A way to model processes in the brain 
● A way to model cognitive processes in animals and people



Learning Values: Temporal-Difference Error

• Value estimate at time step t:

• Value estimate at time step t+1:

• Temporal-difference error:

• If v is parameterized by w, change w so as to minimize the 
TD-error: 

• Shultz, Dayan & Montague (1997): TD-errors model the 
activity of dopamine neurons 

r(St, At) + γ v(St+1)

wt+1 = wt + αδt ∇wvw(St)

v(St)

δt = r(St, At) + γv(St+1) − v(St)



Dopamine neuron modelling

Cf. Shultz, Dayan et al, 1996; and lots of follow-up work including MNI, Psych.



Control: Actor-critic architecture

A(s, a) = r(s, a) + γE(v(s′￼) |s, a) − v(s)

• Parameters of the policy move to make more likely action a that has 
positive advantage: 

• O’Doherty et al (2004): fMRI evidence that dorsolateral striatum 
implements an actor and ventral striatum a critic



Generalizing Actions: Options Framework

• An option is a defined by a tuple 

• An initiation function    (precondition)

• An internal policy         (behavior)

•  A termination function  (post-condition)

• Eg robot navigation: if no obstacle in front (initiation) go 
forward (policy) until something is too close (termination)

Cf. Sutton, Precup & Singh, 1998; Precup, 2000

⟨Iω(s), πω(a |s), βω(s)⟩



Possible Neural Correlates of Options

From Botvinick, Niv & Barto, 2009



“ 

Source: Giphy

Affordances […] relations 
between abilities of 

organisms and features of 
their environment.

Gibson, 1977
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https://giphy.com/


Affordances

Affordances are the subset of 
states and actions which 

complete the intent to go left.

❐ 	 Captures states and actions that complete an intent

?



What is the impact of the affordance set size on performance ?

Decreasing 
Affordance 
set size

Smaller sets of affordances 
= quicker learning

Performance gains



2. RL for applications

● Build (super-human) agents for language, games (discussed already) 
● Tackle very complex control tasks 
● Learn to search and explore



RL for controlling fusion reactors (Degrave et al, 
Nature 2022)
● Goal: achieve cheap clean energy! 
● Tokamak reactor (EPFL): control 19 magnetic coils to get and 

maintain plasma into a specific shape 
● True reward: energy output  
● Proxy reward: penalize deviation from desired shape
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What does a Tokamak look like?
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Inside a Tokamak reactor



Recipe

● Build a simulator of the problem (using knowledge of physics 
● Train an RL agent using policy optimization (MPO, Abdomaleki et 

al 2018) 
● Take only the trained policy and deploy on a real reactor to 

evaluate 
● Note control has to happen at 10kHz!
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Quantitative results
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Article

Extended Data Fig. 5 | Training progress. Episodic reward for the 
deterministic policy smoothed across 20 episodes with parameter variations 
enabled, in which 100 means that all objectives are perfectly met. !a comparison 
of the learning curve for the capability benchmark (as shown in Fig.!2) using our 
asymmetric actor-critic versus a symmetric actor-critic, in which the critic is 
using the same real-time-capable feedforward network as the actor. In blue is 
the performance with the default critic of 718,337 parameters. In orange, we 
show the symmetric version, in which the critic has the same feedforward 
structure and size (266,497 parameters) as the policy (266,280 parameters). 

When we keep the feedforward structure of the symmetric critic and scale up 
the critic, we find that widening its width to 512 units (in green, 926,209 
parameters) or even 1,024 units (in red, 3,425,281 parameters) does not bridge 
the performance gap with the smaller recurrent critic. b!comparison between 
using various amounts of actors for stabilizing a mildly elongated plasma. 
Although the policies in this paper were trained with 5,000 actors, this 
comparison shows that, at least for simpler cases, the same level of performance 
can be achieved with much lower computational resources.



Qualitative results
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Small Molecule Drug Discovery

Oracle? 

- Ideal: send diverse batches (10-100k) of candidates to a lab, O(weeks) 
- For now: use noisy physics simulator, O(15 CPUs)/molecule

predict reward 
cheaply (DNN)

This part is expensive and/

or noisy! 

(w/ biased noise)

generate molecule(s)

train 
generator

compute “real” reward 

train reward 
predictor

occasionally query “oracle"

Initial data 
{(x,y),..}

Protein

Drug

growing 

datase
t



Drug Discovery as Reinforcement Learning Problem

“empty molecule”

Build molecules block by block 

Episodes end with terminal R > 0 
(no intermediate rewards)



Just apply Reinforcement Learning?

- We have an environment (actions = build molecule) 
- We have a (noisy, learned) reward  
- RL! (Segler et al., 2017; De Cao & Kipf, 2018; Popova et al., 2019;  

        Gottipati et al., 2020; Angermueller et al., 2020) 

But RL greedily looks for one mode, even when we encourage entropy!  
Not great for diverse batch oracle queries
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https://arxiv.org/abs/1701.01329
https://arxiv.org/abs/1805.11973
https://arxiv.org/abs/1905.13372
https://arxiv.org/abs/2004.12485
https://openreview.net/forum?id=HklxbgBKvr


What about the usual generative models?

- Trained from positive samples only (e.g. existing drugs) 

But we have a more informative (non-binary) signal! (reward) 
- We don’t just want high reward, we want to avoid low reward (and have the data) 
- Still possible to do well: Jin et al., 2018; Shi et al., 2020; Luo et al., 2021
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https://arxiv.org/abs/1802.04364
https://arxiv.org/abs/2001.09382
https://arxiv.org/abs/2102.01189


GFlowNet

Generative framework for discrete objects which have a reward (or energy). 

Desired: Reward-proportional sampling!

NeurIPS 2021
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Background: SumTrees (& control as inference: SoftAC/SoftQL)

s0

s1

s3

s4

s5

s6

s7

s2 R=1 

R=2

R=3 

R=4

F=7 

F=9

F=1

F=10

P(s2) = 1/10

P(s4) = 2/10

P(s6) = 3/10

P(s7) = 4/10

π(a|s) = Q(s,a) / V(s) = F(s,a) / F(s)

using 
π(a|s) = F(s,a) / F(s) 
we get P(x) ∝ R(x)

F(s
3 , a

1 )=7

F(s3, a0)=2
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What if it’s a DAG?

s0

s1

s3

s4

s5

s6

s7

s2 R=1 

R=2

R=3 

R=4

F=7 

F=9

F=3

F=12

P(s2) = 1/12

P(s4) = 4/12

P(s6) = 3/12

P(s7) = 4/12

Naively applying SoftQL/SumTree yields the wrong solution

using 
π(a|s) = F(s,a) / F(s) 
we get P(𝝉) ∝ R(𝝉) 

!=  
 P(x) ∝ R(x)

F(s
3 , a

1 )=7

F(s3, a0)=2
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What if it’s a DAG?

s0

s1

s3

s4

s5

s6

s7

s2 R=1 

R=2

R=3 

R=4

F=7 

F=9

F=3

F=12
P(s2) = 1/12

P(s4) = 4/12

P(s6) = 3/12

P(s7) = 4/12

Naively applying SoftQL/SumTree yields the wrong solution

using 
π(a|s) = F(s,a) / F(s) 
we get P(𝝉) ∝ R(𝝉) 

!=  
 P(x) ∝ R(x)

F(s
3 , a

1 )=7

F(s3, a0)=2

- P(𝝉) ∝ R(𝝉) is bad if many 𝝉 lead 
to the  
  same X!  
- Exponentially bad in graph 
generation 
  (combinatorial # of paths)
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Interpreting the DAG as a flow network

s0

s1

s3

s4

s5

s6

s7

s2 R=1 

R=2(=outflow)

R=3 

R=4

F=7 

F=8

F=2

F=10

P(s2) = 1/10

P(s4) = 2/10

P(s6) = 3/10

P(s7) = 4/10

F(s) such that inflow = outflow

using 
π(a|s) = F(s,a) / F(s) 
we get  P(x) ∝ R(x)! 

inflow is F(s1,a1)+F(s3,a0)

F(s3, a0)=1

F(s
1 , a

1 )=1

F(s
3 , a

1 )=7
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Satisfy flow conditions, for all s’ 
 
 
 
 

This is very similar to a Bellman Equation, the bread and butter of RL! 

Satisfying the flow equations yields the right sampling proportions

Flow consistency

in flow of s’ out flow of s’
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How to train GFlowNet

Take inspiration from RL to learn F: 

Dangerous objective, F(s0,.) is going to be huge! F(s0) = Z
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How to train GFlowNet

Instead, learn the log, and match flows in log-space 

 
with an epsilon (care less about tiny flows)
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Relationship to MaxEntRL

● Quite similar in spirit but different mechanism (recent papers establish formal 
relationship) 

● Sampling of trajectories is always proportional to the reward at the end  
● If multiple policies are optimal their paths continue to be generated 
● In fact, all paths continue to be generated 
● Ongoing work: extensions to non-DAG, rewards at all states
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Works well! Molecule results
Pre-train reward function once on 300k molecules (computed on CPU simulator)   
Modes are found faster, with better rewards

modes = Bemis-Murcko scaffolds
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Works for Batch Active Learning too!
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pairs D0, where R(x) is the true reward from the oracle. The generative model (⇡✓) is trained
to fit to the unnormalized probability function learned by the proxy M . We then sample a batch
B = {x1, x2, . . . xk} where xi ⇠ ⇡✓, which is evaluated with the oracle O. The proxy M is updated
with this newly acquired and labeled batch, and the process is repeated for N iterations. We discuss
the experimental setting in more detail in Appendix A.5.

Figure 6: The top-k return (mean over 3 runs)
in the 4-D Hyper-grid task with active learning.
GFlowNet gets the highest return faster.
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Figure 7: The top-k docking reward (mean over
3 runs) in the molecule task with active learning.
GFlowNet consistently generates better samples.

Hyper-grid domain We present results for the multi-round task in the 4-D hyper-grid domain in
Figure 6. We use a Gaussian Process (Williams and Rasmussen, 1995) as the proxy. We compare
the Top-k Return for all the methods, which is defined as mean(top -k(Di)) � mean(top -k(Di�1)),
where Di is the dataset of points acquired until step i, and k = 10 for this experiment. The initial
dataset D0 (|D0| = 512) is the same for all the methods compared. We observe that GFlowNet
consistently outperforms the baselines in terms of return over the initial set. We also observe that
the mean pairwise L2-distance between the top -k points at the end of the final round is 0.83 ± 0.03,
0.61 ± 0.01 and 0.51 ± 0.02 for GFlowNet, MCMC and PPO respectively. This demonstrates the
ability of GFlowNet to capture the modes, even in the absence of the true oracle, as well as the
importance of capturing this diversity in multi-round settings.

Small Molecules For the molecule discovery task, we initialize an MPNN proxy to predict docking
scores from AutoDock (Trott and Olson, 2010), with |D0| = 2000 molecules. At the end of each
round we generate 200 molecules which are evaluated with AutoDock and used to update the proxy.
Figure 7 shows GFlowNet discovers molecules with significantly higher energies than the initial
set D0. It also consistently outperforms MARS as well as Random Acquisition. PPO training was
unstable and diverged consistently so the numbers are not reported. The mean pairwise Tanimoto
similarity in the initial set is 0.60. At the end of the final round, it is 0.54 ± 0.04 for GFlowNet
and 0.64 ± 0.03 for MARS. This further demonstrates the ability of GFlowNet to generate diverse
candidates, which ultimately helps improve the final performance on the task. Similar to the single
step setting, we observe that JT-VAE+BO is only able to generate 103 molecules with similar compute
time, and thus performs poorly.

5 Discussion & Limitations
In this paper we have introduced a novel TD-like objective for learning a flow for each state and
(state, action) pair such that policies sampling actions proportional to these flows draw terminal states
in proportion to their reward. This can be seen as an alternative approach to turn an energy function
into a fast generative model, without the need for an iterative method like that needed with MCMC
methods, and with the advantage that when training succeeds, the policy generates a great diversity
of samples near the main modes of the target distribution without being slowed by issues of mixing
between modes.

Limitations. One downside of the proposed method is that, as for TD-based methods, the use of
bootstrapping may cause optimization challenges (Kumar et al., 2020; Bengio et al., 2020) and limit
its performance. In applications like drug discovery, sampling from the regions surrounding each
mode is already an important advantage, but future work should investigate how to combine such a
generative approach to local optimization in order to refine the generated samples and approach the
local maxima of reward while keeping the batches of candidates diverse.

Negative Social Impact. The authors do not foresee negative social impacts of this work specifically.
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Average return over 3 runs of the top-k candidates in an iterative batch generation approach



Reinforcement Learning in practice

● Very big, largely untapped potential! 
● Reward design and ability to simulate can be crucial 
● Need to consider specifics of the problem 

● Great opportunity to improve existing algorithms! 
● Sample efficiency of RL needs to be improved
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