Continual (Never-Ending) Reinforcement
Learning - Part 2
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Giving the agent control over its own thinking process
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The agent can reshape the tree to help its decision making process
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Imagining multiple tasks or goals
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o 1; = (s¢, ki) where k; is some way to specify a task at time ¢ and s; is
the state inside the task

e Task structure exists only in the agent’s head, in order to make credit
assignment and action choice easier
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Goal-conditioned
Actor

TRPO, PPO, ...

Goal-conditioned RL

Goal-conditioned
Critic

DQN, ...

Goal-conditioned
Actor-Critic

DDPG, SAC, ...

e Agent’s goal becomes an input for RL

e Goal can be a state, or an embedding

e A function tells us whether goal has been achieved or not

e Can potentially learn to generalize over multiple goals!
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Desired vs achieved goals
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desired goal space
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achieved goal space
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e Goal may be very hard to achieve!

e But maybe we can figure out what was achieved and learn from that?
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Goal relabelling

9 <---- No learning
< $,ga,a,r, s’ >
S, gd —
r§d = o [TII1T_ R=0
(goal-conditioned replay buffer
policy) A
1
policy parameter space :
| |
L N§ ~~~~~~ g
~A ao
— 00 l—e—e>=1
( 0 (’:
e |Aarw Geots callh) o)
7 BEEe 0,
’ 5 v . \A P 2

desired goal space

~ achieved ng‘aI. Spacé

» The agent targets a desired goal g4

» The policy mg produces an achieved goal g,

» The trajectory is stored (it may produce no reward)
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Hindsight experience replay (HER)
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» The agent pretends it was targetting g4
» HER relabels the stored trajectory with g, instead of g4

» This propagates value in the (state, action) space through generalization

» And the agent competence increases over unseen goals
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When goals are states

desired goal space achieved goal space

» |f goal space = state space, HER may set as goal any state along the trajectory

» Trade-off between replaying more and trying more new actions (risk of
over-fitting to replay)

» Variants of HER: CHER (Curriculum + HER), DHER (dynamic goals), MCHER
(multi-criteria)...
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From HER to curriculum learning

e HER relabels achieved goals as fake desired goals

e |t does NOT tell you which goals the agent should strive to achieve
e Curriculum learning selects desired goals; can be combined with HER
e How should we select goals:

— Coverage/Exploration: pick goals that let you get to more places
— Performance: pick goals that you can actually accomplish
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Goal exploration process

interesting
outcpmes

policy parameter space ~ bijtco-mfeglgoél épacé
» Very often, few parameter vectors map to interesting achieved goals
» The GEP algorithm favors sampling these interesting achieved goals

» Sample a random desired goal
» Find the nearest achieved goal A’ and select the corresponding 6

» Perturb 6 into 6’ and get a new achieved goal A’

» Results in sampling “at the border” of currently achieved goals
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Using surprise/novelty for curriculum
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» Intrinsic motivation: reward states for which the forward model predicts

poorly
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» Target goals corresponding to rewarded states

» Results in visiting poorly visited states

» White noise problem: the agent may get stuck on what it cannot predict
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Using learning progress
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» Competence raises in order of growing difficulty

» LP generates more training in order of growing difficulty

» Catastrophic forgetting generates new training
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Goal space can be learned

Social partner Internalization
feedback & goal pursuit

Goal pursuit

» Key property: the tutor has a model of the learner’'s knowledge
» It proposes Frontier + Beyond goals (HME)
» The learner internalizes tutor’s goals, it can train on them and on its own goals
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» Guided play is more efficient than learning on its own and full guidance y
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Summary so far

e HER allows the agent to learn from what it accomplishes
e Curriculum learning provides a good succession of goals

e Goals can help exploration and/or learning
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Partial Models
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e Predict only specific features / cumulants

e Apply only in specific circumstances

COMP579, Lecture 24

-

D

15



Partial Value-Equivalent Models

e Model only predicts a subset of features (not the entire observation) (cf.
Talvitie & Singh, 2008)

e Goal is to obtain correct value estimates (a la MuZero), not to maximize
likelihood

e Example: minigrid
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Partial models drastically improve solution speed! (cf Alver & Precup. 2023)
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Learning Partial Value-Equivalent Models
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Learned partial models improve generalization

100 A

80 1

Total Steps

201

60

40 1

05 10 15 2.0
Time Steps (x10°)

(i) 16x16 RedBalls-R

100 A

80 1

60 1

Total Steps

40

201

05 1.0 15 20
Time Steps (x10°)

(c) 16x16 BlueBalls-R

100 A

80

60

Total Steps

40 1

201

0 T T T T
05 10 15 2.0
Time Steps (x106)

(j) 16x16 GreyBalls-R

400

Total Steps

05 1.0 15 20
Time Steps (x10°)

(e) 16x16 RedBalls-K

100 A

80 A

60 -

40

Total Steps

20 A

05 1.0 15 20
Time Steps (x10°)

(d) 16x16 NoObstacles-R

100 A

80 1

60 -

Total Steps

40

20 1

05 10 15 2.0
Time Steps (x10°)

(k) 16x16 RedBoxes-R

400 4

Total Steps

05 1.0 15 20
Time Steps (x10°)

(f) 16x16 GreyBalls-K

100 A

80 1

Total Steps

20 1

(1) 16x16 GreyBoxes-R

60

40 A

05 10 15 2.0
Time Steps (x10°)

Blue: Regular, Green: Value-Equivalent, Red: Value equivalent + models

COMP579, Lecture 24

19



Partial models allow deeper planning
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e Regular models (left) lead to worse performance when doing more
planning steps, due to error propagation

e Partial models have better error propagation properties (see Alver &
Precup. 2023, for details on the theory)
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Scaling up: ProcGen
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Partial models improve generalization!
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Conclusion

e An agent that is much smaller than its environment will be pressured to
find structure on its current trajectory: continually, online, not striving
for optimality but for gradual improvement.

e The structure it builds drives two important computations: exploration
decisions and credit assignment

e While agent implementations often link these two computations, they
can and perhaps should be more decoupled

e Many of the ingredients needed already exist (information-directed
sampling, GVFs, options, affordances, partial models)
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Some challenges

e From a theoretical point of view, we need to formalize the problem
further

Moving away from usual stationarity/recurrence assumptions to fully
transient agents

e From an empirical point of view, we should think of the appropriate
environments and metrics

Reconsider reward sparsity as a mark of interesting problems?
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Evaluation for continual RL

B) Metrics for Continual Reinforcement Learning

[0]0))) Cause-and-Effect

A) Benchmarks With Varying Complexity

Complexity

— Backward
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Cf. Khetarpal, Riemer, Rish and Precup, 2022
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