
Continual (Never-Ending) Reinforcement
Learning - Part 2

COMP579, Lecture 24



Giving the agent control over its own thinking process

£8
It
cieat assignment

ft
H v.Exploration
D ⑤
^
O O

-

- - - -
-

The agent can reshape the tree to help its decision making process

COMP579, Lecture 24 1



Imagining multiple tasks or goals

I
¥
a
ai
Q

Dy
-
- - - -

• xt = 〈st, kt〉 where kt is some way to specify a task at time t and st is
the state inside the task

• Task structure exists only in the agent’s head, in order to make credit
assignment and action choice easier

COMP579, Lecture 24 2



Goal-conditioned RL

Goal-Conditioned Reinforcement Learning, Multitask learning and Autotelic agents

GCRL: basic concepts

GCRL

I Precursor: the Kaelbling paper (tabular RL)

I Universal Value Function Approximators (anterior to DQN)

I Learned with standard Q-learning or actor-critic schemes

I Main advantage: generalization over the state space AND the goal space

Kaelbling, L. P. (1993) Learning to achieve goals. In IJCAI, pages 1094–1099

Schaul, T., Horgan, D., Gregor, K., & Silver, D. (2015) Universal value function approximators. In International Conference on

Machine Learning (pp. 1312–1320)

5 / 36

• Agent’s goal becomes an input for RL

• Goal can be a state, or an embedding

• A function tells us whether goal has been achieved or not

• Can potentially learn to generalize over multiple goals!

COMP579, Lecture 24 3



Desired vs achieved goals

Goal-Conditioned Reinforcement Learning, Multitask learning and Autotelic agents

GCRL: basic concepts

Desired goal and achieved goal

I The desired goal is the goal we input to the policy

I The achieved goal is the goal given by the goal achievement function from the
obtained trajectory

I In general, they are not equal

I One perspective on GCRL is to try to get them equal

7 / 36

COMP579, Lecture 24 4



• Goal may be very hard to achieve!

• But maybe we can figure out what was achieved and learn from that?

COMP579, Lecture 24 5



Goal relabelling

Goal-Conditioned Reinforcement Learning, Multitask learning and Autotelic agents

Core components

HER

Goal relabelling mechanism (1)

I The agent targets a desired goal gd

I The policy ⇡✓ produces an achieved goal ga

I The trajectory is stored (it may produce no reward)

13 / 36

COMP579, Lecture 24 6



Hindsight experience replay (HER)

Goal-Conditioned Reinforcement Learning, Multitask learning and Autotelic agents

Core components

HER

Goal relabelling mechanism (2)

I The agent pretends it was targetting ga

I HER relabels the stored trajectory with ga instead of gd

I This propagates value in the (state, action) space through generalization

I And the agent competence increases over unseen goals

I Note: the policy achieved ga when conditioned on gd, it may not achieve ga

when conditioned on ga...

14 / 36

COMP579, Lecture 24 7



When goals are states

Goal-Conditioned Reinforcement Learning, Multitask learning and Autotelic agents

Core components

HER

When the goal is a state

I If goal space = state space, HER may set as goal any state along the trajectory

I Trade-o↵ between replaying more and trying more new actions (risk of
over-fitting to replay)

I Variants of HER: CHER (Curriculum + HER), DHER (dynamic goals), MCHER
(multi-criteria)...

Fang, M., Zhou, C., Shi, B., Gong, B., Xu, J., and Zhang, T. (2018) DHER: Hindsight experience replay for dynamic goals. In

International Conference on Learning Representations

15 / 36COMP579, Lecture 24 8



From HER to curriculum learning

• HER relabels achieved goals as fake desired goals

• It does NOT tell you which goals the agent should strive to achieve

• Curriculum learning selects desired goals; can be combined with HER

• How should we select goals:

– Coverage/Exploration: pick goals that let you get to more places
– Performance: pick goals that you can actually accomplish

COMP579, Lecture 24 9



Goal exploration process

Goal-Conditioned Reinforcement Learning, Multitask learning and Autotelic agents

Core components

Curriculum learning

Lesson from Goal Exploration Processes

I Very often, few parameter vectors map to interesting achieved goals

I The GEP algorithm favors sampling these interesting achieved goals

I Sample a random desired goal
I Find the nearest achieved goal A0 and select the corresponding ✓
I Perturb ✓ into ✓0 and get a new achieved goal A0

I Results in sampling “at the border” of currently achieved goals

Chenu, A., Perrin-Gilbert, N., Doncieux, S., & Sigaud, O. (2021) Selection-expansion: A unifying framework for motion-planning

and diversity search algorithms. arXiv preprint arXiv:2104.04768

18 / 36

COMP579, Lecture 24 10



Using surprise/novelty for curriculum

Goal-Conditioned Reinforcement Learning, Multitask learning and Autotelic agents

Core components

Curriculum learning

Curriculum based on surprise/novelty

I Intrinsic motivation: reward states for which the forward model predicts
poorly

I Target goals corresponding to rewarded states

I Results in visiting poorly visited states

I White noise problem: the agent may get stuck on what it cannot predict

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. (2017) Curiosity-driven exploration by self-supervised prediction. arXiv

preprint arXiv:1705.05363

21 / 36
COMP579, Lecture 24 11



Using learning progress

Goal-Conditioned Reinforcement Learning, Multitask learning and Autotelic agents

Core components

Curriculum learning

Curriculum based on learning progress: dynamics

I Competence raises in order of growing di�culty

I LP generates more training in order of growing di�culty

I Catastrophic forgetting generates new training

23 / 36

COMP579, Lecture 24 12



Goal space can be learned

Goal-Conditioned Reinforcement Learning, Multitask learning and Autotelic agents

Core components

Goal representation learning

Help Me Explore

I Key property: the tutor has a model of the learner’s knowledge

I It proposes Frontier + Beyond goals (HME)

I The learner internalizes tutor’s goals, it can train on them and on its own goals

I Guided play is more e�cient than learning on its own and full guidance

Akakzia, A., Serris, O., Sigaud, O., and Colas, C. (2022) Help me explore: Minimal social interventions for graph-based autotelic

agents. arXiv preprint arXiv:2202.05129 (submitted to ICLR 2023)

27 / 36

COMP579, Lecture 24 13



Summary so far

• HER allows the agent to learn from what it accomplishes

• Curriculum learning provides a good succession of goals

• Goals can help exploration and/or learning

COMP579, Lecture 24 14



Partial Models

⑥ ⑧ BO

* Et Ha
I • a

o. I.¥¥E¥b
I

-
-
- -

to
*
O OB

• Predict only specific features / cumulants

• Apply only in specific circumstances

COMP579, Lecture 24 15



Partial Value-Equivalent Models

• Model only predicts a subset of features (not the entire observation) (cf.
Talvitie & Singh, 2008)

• Goal is to obtain correct value estimates (a la MuZero), not to maximize
likelihood

• Example: minigrid
Minimal Value-Equivalent Partial Models for Scalable and Robust Planning in Lifelong Reinforcement Learning

(a) 8x8 BlueBalls-R (b) 8x8 RedBoxes-R (c) 8x8 NoObstacles-R (d) 16x16 RedBalls-R (e) 16x16 BlueBoxes-R
Figure 2. Variations of the regular 2RDO environment with grid sizes of 8x8 and 16x16. In these environments, there are either no
obstacles (c), or there are several obstacles (balls and boxes) with different colors (a, b, d, e).

Rooms Dynamic Obstacles (2RDO) environment that are
built on top of Minigrid (Chevalier-Boisvert et al., 2018)
(see Fig. 2 & C.1), and (iii) on several Procgen environ-
ments (Cobbe et al., 2020) (see Fig. C.2). We choose these
environments as the first two allow for designing controlled
experiments that are helpful in answering the questions of
interest to this study and the Procgen environments are help-
ful in demonstrating the capabilities of the proposed models
in challenging domains. The details of the SW environment
are already presented in Sec. 3 and we refer the reader to
App. C for more details. In the regular 2RDO environments,
the agent (red triangle) spawns in top-left of the top room
and has to navigate to the green goal cell located in the
bottom-right of the same room, regardless of the gaseous
motions of the obstacles in the bottom room. At each time
step, the agent receives an image of the current state of the
grid and then, through the use of a learned state encoder,
transforms this image into a feature vector. Based on this,
the agent selects an action that either turns it left or right,
or moves it forward. If the agent successfully navigates to
the goal cell, it receives a reward of +1 and the episode
terminates. More details on the different versions (regular
and versions with a key) of the 2DRO environments and the
Procgen environments can be found in App. C.

5.1. Scalability Experiments

For our scalability experiments, we perform experiments
with several non-VE (m1, m2, m3) and VE (m4, m5, m6)
partial models of both the deterministic and stochastic ver-
sions of the SW environment, referred to as Det-SW and
Stoch-SW, respectively. The details of these models can be
found in Table C.1. For all of our experiments, we use value
iteration as our planning algorithm.

Question 1. Do minimal VE partial models allow for plan-
ning with no value loss?

In Sec. 4.1, we argued that by planning with a VE partial
model, an agent would incur no value loss compared to
planning with the true environment itself. To empirically
verify this, we present the agent with a set of non-VE partial
models m1, m2, m3 and a minimal VE partial model m4,
and compare the value losses on both the Det-SW and Stoch-
SW environments. Results are shown in Fig. 3a. We can

indeed see that while the VE partial model incurs no value
loss, the non-VE ones do incur serious value losses.

Question 2. Do minimal VE partial models allow for plan-
ning with less planning loss?

In Sec. 4.1, we argued that given a fixed amount of data,
compared to a regular model, a VE partial model is likely
to incur less planning loss, and this loss is likely to be
minimized when the VE partial model is a minimal one. For
empirical verification, we compare the planning losses of
a minimal VE partial model m4, two (non-minimal) VE
partial models m5 and m6, and a regular model m7, across
dataset sizes of 3, 5, 10 and 20, which corresponds to the
number of samples for each (f, a) pair, on the Stoch-SW
environment. Results in Fig. 3b show that, as expected, VE
partial models indeed incur less planning losses than regular
models, and the minimal VE partial model incurs the least
planning loss.

Question 3. Do minimal VE partial models provide compu-
tational complexity benefits?

In Sec. 4.2, we argued that compared to regular models,
planning with VE partial models would provide a significant
computational complexity benefit and this benefit would be
maximized when the model used for planning is a minimal
VE partial model. To empirically verify this, we present the
agent with a minimal VE partial model m4, two VE partial
models m5 and m6, and a regular model m7 of the Det-SW
environment, and compare the average time it takes to per-
form a single step of value iteration for each of these models.
Results are shown in Fig. 3c. As can be seen, planning with
VE partial models indeed provides significant computational
complexity benefits, and this benefit is maximized when the
VE partial model is a minimal one.

Question 4. Do minimal VE partial models provide sample
complexity benefits?

In Sec. 4.2, we argued that compared to regular models, plan-
ning with VE partial models is likely to provide a sample
complexity benefit and this benefit is likely to be maximized
when the model that is used for planning is a minimal VE
partial model. For empirical verification, we present the
agent with a minimal VE partial model m4 and with a regu-
lar model m7 as generative models, and compare the sample

Minimal Value-Equivalent Partial Models for Scalable and Robust Planning in Lifelong Reinforcement Learning

(a) Value Loss (b) Planning Loss (c) Planning Time (d) Det-SW (e) Stoch-SW
Figure 3. (a, b, c) The (a) value losses, (b) planning losses, and (c) planning times of several models. Plot (a) was obtained over a single
run and plots (b) and (c) were obtained by averaging over 50 runs per model. (d, e) The total reward obtained as a result of planning with
models m4 and m7 on the (d) Det-SW and (e) Stoch-SW environments. Shaded regions are standard errors over 50 runs.

efficiencies, as a result of performing Q-value iteration, on
the Det-SW and Stoch-SW environments. In these exper-
iments, after every episodic interaction, the agent updates
its model with the collected trajectory, and then performs
Q-value iteration until convergence. Results in Fig. 3d &
3e show that, as expected, planning with minimal VE par-
tial models indeed provides significant sample efficiency
benefits compared to planning with regular models.

5.2. Robustness Experiments

For our robustness experiments, we perform experiments
on different versions of the 2RDO environment with grid
sizes of 8x8 and 16x16. For convenience, we will refer to
these environments as follows: grid size, followed by their
obstacle type, followed by its version (regular or version
with a key). For example, we will refer to the regular 8x8
2DRO environment with red balls as 8x8 RedBalls-R (see
Fig. 2) and will refer to the 8x8 2DRO environment with red
balls and a key as 8x8 RedBalls-K (see Fig. C.1). We also
perform experiments on several Procgen environments (see
Fig. C.2). For all of our experiments, we use the straightfor-
ward decision-time planning algorithm of Zhao et al. (2021)
(see Alg. 2) whose details can be found in App. C. As this al-
gorithm makes use of neural networks, before moving on to
the robustness experiments, we try to answer the following
question.

Question 5. How to learn minimal VE partial models with
deep learning architectures?

So far, for illustration purposes, we have only performed
experiments in which we had a direct control over the fea-
tures of the agent’s model. However, in realistic scenarios,
the agent would have to come up on its own with a set of
features to build a model of the only relevant aspects of its
environment. A very popular way of letting the agent come
up with its own features is to use neural networks in the
representation of the agent’s encoder, value estimator and
model, and then to train it end-to-end on the environment
of interest. However, in order for the agent to come up with
only the relevant features, it has to be trained with the right
inductive biases. Even though finding the right inductive
biases to train a model-free or model-based RL agent is still

an open problem in the representation learning literature
(Bengio et al., 2013), in this study, we propose two induc-
tive biases that are likely to guide the agent in coming up
with only the relevant features. The first one is to only let
the value estimator shape the encoder and prevent the model
from doing so (see Fig. C.3). In this way, the agent can be
guided in learning the features that are relevant for predict-
ing the right values in the environment. And, the second
one is to train the agent across a variety of environments in
which the irrelevant aspects keep changing and the relevant
ones stay the same. In this way, the agent can be guided in
not learning the irrelevant aspects of the environment.

In order to test the usefulness of these two inductive biases
in coming up with only the relevant features of the environ-
ment, we compare three different agents: (i) a regular agent,
AREG, that was trained on the 8x8 BlueBalls-R environment
and whose encoder was jointly shaped by its value estimator
and model, (ii) an agent, AVES, that was again trained on the
8x8 BlueBalls-R environment, but whose encoder was only
shaped by its value estimator, and (iii) an agent, AVES+ME,
that was trained on the 8x8 BlueBalls-R, GreenBalls-R,
PurpleBalls-R and YellowBalls-R environments and whose
encoder was only shaped by its value estimator. We com-
pare these agents, as they get trained on their respective
environments, on the 8x8 BlueBalls-R and NoObstacles-R
environments. If the agent is successful in coming up with
only the relevant features of the environment, which are the
positions of the agent and the goal, and not the positions
and motions of the obstacles, we would expect it to perform
similarly on the 8x8 BlueBalls-R and 8x8 NoObstacles-R
environments. Results are shown in Fig. 4a & 4b. As can
be seen, even though all of the agents perform well on the
8x8 BlueBalls-R environment, the AREG agent completely
fails on the 8x8 NoObstacles-R environment, demonstrat-
ing that without the necessary inductive biases an agent is
not capable of coming up with only the relevant features
itself. We can also see that the AVES agent achieves a bet-
ter performance than the AREG agent and that the AVES+ME

agent achieves an even better performance than the AVES

agent, demonstrating the usefulness of our proposed induc-
tive biases in inducing models that display the behavior of
minimal VE partial models. In order to test the scalability of

COMP579, Lecture 24 16



Partial models drastically improve solution speed! (cf Alver & Precup. 2023)

COMP579, Lecture 24 17



Learning Partial Value-Equivalent Models

Minimal Value-Equivalent Partial Models for Scalable and Robust Planning in Lifelong Reinforcement Learning

C.6. Details of the Encoder Shaping Procedure During Training

In Sec. 5.2, we argued that one of the important inductive biases that is likely to guide the agent in coming up with only the
relevant features of the environment is to only let the value estimator shape the encoder and to prevent the model from doing
so. This is pictorially depicted in Fig. C.3.

Encoder

R
aw

 O
bs

er
va

tio
n

Fe
at

ur
e 

 
Ve

ct
or

Va
lu

eValue
Estimator

Model

N
ex

t F
ea

tu
re

Ve
ct

or
R

ew
ar

d
Ep

is
od

e
Te

rm
in

at
io

n

Forward Pass

Backward Pass

Encoder

R
aw

 O
bs

er
va

tio
n

Fe
at

ur
e 

 
Ve

ct
or

Value
Estimator

Model

N
ex

t F
ea

tu
re

Ve
ct

or
R

ew
ar

d
Ep

is
od

e
Te

rm
in

at
io

n

Forward Pass

Backward Pass

No Gradient Flow

Va
lu

e

Figure C.3. A pictorial representation of how the agent can be trained so that it can come up with relevant features of the environment.
(Right) The regular way of training, (Left) the way it can be done.

D. Additional Experimental Results with Procgen Environments
For our experiments with the Procgen environments, we again compare three different agents: (i) a regular agent AREG, that
was trained on 200 levels for the easy modes and 500 levels for the regular modes and whose encoder was jointly shaped by
its value estimator and model, (ii) an agent, AVES, that was again trained on 200 levels for the easy modes and 500 levels
for the regular modes, but whose encoder was only shaped by its value estimator, and (iii) an agent, AVES+ME, that was
trained on 100,000 levels for both the easy and regular modes and whose encoder was only shaped by its value estimator.
Note that we have used the recommended 200 and 500 levels for training the AREG and AVES agents as training on a single
environment for the Procgen benchmark is demonstrated to fail in all cases (Cobbe et al., 2020). We have also used 100,000
levels for training the AVES+ME agent to demonstrate the effectiveness of training on multiple environments on inducing
models that dispaly the behavior of minimal VE partial models. Following the protocol in Cobbe et al. (2020), we compare
these agents on a full distribution of levels and report it as the test performance.

COMP579, Lecture 24 18



Learned partial models improve generalization
Minimal Value-Equivalent Partial Models for Scalable and Robust Planning in Lifelong Reinforcement Learning

(a) 8x8 BlueBalls-R (b) 8x8 NoObstacles-R (c) 16x16 BlueBalls-R (d) 16x16 NoObstacles-R

(e) 8x8 RedBalls-R (f) 8x8 GreyBalls-R (g) 8x8 RedBoxes-R (h) 8x8 GreyBoxes-R

(i) 16x16 RedBalls-R (j) 16x16 GreyBalls-R (k) 16x16 RedBoxes-R (l) 16x16 GreyBoxes-R
Figure 4. The total steps to reach the goal in the 8x8 and 16x16 versions of the (a, c) BlueBalls-R, (b, d) NoObstacles-R, (e, i) RedBalls-R,
(f, j) GreyBalls-R, (g, k) RedBoxes-R and (h, l) GreyBoxes-R environments for the AREG, AVES and AVES+ME agents. Black dashed lines
indicate the performance of the optimal policy in the corresponding environments. Shaded regions are standard errors over 25 runs.

our results, we have also performed the same experiments
with 16x16 versions of the environments. As can be seen in
Fig. 4c & 4d, we obtain similar results.

Question 6. Can minimal VE partial models be useful in
performing robust transfer?

As minimal VE partial models only model the relevant as-
pects of the environment, we would expect them to be robust
to the distribution shifts happening in the irrelevant aspects
of the environment. In order to test this, we compare the
zero-shot performances of the AREG, AVES and AVES+ME

agents on the 8x8 and 16x16 RedBalls-R, GreyBalls-R,
RedBoxes-R and GreyBoxes-R environments. Results are
shown in Fig. 4e-4l. As can be seen, while the AREG agent
fails and the AVES agent only shows signs of robust trans-
fer, the AVES+ME agent is able to perform robust transfer
without any problem. We also compare the performances of
the three agents on several Procgen environments (see App.
D for the details). Results in Fig. D.1 show that a similar
test-time performance trend among the agents holds as well,
corroborating our conclusion with the 2RDO environments.

Also, as minimal VE partial models only model the relevant
aspects of the environment, compared to regular models,
we would expect them to be able to quickly adapt to the
distribution shifts happening in the relevant aspects of the

environment. To test this, we compare the adaptation speeds
of the AREG, AVES and AVES+ME agents to the 8x8 and 16x16
RedBalls-K, NoObstacles-K and GreyBalls-K environments
(see Fig. C.1). Opposed to the regular 2RDO environments,
in these environments the agent has to pick up the key to
obtain a reward upon navigating to the goal cell (see App.
C.2). Results are shown in Fig. 5a-5f. As can be seen, while
the AREG agent completely fails in adapting, the AVES agent
only shows signs of quick adaptation. However, it is the
AVES+ME agent that is able to adapt the quickest. Together,
these results illustrate the ability of minimal VE partial
models in performing robust transfer.

Question 7. Are minimal VE partial models more robust to
compounding model errors?

As minimal VE partial models only model the relevant as-
pects of the environment, compared to regular models, we
would expect them to be less susceptible to compounding
model errors during planning. In order to test this, we com-
pare the performances of the AREG and AVES+ME agents with
search budgets of 20, 40 and 80 on the 16x16 BlueBalls-R
environment. Note that this environment has been seen be-
fore by both of the agents. Results in Fig. 5g & 5h show that
while the performance of AREG agent drops significantly
with the increase in the search budget, the performance of
the AVES+ME agent stays close to optimal, demonstrating the

Minimal Value-Equivalent Partial Models for Scalable and Robust Planning in Lifelong Reinforcement Learning

(a) 8x8 BlueBalls-R (b) 8x8 NoObstacles-R (c) 16x16 BlueBalls-R (d) 16x16 NoObstacles-R

(e) 8x8 RedBalls-R (f) 8x8 GreyBalls-R (g) 8x8 RedBoxes-R (h) 8x8 GreyBoxes-R

(i) 16x16 RedBalls-R (j) 16x16 GreyBalls-R (k) 16x16 RedBoxes-R (l) 16x16 GreyBoxes-R
Figure 4. The total steps to reach the goal in the 8x8 and 16x16 versions of the (a, c) BlueBalls-R, (b, d) NoObstacles-R, (e, i) RedBalls-R,
(f, j) GreyBalls-R, (g, k) RedBoxes-R and (h, l) GreyBoxes-R environments for the AREG, AVES and AVES+ME agents. Black dashed lines
indicate the performance of the optimal policy in the corresponding environments. Shaded regions are standard errors over 25 runs.

our results, we have also performed the same experiments
with 16x16 versions of the environments. As can be seen in
Fig. 4c & 4d, we obtain similar results.

Question 6. Can minimal VE partial models be useful in
performing robust transfer?

As minimal VE partial models only model the relevant as-
pects of the environment, we would expect them to be robust
to the distribution shifts happening in the irrelevant aspects
of the environment. In order to test this, we compare the
zero-shot performances of the AREG, AVES and AVES+ME

agents on the 8x8 and 16x16 RedBalls-R, GreyBalls-R,
RedBoxes-R and GreyBoxes-R environments. Results are
shown in Fig. 4e-4l. As can be seen, while the AREG agent
fails and the AVES agent only shows signs of robust trans-
fer, the AVES+ME agent is able to perform robust transfer
without any problem. We also compare the performances of
the three agents on several Procgen environments (see App.
D for the details). Results in Fig. D.1 show that a similar
test-time performance trend among the agents holds as well,
corroborating our conclusion with the 2RDO environments.

Also, as minimal VE partial models only model the relevant
aspects of the environment, compared to regular models,
we would expect them to be able to quickly adapt to the
distribution shifts happening in the relevant aspects of the

environment. To test this, we compare the adaptation speeds
of the AREG, AVES and AVES+ME agents to the 8x8 and 16x16
RedBalls-K, NoObstacles-K and GreyBalls-K environments
(see Fig. C.1). Opposed to the regular 2RDO environments,
in these environments the agent has to pick up the key to
obtain a reward upon navigating to the goal cell (see App.
C.2). Results are shown in Fig. 5a-5f. As can be seen, while
the AREG agent completely fails in adapting, the AVES agent
only shows signs of quick adaptation. However, it is the
AVES+ME agent that is able to adapt the quickest. Together,
these results illustrate the ability of minimal VE partial
models in performing robust transfer.

Question 7. Are minimal VE partial models more robust to
compounding model errors?

As minimal VE partial models only model the relevant as-
pects of the environment, compared to regular models, we
would expect them to be less susceptible to compounding
model errors during planning. In order to test this, we com-
pare the performances of the AREG and AVES+ME agents with
search budgets of 20, 40 and 80 on the 16x16 BlueBalls-R
environment. Note that this environment has been seen be-
fore by both of the agents. Results in Fig. 5g & 5h show that
while the performance of AREG agent drops significantly
with the increase in the search budget, the performance of
the AVES+ME agent stays close to optimal, demonstrating the

Minimal Value-Equivalent Partial Models for Scalable and Robust Planning in Lifelong Reinforcement Learning

(a) 8x8 NoObstacles-K (b) 8x8 RedBalls-K (c) 8x8 GreyBalls-K (d) 16x16 NoObstacles-K

(e) 16x16 RedBalls-K (f) 16x16 GreyBalls-K (g) The AREG agent (h) The AVES+ME agent
Figure 5. (a, b, c, d, e, f) The total steps to reach the goal in the 8x8 and 16x16 versions of the (a, d) NoObstacles-K, (b, e) RedBalls-K,
(c, f) GreyBalls-K environments for the AREG, AVES and AVES+ME agents. For all of the plots the agents were first trained on regular
versions of the 2RDO environment and then on versions with a key. (g, h) The total steps to reach the goal in the 16x16 BlueBalls-R
environment for the (g) AREG and (h) AVES+ME agents with search budgets of 20, 40 and 80. For all plots, the black dashed lines indicate
the performance of the optimal policy in the corresponding environments and the shaded regions are standard errors over 25 runs.

robustness of minimal VE partial models to compounding
model errors.

6. Related Work
Partial Models. In the context of RL, the initial studies
of partial models can be dated back to the seminal study
of Talvitie & Singh (2008) which proposes to learn sev-
eral models of an uncontrolled dynamical systems that are
partial at the observation level. In contrast, we propose
to learn a single and useful partial model of a controlled
dynamical system that is partial at the feature level, which
provides several advantages such as eliminating the question
of how to combine the learned models, using them for con-
trol purposes, and making them compatible with function
approximation. Our work also has a very close connec-
tion to the study of Zhao et al. (2021) which proposes a
transformer-based deep model-based agent that dynamically
attends to relevant parts of its state representation during
planning. However, our work differs in that we propose
the general concept of partial models for LRL that is in-
dependent of the agent’s implementation details. Lastly,
another related line of research is the studies of Khetarpal
et al. (2020; 2021) on affordances which focus on building
models that are partial in the action space. Our study is com-
plementary to these studies in that they can still leverage
(non-minimal or minimal) VE partial models to reduce the
size of the feature space and further increase the benefits of
performing model-based RL with partial models.

Value-Equivalence. A recent trend in model-based RL
is to learn models that are specifically useful for value-
based planning (see e.g. Silver et al., 2017; Oh et al., 2017;

Schrittwieser et al., 2020; Grimm et al., 2020; 2021). Even
though our work also advocates the idea that models should
be useful in value-based planning, our work differs in that
we also argue that the explicit partiality of the models can
provide significant scalability and robustness benefits when
performing model-based RL in LRL scenarios.

7. Conclusion and Discussion
In conclusion, in this study, we have introduced special
types of models, called minimal VE partial models, that
only model the relevant aspects of the environment and
are particularly useful in LRL scenarios. Our theoretical
results suggest that these models can provide significant
advantages in the value and planning losses that are incurred
during planning and in the computational and sample com-
plexity of planning. Our empirical results (i) validate our
theoretical results and show that these models can scale to
large environments, that are typical in LRL, and (ii) show
that these models can be robust to distribution shifts and
compounding model errors. Overall, our findings suggest
that minimal VE partial models can provide significant ad-
vantages in performing model-based RL in LRL scenarios.
One limitation of our work is that, rather than providing a
principled method, we have only provided several heuristics
for training deep RL agents that can come up with only the
relevant features of the environment. However, we note that
this is mainly due to the lack of principled approaches in
the representation learning literature, and we believe that
this limitation can be overcomed with more principled ap-
proaches being introduced. We hope to tackle this limitation
in future work.

Blue: Regular, Green: Value-Equivalent, Red: Value equivalent + models

COMP579, Lecture 24 19



Partial models allow deeper planning

Minimal Value-Equivalent Partial Models for Scalable and Robust Planning in Lifelong Reinforcement Learning

(a) 8x8 NoObstacles-K (b) 8x8 RedBalls-K (c) 8x8 GreyBalls-K (d) 16x16 NoObstacles-K

(e) 16x16 RedBalls-K (f) 16x16 GreyBalls-K (g) The AREG agent (h) The AVES+ME agent
Figure 5. (a, b, c, d, e, f) The total steps to reach the goal in the 8x8 and 16x16 versions of the (a, d) NoObstacles-K, (b, e) RedBalls-K,
(c, f) GreyBalls-K environments for the AREG, AVES and AVES+ME agents. For all of the plots the agents were first trained on regular
versions of the 2RDO environment and then on versions with a key. (g, h) The total steps to reach the goal in the 16x16 BlueBalls-R
environment for the (g) AREG and (h) AVES+ME agents with search budgets of 20, 40 and 80. For all plots, the black dashed lines indicate
the performance of the optimal policy in the corresponding environments and the shaded regions are standard errors over 25 runs.

robustness of minimal VE partial models to compounding
model errors.

6. Related Work
Partial Models. In the context of RL, the initial studies
of partial models can be dated back to the seminal study
of Talvitie & Singh (2008) which proposes to learn sev-
eral models of an uncontrolled dynamical systems that are
partial at the observation level. In contrast, we propose
to learn a single and useful partial model of a controlled
dynamical system that is partial at the feature level, which
provides several advantages such as eliminating the question
of how to combine the learned models, using them for con-
trol purposes, and making them compatible with function
approximation. Our work also has a very close connec-
tion to the study of Zhao et al. (2021) which proposes a
transformer-based deep model-based agent that dynamically
attends to relevant parts of its state representation during
planning. However, our work differs in that we propose
the general concept of partial models for LRL that is in-
dependent of the agent’s implementation details. Lastly,
another related line of research is the studies of Khetarpal
et al. (2020; 2021) on affordances which focus on building
models that are partial in the action space. Our study is com-
plementary to these studies in that they can still leverage
(non-minimal or minimal) VE partial models to reduce the
size of the feature space and further increase the benefits of
performing model-based RL with partial models.

Value-Equivalence. A recent trend in model-based RL
is to learn models that are specifically useful for value-
based planning (see e.g. Silver et al., 2017; Oh et al., 2017;

Schrittwieser et al., 2020; Grimm et al., 2020; 2021). Even
though our work also advocates the idea that models should
be useful in value-based planning, our work differs in that
we also argue that the explicit partiality of the models can
provide significant scalability and robustness benefits when
performing model-based RL in LRL scenarios.

7. Conclusion and Discussion
In conclusion, in this study, we have introduced special
types of models, called minimal VE partial models, that
only model the relevant aspects of the environment and
are particularly useful in LRL scenarios. Our theoretical
results suggest that these models can provide significant
advantages in the value and planning losses that are incurred
during planning and in the computational and sample com-
plexity of planning. Our empirical results (i) validate our
theoretical results and show that these models can scale to
large environments, that are typical in LRL, and (ii) show
that these models can be robust to distribution shifts and
compounding model errors. Overall, our findings suggest
that minimal VE partial models can provide significant ad-
vantages in performing model-based RL in LRL scenarios.
One limitation of our work is that, rather than providing a
principled method, we have only provided several heuristics
for training deep RL agents that can come up with only the
relevant features of the environment. However, we note that
this is mainly due to the lack of principled approaches in
the representation learning literature, and we believe that
this limitation can be overcomed with more principled ap-
proaches being introduced. We hope to tackle this limitation
in future work.

• Regular models (left) lead to worse performance when doing more
planning steps, due to error propagation

• Partial models have better error propagation properties (see Alver &
Precup. 2023, for details on the theory)

COMP579, Lecture 24 20



Scaling up: ProcGen
Minimal Value-Equivalent Partial Models for Scalable and Robust Planning in Lifelong Reinforcement Learning

(a) CoinRun (b) StarPilot (c) CaveFlyer (d) DodgeBall
Figure C.2. The Procgen environments that are used in this study: (a) CoinRun, (b) StarPilot, (c) CaveFlyer and (d) DodgeBall. We refer
the reader to the benchmark website (https://openai.com/blog/procgen-benchmark/) for more visualizations.

Table C.1. Several non-VE and VE partial models of the SW environment.
m1 squirrel position, cloud position
m2 squirrel position, cloud position, wind direction
m3 squirrel position, cloud position, wind direction, hawk position
m4 squirrel position, hawk position, hawk direction
m5 squirrel position, hawk position, hawk direction, cloud position
m6 squirrel position, hawk position, hawk direction, cloud position, wind direction
m7 squirrel position, hawk position, hawk direction, cloud position, wind direction, weather

C.5. Details and Hyperparameters of the Decision-Time Planning Algorithm

The details and hyperparameters of the straightforward decision-time of Zhao et al. (2021) that we have used can be found
in Table C.2 and C.3.

Table C.2. Details and hyperparameters of Alg. 2 for the 2RDO environments.
�✓ A regular neural network feature extractor
Q⌘ A regular neural network
m! A regular neural network
Nple 200k
Nrbt 50k
ns 20
nbs 128
h best-first search (training), random search (evaluation)
T random sampling
✏ linearly decays from 1.0 to 0.0 over the first 1M time steps

Table C.3. Details and hyperparameters of Alg. 2 for the Procgen environments.
�✓ A convolutional neural network feature extractor
Q⌘ A regular neural network
m! A regular neural network
Nple 2M
Nrbt 50k
ns 50
nbs 128
h best-first search (training), random search (evaluation)
T random sampling
✏ linearly decays from 1.0 to 0.0 over the first 1M time steps

For more details (such as the NN architectures, replay buffer sizes, learning rates, exact details of the tree search, . . . ), we
refer the reader to the publicly available code and the supplementary material of Zhao et al. (2021).

Minimal Value-Equivalent Partial Models for Scalable and Robust Planning in Lifelong Reinforcement Learning

(a) CoinRun (Easy) (b) CoinRun (c) StarPilot (Easy) (d) StarPilot

(e) CaveFlyer (Easy) (f) CaveFlyer (g) DodgeBall (Easy) (h) DodgeBall
Figure D.1. The training and test performance of the AREG, AVES and AVES+ME agents on the (a) CoinRun (Easy), (b) CoinRun, (c)
StarPilot (Easy), (d) StarPilot, (e) CaveFlyer (Easy), (f) CaveFlyer, (g) DodgeBall (Easy), and (h) DodgeBall environments. We have
used the same bar plot in Alver & Precup (2020) for reporting the performances. Black dashed lines indicate the maximum achievable
performance in the corresponding environment. Plots without a dashed line do not have an upper bound in the maximum achievable score
in their corresponding environment. The means and the standard errors are computed over 25 independent runs of the trained agents.

Partial models improve generalization!

COMP579, Lecture 24 21



Conclusion

• An agent that is much smaller than its environment will be pressured to
find structure on its current trajectory: continually, online, not striving
for optimality but for gradual improvement.

• The structure it builds drives two important computations: exploration
decisions and credit assignment

• While agent implementations often link these two computations, they
can and perhaps should be more decoupled

• Many of the ingredients needed already exist (information-directed
sampling, GVFs, options, affordances, partial models)

COMP579, Lecture 24 22



Some challenges

• From a theoretical point of view, we need to formalize the problem
further

Moving away from usual stationarity/recurrence assumptions to fully
transient agents

• From an empirical point of view, we should think of the appropriate
environments and metrics

Reconsider reward sparsity as a mark of interesting problems?

COMP579, Lecture 24 23



Evaluation for continual RL

representations learned by an agent. Moreover, auxiliary evaluation metrics can further our
understanding of an agent’s abilities. Specifically, the core desired capabilities of a continual
learner can be tested with probe questions.

6.3 Towards Broader Evaluation Criteria for Continual RL

At the intersection of metrics (what to measure) and domains (how to measure)3 we
recommend that bsuite (Osband et al., 2019) is a promising example of the type of framework
needed for training and evaluating agents in a continual fashion. In Figure 9 we highlight some
important evaluation criteria to consider to better understand the performance of continual
RL agents. For a given degree and nature of non-stationarity (see Sec. 4), researchers
should generate a set of carefully designed experiments with a carefully chosen complexity to
train and evaluate continual RL agents. Ideally, proper empirical analysis would result in a
measure of the behavior along di↵erent dimensions of probe-metrics as shown in the Fig. 9.

Figure 9: Evaluating Continual Reinforcement Learning Agents. A) Depicts the
evolution of domains and benchmarks over time commonly used in RL. B) Depicts
key metrics for evaluating continual RL agents in the style of bsuite. Such a
framework should also o↵er a knob controlling the degree and nature of non-
stationarity that agents experience (see Figure 4). For a given degree of non-
stationarity, a set of carefully designed experiments to test di↵erent probe questions
would help foster more rapid progress in the field.

To this end, it is important to consider the following capabilities as probe questions (i.e.
auxiliary metrics) in addition to measuring the accumulated returns over time.

1. Catastrophic Forgetting (Forward and Backward Transfer): It is desired for our agents
to be able to e↵ectively use previously acquired knowledge in new related situations

3. We acknowledge that evaluation of deep RL agents faces several challenges pertaining to reproducibility
(see (Henderson et al., 2017b; Khetarpal et al., 2018b)). This is even more reason for the community to
move towards standardized evaluation benchmarks for continual RL.

36

Cf. Khetarpal, Riemer, Rish and Precup, 2022

COMP579, Lecture 24 24


