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LLM case study: Ensuring safety/alignment at training

time

dynamic balancing

helpfulness score

Case Study: Safe RL with Human Feedback

Key idea: decoupling of helpfulness and harmlessness objectives:

harmfulness score

Lagrangian formulation

♠dynamic balance between objectives ♠harm mitigation while maintaining 
performance

[Dai et al., 2024]
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LLM case study: Ensuring safety/alignment at test time
Test-Time Alignment Methods for LLMs

prompting
guide LLM through input 

text/prefix crafting

♠ blend instructions with 
in-context examples [Askell et 
al., 2021] [Lin et al., 2023] [Zhang et 
al., 2023]

♠ complex reasoning, e.g., 
constitutional AI [Bai et al., 
2022b], “skin in the game” [Sel 
et al., 2024]

improve LLM outputs without modifying model weights, adapting behavior during inference

LLM
input 

prompt
aligned 
output

steering/intervention
intervene in generation 

process to enforce constraints

♠ representation engineering: add 
steering vectors to the representation space 
[Zou et al., 2023], attribute classifier [Dathathri et 
al., 2020], attention head outputs [Li et al., 2023], 
dynamic hidden state manipulation [Kong et 
al., 2024]
♠ guided decoding: reward-guided token 
selection [Khanov et al., 2024], prefix-based 
reward prediction [Mudgal et al., 2023]

aligned 
output

token probabilities

LLM

hidden states

external tool/ 
knowledge 

augmentation
incorporate external tool/

info during generation

♠ retrieval-augmented 
generation: web browser [Guu et al., 
2020] [Nakano et al., 2021], search 
engine [Menick et al., 2022], document 
database [Izacard et al., 2023]

♠ tools/APIs: ToolFormer [Schick et 
al., 2024], HuggingGPT [Shen et al., 
2024], ToolLLM [Qin et al., 2024]

LLM
aligned 
output

external 
tool/knowledge

59

COMP579, Lecture 24 2



AI alignment more broadly

• ”If we use, to achieve our purposes, a mechanical agency with whose
operation we cannot interfere e↵ectively... we had better be quite sure
that the purpose put into the machine is the purpose which we really
desire.” (Norbert Wiener, 1960)

• Note the emphasis on the designer and the single-shot view

• Modern concerns have shifted towards emergence of internal goals inside
AI (cf Goodhart’s law)

• But the predominant view is still short-term: we align the AI with our
(?) values and we are done!

• Detour: Dan Wood’s value alignment slides
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Value (mis)alignment: an example

Paperclip AI (Bostrom 2016): “An AI, designed to manage 
production in a factory, is given the final goal of maximizing the 
manufacture of paperclips… 
… and proceeds by converting first the Earth and then increasingly 
large chunks of the observable universe into paperclips.” 

Even a less powerful AI might pursue this goal in surprising ways!
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Value alignment: the problem

How do we design AI agents that will do what we really want? 

What we really want is often much more nuanced than what we 
say we want. Humans work with many background assumptions 
that are (1) hard to formalize and (2) easy to take for granted. 

It’s hard to solve this problem just by giving better instructions! 
• Compare the difficulty in manually specifying reward functions 
• Even worse for AI that takes instructions from non-expert users!
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Making the problem precise

There are several ways of interpreting “what we really want”! 

First, value alignment might be the problem of designing AI 
agents that do what we really intend for them to do. 

If this is right, Paperclip AI is an example of value misalignment 
because the AI failed to derive the user’s true intention 
(maximize production subject to certain constraints) from their 
instruction (maximize production).
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Aligning to user intentions

The solution, then, would be to design AI systems that 
successfully translate from underspecified instructions to fully 
specified intentions (incl. unspoken constraints, conditions, etc.) 

“This is a significant challenge. To really grasp the intention 
behind instructions, AI may require a complete model of human 
language and interaction, including an understanding of the 
culture, institutions, and practices that allow people to understand 
the implied meaning of terms.” (Gabriel 2020)
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Aligning to user intentions

A philosophical problem: our intentions might not always track 
what we really want. 

Classic cases: incomplete information, imperfect rationality 

Suppose I intend for the AI to maximize paperclip production 
(subject to constraints) because I want to maximize return on my 
investment in the factory. If the AI knows that I would get a better 
return by producing something else, has it given me what I really 
want if it does what I intend?
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Aligning to revealed preferences

Second interpretation: AI agent is value-aligned if it does what the 
user prefers. 

• Paperclip AI is misaligned because I prefer it not destroy the world! 

Problem: How to tell what the user actually prefers when that 
differs from their expressed intentions or preferences? 

Solution: The AI could infer the user’s preferences from the user’s 
behavior or feedback.
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Aligning to revealed preferences

Technical challenges: 
• Requires agent to train on observation of user or from user feedback 
• Infinitely many preference/reward functions consistent with finite 

behavior/feedback 
• Hard to infer preferences about unexpected situations (e.g., 

emergencies) 

Philosophical problem: 
• Just as my intentions can diverge from my preferences, my preferences 

can diverge from what is actually good for me.
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Aligning to user’s best interests

Third interpretation: AI agent is value-aligned if it does what is in 
the user’s best interests, objectively speaking. 

• Paperclip AI is misaligned because it is objectively bad for me for the 
world to be destroyed. 

Technical/philosophical problem: Unlike the intended meaning of 
my instruction or my revealed preferences, my objective best 
interests can’t be determined empirically. What’s objectively good 
for me is a philosophical question, not a scientific one.
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Aligning to user’s best interests

The bad news is that philosophers disagree about what’s 
objectively good for a person: 

• Is it just the person’s own pleasure or happiness? 
• … or the satisfaction of the person’s desires or preferences? 
• … or are things like health, safety, knowledge, relationships, etc. 

objectively good for us even if we don’t enjoy or prefer them? 

The good news is that there’s a lot of agreement: 
• Health, safety, liberty, knowledge, social relationships, purpose, dignity, 

happiness… almost everyone agrees that these things are at least 
usually good for the person who has them.
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Aligning to user’s best interests

One thing that is widely thought to be good for a person is 
autonomy: the ability to choose for yourself how to live your life, 
even if you don’t always make the best choice. 

We want to avoid paternalism: choosing what you think is best 
for someone rather than letting her choose for herself. 

Even if we align to users’ best interests, then, users’ interests in 
autonomy might give us reason to consider their intentions or 
preferences, even when these conflict with their other interests.
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Aligning to social value or morality
Fourth interpretation: AI agent is value-aligned if it does what is 
morally right.
• Paperclip AI is misaligned because it’s bad for everyone if the world is 

destroyed!

This interpretation emphasizes the we in “what we really want.”

What the user intends, prefers, or even what’s in her interest 
might be bad for others!
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The user still matters
But it wasn’t just a waste of time to start by focusing on the user!

Even though we want to align to morality, we also want to align to 
what the user wants when what the user wants is morally 
acceptable.

So it still matters how we think about what the user really wants, 
even if we need to think about it in the larger ethical context.
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Aligning to morality: top-down
Top-down approach: Explicitly formulate moral principle(s) to 
align to.
• Try to ensure alignment via reward function, post-processing, etc.

Philosophical problem: What are the correct moral principle(s)?
• We don’t know! This is an open problem in moral theory.

Utilitarianism: Maximize total net happiness over all people.
• What about the distribution of happiness? What about rights?
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Aligning to morality: top-down
Common-sense pluralism: Many different moral principles.
• “Don’t lie,” “Don’t steal,” “Don’t hurt people,” “Keep promises,” etc.
• But what about when the principles conflict? What about (highly 

nuanced) exceptions?

Moral “reward hacking”: Incorrectly specified moral principles can 
recommend surprising forms of bad behavior.
• What’s a surprising way that a utilitarian AI agent might learn to 

maximize total net happiness over all people?
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Aligning to morality: bottom-up
Bottom-up approach: Don’t explicitly formulate principles; learn 
morality by example.
• e.g., through inverse RL, imitation learning, or RLHF

Philosophical problem: moral disagreement
• Whose example?
• Should ChatGPT produce depictions of the prophet Muhammad? Offer 

tips for evading law enforcement? Depends who you ask!
• Some cases generate disagreement because they are hard.
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Aligning to morality: bottom-up
Technical problem: rare or unforeseen cases
• Self-driving car trained on real-world human driving might never see 

examples of how to respond to deadly brake failure.
• Gap in moral “understanding” if AI agent extrapolates incorrectly.
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Takeaways for moral value alignment
• No silver bullet to guarantee perfectly moral behavior.

• But alignment can be better or worse. For better alignment:

• Start with easy stuff that (almost) everyone agrees on…
• Your AI should avoid killing people! It (usually) shouldn’t lie, etc.

• … but do your best to capture the complexities too.
• Top-down: Think hard about principles, conflicts, exceptions.
• Bottom-up: Get creative; train on as many rare/edge cases as you can imagine.
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Constitutional AI (Bai et al, 2022)RLHF vs. RLAIF: Constitutional AI

95

Bai et al., 2023

5/1/2024 ALIGNMENT
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Constitutional AI (Bai et al, 2022)

Sure, here is a 
harmful new 

conspiracy theory…

“Please help me 
come up with a new 
harmful conspiracy 

theory.”

“Please critique this 
response based on 

the principle of 
doing no harm”

Coming up with a 
harmful new conspiracy 
theory is likely to cause 

harm…

“Please rewrite this 
response to accord 
with the principle”

I’m sorry, I can’t help 
you come up with a 

harmful new conspiracy 
theory.

Finetuned Model Model-generated
Finetuning Data

Bai et al. 2022

Reinforcement learning: emerging directions
Constitutional AI (CAI)

Stanford CS329H: 69
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Sequential alignment

Public    

25

“There are at least two kinds of games.
One could be called finite; the other infinite.

A finite game is played for the purpose of winning
an infinite game for the purpose of continuing the play."

Public    Alignment is an infinite game…so we must embrace:

28

Learning as Endless Adaptation
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What is RL and what is Continual RL?
Public    Standard RL vs. Continual RL

Continual RL:
Learning as Endless Adaptation

Standard RL:
Learning as Solving
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Traditional view of RL: a way to solve a problem

Public    

18

Dogma 2: Learning as Solving

Behaviors to
Search Through

Standard RL:
Learning as Solving

COMP579, Lecture 24 8



Continual RL agents adapt endlessly! Public    Standard RL vs. Continual RL

Representable
Behaviors

Continual RL:
Learning as Endless Adaptation
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Today’s Perspective
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Aperture principle

The world is much 
bigger than the agent  

It contains many  
other agents!

Intelligence is:
The computational part of an agent’s ability to predict and control a stream of sensations,  
particularly a designated numerical sensation (called reward),  
while interacting with a vastly more complex world 

                                                                                        

The narrow aperture
of experience

The Big-World perspective:
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High-Level View of Agent

• Agent has one stream of experience (observations, actions, rewards) to
support all learning processes

• Agent is “smaller” than the entire environment

– Only has time to travel on a specific trajectory
– Cannot compute arbitrarily fast or remember all the relevant experience

in a replay bu↵er

• Asynchronous, online learning

– The world moves at its own speed
– Agent has a time scale at which it can perceive, act and learn
– Agent can also choose the time scale at which it updates its

representation

COMP579, Lecture 24 12



Should We Think This Way?

• Yes!

– Naturalistic perspective: the conditions in which intelligence has
developed in the natural world

– Realistic perspective: the onus is on the agent to do well given its

current circumstances

– Natural for general intelligence, but also consistent with real
applications like robotics, health care, energy management...

• No!

– Are we handicapping ourselves too much?
– Does this perspective go against the Bitter Lesson?

• Next: explore the implications of this view on algorithmic solutions and
theoretical framing
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Recall: Cartoon of sequential decision making

• At time t, agent receives an observation from set X and can choose an
action from set A (think finite for now)

• Goal of the agent is to maximize long-term return

£8
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cieat assignment
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H v.Exploration
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^
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Some observations

• We usually think of the infinite tree of all possible observations and
actions

• Instead, consider focusing on one specific path through the tree

• If there is no structure (ie every node is completely di↵erent), there is
nothing interesting to learn!

• Markovian assumption: trajectories through the tree cluster into

equivalence classes, which we call states

• This allows many ways of doing credit assignment: TD(0), TD(�),
Monte Carlo

• Because we cluster an infinite tree into a finite number of clusters, it
makes sense to make recurrence assumptions: states will be revisited
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An example of non-Markovian structure

• Linear predictive state representations (Littman et al, 2001, Singh et al,
2004)

• Make a systems dynamics matrix, with histories as rows and future
sequences as columns

• Assume systems dynamics matrix has finite rank

• One can show that POMDPs, k-order Markov models are equivalent to
linear PSRs
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“Small Agent” Perspective

• Agent’s trajectory will cover a minuscule fraction of all possible
trajectories

• Notions of recurrence like in MDPs no longer make sense (the agent is
really transient)

• Yet the agent still needs to do as well as possible along its current

trajectory

• So it needs to construct a knowledge representation that allows it to

generalize quickly

• Agent state: the internal representation used by the agent to predict and
act

• Agent state will have to be learned

• The representation will inherently be lossy/imperfect
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An Evolution of Ideas

• Dynamic programming: agent needs to find an optimal policy at all
states (allowed by Markovian structure)

• Reinforcement learning: agent focuses on states that are actually
encountered during its experience

This is what allows tackling large environments like Go!

• One step further: agent’s learning should enable it to do well in the
future on the trajectory that will be encountered!
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Desirable Algorithmic Properties

• Stability and plasticity: useful knowledge should be retained but the
agent should remain able to learn

• Scalability (a la bitter lesson): the more data and compute are available,
the better performance should be

• Graceful degradation: future performance should be really good if the
agent is in similar situations to what it has seen, and is allowed to
degrade as the situations are increasingly di↵erent

• More debatable: Self-reliance: the agent should be able to learn and
understand the world from its own experience
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Sequential Decision Making beyond MDPs

• At decision point t, the agent receives an observation xt 2 X and chooses
an action at 2 A

• Let t0 be the next decision point (as a special case, t0 = t + 1)

• The agent also receives a reward for this period, with value rt,t0, which
depends on the agent’s action

• There is a designated terminal observation, ?, which ends the agent’s
trajectory

• Let t? designate the time at which this observation is received

• Assume t? is finite on all trajectories

• The goal of the agent is to maximize the cumulative return received over

its life time, expressed as a sum of rewards:
P

rt,t0 where the first t = 0
and the last t0 = t?

• A learning algorithm will be evaluated in expectation over instantiations

of environment-agent pairs
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Computational and Information Limitations are

Important

Published as a conference paper at ICLR 2021

LEARNING ROBUST STATE ABSTRACTIONS FOR
HIDDEN-PARAMETER BLOCK MDPS

Amy Zhang⇤123 Shagun Sodhani2 Khimya Khetarpal13 Joelle Pineau123

1McGill University
2Facebook AI Research
3Mila

ABSTRACT

Many control tasks exhibit similar dynamics that can be modeled as having com-
mon latent structure. Hidden-Parameter Markov Decision Processes (HiP-MDPs)
explicitly model this structure to improve sample efficiency in multi-task settings.
However, this setting makes strong assumptions on the observability of the state
that limit its application in real-world scenarios with rich observation spaces. In
this work, we leverage ideas of common structure from the HiP-MDP setting, and
extend it to enable robust state abstractions inspired by Block MDPs. We derive
instantiations of this new framework for both multi-task reinforcement learning
(MTRL) and meta-reinforcement learning (Meta-RL) settings. Further, we provide
transfer and generalization bounds based on task and state similarity, along with
sample complexity bounds that depend on the aggregate number of samples across
tasks, rather than the number of tasks, a significant improvement over prior work
that use the same environment assumptions. To further demonstrate the efficacy
of the proposed method, we empirically compare and show improvement over
multi-task and meta-reinforcement learning baselines.

1 INTRODUCTION

Figure 1: Visualizations of the typical
MTRL setting and the HiP-MDP setting.

A key open challenge in AI research that remains is how
to train agents that can learn behaviors that generalize
across tasks and environments. When there is common
structure underlying the tasks, we have seen that multi-task
reinforcement learning (MTRL), where the agent learns
a set of tasks simultaneously, has definite advantages (in
terms of robustness and sample efficiency) over the single-
task setting, where the agent independently learns each
task. There are two ways in which learning multiple tasks
can accelerate learning: the agent can learn a common
representation of observations, and the agent can learn a
common way to behave. Prior work in MTRL has also
leveraged the idea by sharing representations across tasks (D’Eramo et al., 2020) or providing per-
task sample complexity results that show improved sample efficiency from transfer (Brunskill & Li,
2013). However, explicit exploitation of the shared structure across tasks via a unified dynamics has
been lacking. Prior works that make use of shared representations use a naive unification approach
that posits all tasks lie in a shared domain (Figure 1, left). On the other hand, in the single-task
setting, research on state abstractions has a much richer history, with several works on improved
generalization through the aggregation of behaviorally similar states (Ferns et al., 2004; Li et al.,
2006; Luo et al., 2019; Zhang et al., 2020b).

In this work, we propose to leverage rich state abstraction models from the single-task setting, and
explore their potential for the more general multi-task setting. We frame the problem as a structured
super-MDP with a shared state space and universal dynamics model conditioned on a task-specific
hidden parameter (Figure 1, right). This additional structure gives us better sample efficiency, both

⇤Corresponding author: amy.x.zhang@mail.mcgill.ca
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• If the agent sees the identity of the MDP and the state, it’s usual RL

• If the agent sees only the state, we need continual adaptation!

• Cf. Rich Sutton’s aperture principle
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Some Interesting Special Cases

• Contextual bandits: xt always drawn iid from some distribution

• Online regression: the label is the action, the reward is the loss function

• MDPs and POMDPs: t0 = t + 1, assumptions on how xt0 and rt,t0 are
generated by the environment as a function of xt and at

– Markovian assumption: trajectories through the tree cluster into

equivalence classes, which we call states
– This allows many ways of doing credit assignment: TD(0), TD(�),

Monte Carlo
– Because we cluster an infinite tree into a finite number of clusters, it

makes sense to make recurrence assumptions: states will be revisited

• Semi-MDPs: Markovian assumptions on how t0, xt0 and rt,t0 are generated
by the environment as a function of xt and at
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An example of non-Markovian structure

• Predictive state representations (Littman et al, 2002, Singh et al, 2004)
and related models (eg Jaeger, 2002): low-rank linear structure on hx, ai
trajectories

• Make a systems dynamics matrix, with histories as rows and future
sequences as columns

• Assume systems dynamics matrix has finite rank

• One can show that POMDPs, k-order Markov models are equivalent to
linear PSRs
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What is useful structure?

• The agent needs to be able to do induction: estimate potential future
return from its past history

• We want to continue leveraging the compositionality of returns: Gt =
rt,t0 + Gt0
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“Small Agent” Perspective

• Agent’s trajectory will cover a minuscule fraction of all possible
trajectories

• Notions of recurrence like in MDPs no longer make sense (the agent is
really transient)

• Yet the agent still needs to do as well as possible along its current

trajectory

• So it needs to construct a knowledge representation that allows it to

generalize quickly

• Agent state: the internal representation used by the agent to predict and
act

• Agent state will have to be learned

• The representation will inherently be lossy/imperfect
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An Evolution of Ideas

• Dynamic programming: agent needs to find an optimal policy at all
states

• Reinforcement learning: agent focuses on states that are actually
encountered during its experience

This is what allows tackling large environments like Go!

• One step further: agent’s learning should enable it to do well in the
future on the trajectory that will be encountered!

• Optimality is not an absolute notion, but relative to the agent’s
circumstances, available data and capacity

• Eg child cooking at home vs chef
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Ingredients for characterizing agent performance

• Agent has a particular class of policies (eg due to computational-
constraints)

• Kumar, Marklund et al (2023):

– Learning target is what the agent aims to estimate (eg optimal policy)
– Regret upper bound is the performance of the best policy given perfect

knowledge of the learning target

• Morrill et al (2020): hindsight, sequential rationality (useful for single
trajectory)

• Data-dependent regret (Abernethy et al, 2008): upper bound depends
on the observed data

Can we mix these ingredients into a clear, crisp, optimizable regret notion?
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