Lecture 22: Large Language Models and RLHF

COMP579, Lecture 22:

What is a language model?

e Language Modeling is the task of predicting what word comes next
books

the students opened their // laptops
\\ exams

minds
e More formally: given a sequence of words e, x@ .z

compute the probability distribution of the next word 1) ;
t+1 t 1
P(a:()] z® .))
where 2" can be any word in the vocabulary V' = {wy, ..., w|y |}

e A system that does this is called a Language Model

COMP579, Lecture 22:

Probabilistic language models

* You can also think of a Language Model as a system that
assigns a probability to a piece of text

e For example, if we have some text (... z(T), then the
probability of this text (according to the Language Model) is:

PxW, . ™) =PaW) x P(@| M) x -.. x P(xD| TV . z0)
T
= | BRI 10)
t=1

L J
Y

This is what our LM provides

COMP579, Lecture 22:

N-gram models

the students opened their

* Question: How to learn a Language Model?
e Answer (pre- Deep Learning): learn an n-gram Language Model!

e Definition: An n-gram is a chunk of n consecutive words.
* unigrams: “the”, “students”, “opened”, "their”
e bigrams: “the students”, “students opened”, “opened their”
e trigrams: “the students opened”, “students opened their”
e four-grams: “the students opened their”

e Idea: Collect statistics about how frequent different n-grams are and use these to
predict next word.

COMP579, Lecture 22:

N-gram models and Markov assumption

e First we make a Markov assumption: x (D) depends only on the preceding n-1 words

n-1 words
A

4 \
P)z® 2y = p@ttD|® | gtrt2) (assumption)

prob of a n-gram \P(x(t+1) x®) . gtnt2) (definition of
~ x® initi

— [P, gt iti
Plx®,.. .. x) conditional prob)

prob of a (n-1)-gram

* Question: How do we get these n-gram and (n-1)-gram probabilities?
e Answer: By counting them in some large corpus of text!

_count(x"D) M) gltmnt2) (statistical
count(z®), ... glt=nt2) approximation)

COMP579, Lecture 22:

Generating text

You can also use a Language Model to generate text

t\oday the;
Y

condition
on this

get probability
distribution

v

company ©.153

bank

0.153

price

9.077 sample

italian ©.039
emirate 0.039

COMP579, Lecture 22:

Generating text

You can also use a Language Model to generate text

COMP579, Lecture 22:

today the price of gold per ton, while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

...but incoherent. We need to consider more than
three words at a time if we want to model language well.

But increasing n worsens sparsity problem,
and increases model size...

How good are n-gram models?

You can also use a Language Model to generate text

COMP579, Lecture 22:

today the price of gold per ton, while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

...but incoherent. We need to consider more than
three words at a time if we want to model language well.

But increasing n worsens sparsity problem,
and increases model size...

Problems with n-gram models

e Small n means model is not good enough

e Large n means that many combinations do not occur in the data -
sparsity

e Generally speaking, fixed n is very rigid

COMP579, Lecture 22: 8

Recurrent nets (RNNs)

outputs ~ (1) ~(2) 5 (3) 7(4)
(optional) { Y . y Y

hidden states <

input sequence
(any length) {

COMP579, Lecture 22:

v

I 7Y = P(x®)|the students opened their
A Simple RNN Language Model 7 =7, s et e

laptops

output distribution

Q(t) = softmax (Uh,(t) + b2) cRIVI _[I_IL

Q A
N

A 200
U
h_ h(2) h®) h4)
hidden states @ @))
Wi 1@ Wi @ Wh (@ Wr |@®
(t) — (t—1) (t) N N N
h a(Whh +W,e +b1) > @ " o > @ " o
h(9) is the initial hidden state) () () ()
h N N 3
We We We We
| . r—.—\ r—.—\ r . 2
word embeddings (D) (@) 2| @ (3| © e ©
e® — Ea® o 6) o o)
(@) (@) (@) (@)
T T T8 e
words / one-hot vectors the students opened their
w(t) - R|V| aj(l) m(z) w(3) a‘;(4)
Note: this input sequence could be much /
longer now!

COMP579, Lecture 22:

10

RNN training

e Get a big corpus of text which is a sequence of words =), ..., z(™
e Feed into RNN-LM; compute output distribution Q(t) for every step t.
* i.e., predict probability dist of every word, given words so far

e Loss function on step tis cross-entropy between predicted probability
distribution §*), and the true next word y® (one-hot for z(+1):

J®(0) = CE(y®,g®) Z y®) log) = 1Oggétt)+l
weV

e Average this to get overall loss for entire training set:

1 — 1 —
T0) = 72700 = 72 ~log

COMP579, Lecture 22: 11

Loss —

Predicted
prob dists

h(0)

Corpus — the

RNN training

= negative log prob
of “students”

JW(6)

J2) 9)

L1
— g g3 g3 g@
U U lu U
h h(h3) h4)
() () () ()
Wh\' Wh\. Wh\‘ Wh\. Wh\
1@ | @ 1@ | @ -
() () () ()
‘/F‘ e
rJWe We We We
(1) (2)| © 3| O 4| ©
“’lel “le| “le| ° |o
@) @) @) (@)
Te Tz & s
students opened their exams
2(1) 2(2) 2(3) (4

COMP579, Lecture 22:

12

Generating text with RNNs

Just like an n-gram Language Model, you can use a RNN Language Model to
generate text by repeated sampling. Sampled output becomes next step’s input.

my favorite season is spring </s>
N N N
sample sample sample sample sample sample
g(l) Q(2) g(3) g(4) g(4) y(4)
N N N
U U U U U U
rD h(2) h®) h4) h4) h4)
® L () L @ e
(Wi || Wi |@| Wr |@|Wr |@| Wh |@
1@ 1@ | @ @ 1@ | @
® @ @ @ @ @
A ! i e N e
W We W W, W, W,
(1))| © 3)| @ 4| © (4) 4| ©
el ¢ el ¢ le| ¢ le| “le| ¢ e
© o o o o o
e & g g |5 &
<s> my favorite season is spring

COMP579, Lecture 22: 13

RNN example

Let’s have some fun!
* You can train an RNN-LM on any kind of text, then generate text in that style.
e RNN-LM trained on Harry Potter:

“Sorry,” Harry shouted, panicking—*“T'll leave those brooms in London, are
they?”

“No idea,” said Nearly Headless Nick, casting low close by Cedric, carrying the
last bit of treacle Charms, from Harry’s shoulder, and to answer him the
common room perched upon it, four arms held a shining knob from when the

spider hadn’t felt it seemed. He reached the teams too.

Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

COMP579, Lecture 22: 14

Issues with RNINs: Linear interaction distance

e O(sequence length) steps for distant word pairs to interact means:
e Hard to learn long-distance dependencies (because gradient problems!)

* Linear order of words is “baked in”; we already know linear order isn’t the
right way to think about sentences...

—>... — — 000 —P.

T
— 000 — — 000 —»i

The chef who ...

Info of chef has gone through
O(sequence length) many layers!

COMP579, Lecture 22:

Issues with RNINs: Hard to parallelize

e Forward and backward passes have O(sequence length)
unparallelizable operations

e GPUs can perform a bunch of independent computations at once!

e But future RNN hidden states can’t be computed in full before past RNI
hidden states have been computed

* Inhibits training on very large datasets!

.—»E—> —> 000 —> —> 0900 — ——».
td
—>000 — ——> 000 1

COMP579, Lecture 22: 16

Issues with RNINs: Bottleneck problem

Encoding of the
source sentence.

This needs to capture all Target sentence (output)
. . A
information about the s \
source sentence. he hit me with a pie <END>
Information bottleneck!
o)
- o
3 @
3 e
c =2
L =2
il a m’ entarté <START> he hit me with a pie
\)
Y

Source sentence (input)

COMP579, Lecture 22: 17

Solution: Attention

e On each step of decoding, use direct connection to the encoder to focus
on a particular part of the sequence

e A bit like what humans do!
e Attention provides a solution to the bottleneck problem!

COMP579, Lecture 22: 18

Pooling in RNNs

positive How to compute
sentence encoding?

Usually better:
Take element-wise
max or mean of all
hidden states

Sentence
encoding

§-

S

i

overall / enjoyed the movie a lot

e Starting point: a very basic way of ‘passing information from the encoder’ is to average

COMP579, Lecture 22:

19

Attention is weighted averaging!

Attention is just a weighted average — this is very powerful if the weights are learned!

In attention, the matches all keys softly, In a lookup table, we have a table of keys
to a weight between 0 and 1. The keys’ that map to . The matches
are multiplied by the weights and summed. one of the keys, returning its value.
keys values Weighted keys values
Sum
kI vi __EAe
b v2
k2 v2 query
query output
d C v3
q k3 V3 ZH X output
4 4
ké v4 . v v
e v5
k5 v5

COMP579, Lecture 22: 20

Using dot products

dot product

Attention
scores

Encoder
RNN

il a m’ entarté <START>

\ J
Y

Source sentence (input)

COMP579, Lecture 22:

NNY J2p023(

21

mostly focusing on the first
/ encoder hidden state (“he”)

Using softmax for aggregation

On this decoder timestep, we’re

Attention
distribution
—

I

Attention
scores
r—H

Encoder
NN

il
\

Take softmax to turn the scores
into a probability distribution

7

m entarté <START>

J

Y

Source sentence (input)

COMP579, Lecture 22:

NNY J2p0o2ag

22

Putting it all together

Attention
output

Attention
distribution

Attention
scores

Encoder
NN

il a m’ entarté

J

Y
Source sentence (input)

COMP579, Lecture 22:

<START>

Concatenate attention output
with decoder hidden state, then
use to compute ¥, as before

NNY J2p02aq

23

Attention

Attention
output

Attention
distribution

Attention
scores

Encoder
NN

il a m’ entarté

N J
Y

Source sentence (input)

COMP579, Lecture 22:

example (continued)

<START> he hit me

NNY 49p02aQ

24

Attention more formally

We have encoder hidden states h1,...,hxy € R"
On timestep t, we have decoder hidden state s; € R
We get the attention scores e’ for this step:

el =[s'hy,...,s'hy] € RY

We take softmax to get the attention distribution a! for this step (this is a probability distribution and
sums to 1)

o' = softmax(e’) € RY

We use o' to take a weighted sum of the encoder hidden states to get the attention output a;
N
a; = Z oth; € R"
i=1

Finally we concatenate the attention output a; with the decoder hidden
state s+ and proceed as in the non-attention seq2seq model

COMP579, Lecture 22:

25

Attention blueprint

e We have some values hq,...,hny € R% and a query s € R%
e Attention always involves: There are
1. Computing the attention scores e € RN «——— multiple ways
to do this

2. Taking softmax to get attention distribution o:

o = softmax(e) € RY

3. Using attention distribution to take weighted sum of values:

N
a= Zaihi e R:

=1

thus obtaining the attention output a (sometimes called the context vector)

COMP579, Lecture 22:

From translation to language generation: Self-attention

Let w.,, be a sequence of words in vocabulary V, like Zuko made his uncle tea.

For each w;, let x; = Ew;, where E € RVl is an embedding matrix.
1. Transform each word embedding with weight matrices Q, K, V, each in R4%4
= Qx; k; = Kx; (keys) v; = Vx; (values)

2. Compute pairwise similarities between keys and queries; normalize with softmax

exp(e;;
e, = ;rkj o = p(e;;)
Zj/ exp(e;;r)
3. Compute output for each word as weighted sum of values

, = r 1)
_ Ol al] ’ l

0, = aij Ui .

j J

COMP579, Lecture 22: 27

Multihead attention

Attention head 1
attends to entities

V V VvV
k k k k Kk k Kk

went to Stanford CS 224n and

COMP579, Lecture 22:

q
v

k

learned

Attention head 2 attends to
syntactically relevant words

q
V V V V Vv

vV Vv
k k k Kk k k Ik

went to Stanford CS 224n and learned

28

Transformer decoder

The Transformer Decoder

COMP579,

The Transformer Decoder is a
stack of Transformer Decoder
Blocks.

Each Block consists of:
 Self-attention

* Add & Norm

e Feed-Forward

e Add & Norm

That’s it! We’ve gone through
the Transformer Decoder.

Lecture 22:

Probabilities

Softmax
N
Linear
N

Add & Norm
N

Feed-Forward

T

|
Add & Norm
N
Masked Multi-

Head Attention

t{j\ Block

Add Position
Embeddings

T

Embeddings

Repeat for number
of encoder blocks

Decoder Inputs

29

Transformer encoder

The Transformer Encoder Probabilities
Softmax
e The Transformer Decoder Lir?;qr
constrains to unidirectional N
context, as for language Add & Norm
models. o o
Q¢ Feed-Forward
* What if we want bidirectional € § A
context, like in a bidirectional E g |
RNN? f g Add é;(I\Norm
e This is the Transformer §§ '\Lutltt;'n';'ii‘:d
Encoder. The only difference is & ©
that we remove the masking m Block
in the self-attention. |
Add Position
No Maskin , Embeddings
& Embeddings

Decoder Inputs

COMP579, Lecture 22: 30

Pretraining

Recall the language modeling task:

* Model pg(W;|wy.t—_1), the probability
distribution over words given their past
contexts.

* There’s lots of data for this! (In English.)

Pretraining through language modeling:

e Train a neural network to perform language
modeling on a large amount of text.

e Save the network parameters.

COMP579, Lecture 22:

goes

Iroh

to

goes

make tasty tea

to

make tasty

END

tea

31

Pretraining / finetuning paradigm

Pretraining can improve NLP applications by serving as parameter initialization.

Step 1: Pretrain (on language modeling) Step 2: Finetune (on your task)
Lots of text; learn general things! Not many labels; adapt to the task!
goes to make tasty tea END @/@

Iroh goes to make tasty tea ... the movie was ...

COMP579, Lecture 22:

32

What data to use?

Composition of the Pile by Category

= Academic * Internet = Prose * Dialogue * Misc

Bibliotik
Pile-CC ' BC2

Model Training Data

FublMed Central ATV BERT BookCorpus, English
Wikipedia
GPT-1 BookCorpus
GPT-3 A CommonCrawl, WebText,
StackExchange English Wikipedia, and 2
PMA book databases (“Books 1”

Freelaw USPTO h|| NIH |OpenWebText2 Wikipedia and “Books 2”)

GPT- Undisclosed
3.5+

COMP579, Lecture 22:

GPT (Devlin et al, 2018)

2018’s GPT was a big success in pretraining a decoder!

Transformer decoder with 12 layers, 117M parameters.

768-dimensional hidden states, 3072-dimensional feed-forward hidden layers.
Byte-pair encoding with 40,000 merges

Trained on BooksCorpus: over 7000 unique books.

* Contains long spans of contiguous text, for learning long-distance dependencies.

The acronym “GPT” never showed up in the original paper; it could stand for
“Generative PreTraining” or “Generative Pretrained Transformer”

COMP579, Lecture 22:

34

RL comes in the picture!

Next prompt

/

Language model we are
training

P

reward model & other
infrastructure

COMP579, Lecture 22:

Some notation:

S¢ : state

1 : reward

a; : action

as ~ mg(se) : policy

Completion to prompt

35

Rcecall: Deep RL from Human Feedback (Christiano et

predicted
rewa rd/

RL algorithm

al, 2017)

reward predictor

j observak

human

feedback

<«

»
>

action

environment

e People provide a preference among two choices

e Assuming there is a latent variable explaining the choice, reward is fit
using maximum likelihood (Bradley-Terry model)

e Cf. https://arxiv.org/pdf/1706.03741.pdf

COMP579, Lecture 22:

36

Summarization

“Three pigs defend themselves
from a mean wolf”

COMP579, Lecture 22:

RLHF

early attempts

© Collect human feedback

© Train reward model

A Reddit post is
sampled from
the Reddit
TL;DR dataset

Various policies
are used to
sample a set of
summaries.

Two summaries
are selected for
evaluation.

A human judges
which is a better
summary of the
post.

Figure 2: Diagram of our human feedback, reward model training, and policy training procedure.

Stiennon, Nisan, et al. "Learning to summarize with human feedback." 2020.

=
v

s

*j s better than k”

One post with
two summaries
judged by a
human are fed
to the reward
model.

calculates a
reward r for
each summary.

Thelossis
calculated based
on the rewards
and human label,
and is used to
update the
reward model.

loss = log(ofr;,- r,)

T

4§ is better than k™

© Train policy with PPO

A new post is

sampled from the

dataset.

The policy n

generates a

summary for the

po. o
Lo

The reward

model calculates
a reward for the
summary.

The reward is
used to update
the policy via
PPO.

37

RLHF training phases

base model (instruction, helpful, chatty etc.)

Output
Probabilities

Add & Norm
Feed
Forward
J

((Add & Norm Je~

ANt Mult-Head
Attention
Nx
((Add & Norm Je~
Nx
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
it 4 t
. _)
Positional A Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs QOutputs

(shifted right)
Vaswani et al. 2017

COMP579, Lecture 22:

preference collection & training

Playground task @
Talk to the
assistant

Task 1ol

Decide on atask you'd lie
the assistant to help with
and enter it into the task
box. Interact with the Al
assistant. When you're
fiished, select a final
response from the assistant
andleave a comment on
how the assitant did in the.
comment box. Click to go to
the next task.

Next Task

1fyou want to go even deeper, | think phlosophy of language would
a

RL optimization

~ Agent
mo(-)

/ Q¢

arder time comprehending and reflecting on the world around us.

38

Model structure

starting point: a base instruction-tuned language model

input:

prompt+completion

COMP579, Lecture 22:

3 & <
g5
33 (,)) Making a preference model:
- @ {rﬂ . [> base LLM with new final layer
=5 — = c |l o
o - I g THe =
N R g /
Q@ 3 S
L £l £l
p
< > M > > 3
2o [3o rzéz& zE|3] |7.[B go output:
E5 —{Esho—tre £ 2hemee 2l Bl 55
a5 |gg é lLagg gl 15 (Bl |5 =lE =2 scalar rewards
2 @ 2o |3 23 3 o
£5 z
@ L .
The Transformer - Vaswani et al. 2017

39

Model structure

starting point: a base instruction-tuned language model

input:

prompt+completion

COMP579, Lecture 22:

3 & <
g5
33 (,)) Making a preference model:
- @ {rﬂ . [> base LLM with new final layer
=5 — = c |l o
o - I g THe =
N R g /
Q@ 3 S
L £l £l
p
< > M > > 3
2o [3o rzéz& zE|3] |7.[B go output:
E5 —{Esho—tre £ 2hemee 2l Bl 55
a5 |gg é lLagg gl 15 (Bl |5 =lE =2 scalar rewards
2 @ 2o |3 23 3 o
£5 z
@ L .
The Transformer - Vaswani et al. 2017

40

ining

Model tra

output
scalar rewards

loss: increase difference
of predicted reward

b

Output
Probabilities

Softmax

Linear

[Add & Norm |
Feed
Forward
Add & Norm
(L Add & Nomn) Multi-Head
Feed Attention
Forward I Nx
N
Nix Add & Norm
~>{_Add & Norm] Masked
Multi-Head Multi-Head
Attention Attention
f[J . —)
Positional ® @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)
e 4=
o] Q
m c m c
. - (@] o
= O = 0=
T S -
o 99 g0
- T2 oo
2 9 E o€
&S B o %®o
C (S] (]
= o © o ©
- + =+
O ()
(7)) -

The Transformer - Vaswani et al. 2017

41

COMP579, Lecture 22:

Recall: Bradely-Terry reward model

e Collect data from human raters (pairs of ¥, y; responses to a prompt
x)

e Optimize the expected value of:

—log(o(re(x, Yuw) — rel(x,v1)))

wrt reward parameter vector 6
e Cf. Ouyang et al, InstructGPT

e Corresponds to maximum likelihood fitting of binomial preference
function if reward is linear over the variables

COMP579, Lecture 22: 42

Evaluating the reward model

Evaluate RM on predicting outcome of held-out human judgments

COMP579, Lecture 22:

Ensemble of humans
Large enough RM

§0'80' trained on enough
I e ~ data approaching
(6] 64k .
O 32k single human perf
© -t 16k

8k
8 Data
2
®©
9
o
>

0.60 . .
108 109 1070

Model size [Stiennon et al., 2020]

43

RLHF finetuning

Prompts Dataset

x: A dog is...

4 N\ /" Tuned Language)
Initial Language Model Model (RL Policy)

Reinforcement Learning
Update (e.g. PPO)

S0 0+ VeJ(9)

N
o) RLHF ®®®® Reward (Preference)
Base Text 00 ®® Tuned Text ®®®®
y: a furry mammal y: man’s best friend >
_ J \\ Z J

I \

— kL Dk (mppo (y]2) || Thase (y]))
KL prediction shift penalty

COMP579, Lecture 22:

RLHF details

Finally, we have everything we need:
* A pretrained (possibly instruction-finetuned) LM p”7 (s)

* Areward model RMy(s) that produces scalar rewards for LM outputs, trained on a
dataset of human comparisons

* A method for optimizing LM parameters towards an arbitrary reward function.
Now to do RLHF:

* Initialize a copy of the model ng(s) , with parameters 6 we would like to optimize

* Optimize the following reward with RL:
ng (S)> Pay a price when

R(s) = RMy(s) — B log ('pPT(s) pEL(s) > pPT(s)
(N N J
This is a penalty which prevents us from diverging too far from

the pretrained model. In expectation, it is known as the
Kullback-Leibler (KL) divergence between pji“(s) and pT(s).

COMP579, Lecture 22: 45

o
\l

Fraction preferred to ref
o
o

o
N

COMP579, Lecture 22:

o
o

o
N

o
(&)

RLHF results

P (s)
Reference summaries P IFT (S)
P (s)
1.3B 2.7B 6.7B 12.98

Model size

[Stiennon et al., 2020]

46

Problem:

* Human preferences are unreliable!

e "Reward hacking” is a common
problem in RL

* Chatbots are rewarded to
produce responses that seem
authoritative and helpful,
regardless of truth

e This can result in making up facts
+ hallucinations

e Models of human preferences are
even more unreliable!

COMP579, Lecture 22:

reward hacking

Reward model over-optimization .
1.0}
o
Los}
©
o
5 0.6
9
& 0.4f
O
g 0.2
I
0 2 5 10 25 75 250
KL from supervised baseline
RL
pg ()
R(s) = RMy(s) — B log <—>
¢ pPT (s)
47

Direct Preference Optimization

>
model

.) Reward
e model Reward-based
Preference RL
dataset
Preference reward Agent
modeling
Unlabeled
dataset
Preference
model
DPPO (Ours)
Preference
dataset Agent
Unlabeled

dataset

e Cf. An et al, NeurlPS'2023 (https://arxiv.org/pdf/2301.12842.pdf)

e Direct preference optimization (Rafailov et al, NeurlPS5'2023,
https://arxiv.org/pdf/2305.18290.pdf)

e Several other almost-concurrent papers in this space

COMP579, Lecture 22: 48

Direct Preference Optimization

Reinforcement Learning from Human Feedback (RLHF) Direct Preference Optimization (DPO)
iy . label rewards gt
':Yw > —> reward model LM policy © t_:_yJ > —> finalLM
® \/ ©
preference data maximum sample completions preferencedata . ..
likelihood reinforcement learning likelihood

Vo Lppo(Te; Tret) =

~ BBE(agoin | 9lo@m) o) | Vologrluu |2) — Yologniu|a) |,

7

TV > O
higher weight when reward estimate is wrong increase likelihood of y,, decrease likelihood of y;

A . 7o (ylz)
7‘9(:8, y) - ﬁlOg Tret (Y|)

* You can replace the complex RL part with a very simple weighted MLE objective

e Other variants (KTO, IPO) now emerging too [Rafailov+ 2023]

COMP579, Lecture 22: 49

Learning with non-transitive preferences: NashLLM

e Objective:find a policy 7* which is preferred over any other policy

. /
7 = argmax min P(n" <)
7T 7'("

e Think of this as a game: one player picks 7 the other picks 7’
e When both players use 7* this is a Nash equilibrium for the game

e For this game an equilibrium exists (even if eg preferences are not
transitive)

e Cf. Munos et al, 2024 (https://arxiv.org/pdf/2312.00886.pdf)

COMP579, Lecture 22: 50

NashLLM-style algorithms

e Fit a two-argument preference function by supervised learning

e Decide what is the set of opponent policies

e |deally, the max player should play against a mixture of past policies

e Optimize using eg online mirror descent, convex-concave optimization...

e A lot of algorithmic variations to explore!

COMP579, Lecture 22: 51

NashLLM results

0.80 -
0.9 A MM W '
0.75 -
0.8 - 0.70 -
g g
2 07 - 5 065 1
£ <
0.60 -
0.6 -
= Preference Model XL 055 1 = Preference Model XL
0.5 - == Reward Model XL == Reward Model XL
0 5000 10000 15000 20000 25000 30000 35000 40000 0 5000 10000 15000 20000 25000 30000 35000 40000
Leamning Steps Leaming Steps

Using preferences instead of rewards leads to less overfitting

COMP579, Lecture 22:

Open directions

RLHF is still a very underexplored and fast-
moving area!

RLHF gets yo u fu rth ert h an | nstru Ct|0 n Jiaxin Huang'* Shixiang Shane Gu®> Le Hou?' Yuexin Wu? Xuezhi Wang?

Hongkun Yu? Jiawei Han'

LARGE LANGUAGE MODELS CAN SELF-IMPROVE

University of Illinois at Urbana-Champaign 2Google

finetunlngl bUt iS (Sti”!) data expenSive' 1{jiaxinh3, hanj}@illinois.edu 2{shanegu, lehou, crickwu,

xuezhiw, hongkuny}@google.com

Recent work aims to alleviate such data
requirements:

e RLfrom Al feedback [Bai et al., 2022]

* Finetuning LMs on their own outputs ﬁ
[Huang et al., 2022; Zelikman et al.,

2022] LM — chain of thought

[Huang et al., 2022]

However, there are still many limitations of
large LMs (size, hallucination) that may not
be solvable with RLHF!

Self-Taught Reasoner (STaR)
[Zelikman et al., 2022]

COMP579, Lecture 22: 53

o Multi-turm

e Exploration

COMP579, Lecture 22:

More open directions

54

