Inverse Reinforcement Learning. Learning
Decisions from Preferences

With thanks to Pieter Abbeel, Wen Sun, J. Colaco-Carr, P. Panangaden, R. Munos, B. Piot, M. Valko, D. Calandrielo
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Recall: Batch/offline RL

on-policy RL off-policy RL Formally:
rollout data {(s;.a;.s!, 1)} rollout data {(S,‘-ﬁ.-S:.!'i)} D . {(S a S/ ,,,,)}
- 1y Myl e

s~ d"(s)

a~ m5(als)

generally not known

4/

s’ ~ p(s'ls, a)
r < r(s,a)

T
RL objective: max Z Es,d(s),a,~(als) [Yir(ss, ar)]
t=0

{(si.aq.8),r))

data collected ONCE w= == == == =
with anv nalicv trainina nhase P
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Recall: Batch RL classes of algorithms

Behavior cloning (no rewards required)
Learn a model, use it for model-based RL (LSTD, LSPI)

Pessimistic algorithms (require rewards)

= W=

Inverse RL (learn reward function from data, use it for RL agent) - today!
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Motivating example: Power Plant Control

e B 3 turbines to control (con-
tinuous variables), one per
reservoir

o (L] turbine R1 is controlled by
the water flow

e /~_ (stochastic) ground water
inflows

e weekly time steps

e objective: maximize aver-
age annual power production
while satisfying constraints
(see below)

Cf. Grinberg et al, 2014; collaboration with Hydro Quebec

e Major: sufficient flow needs to be maintained to allow easy passage for fish
e Major: stable turbine speed throughout weeks 43-45 to allow fish spawning
e Minor: amount of water in second reservoir should be above a minimum

Reward function can be quite hard to formulate!
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How to Solve Power Plant Control?

e Spent a lot of time trying to craft a reward function that captures the
objective

e Reward hacking is a major issue

e Tried various constrained and risk-sensitive optimization (hyper-
parameter tuning is no better than fitting rewards)

e Ended up doing randomized policy search!

Crafting reward functions is hard in practice!
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Inverse RL

Dynamics

of being in a state.

Model T distribution over next
states given current

Probability

J

Describes desirability ]

Reward Reinforqement
Function R Learning /

Optimal Control

U state and action

Controller/
Policy w*

oz | R

Inverse RL:
Given 7"and T, can we recover R?

More generally, given execution traces, can we recover R?
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IRL problem formulation
Input:

= State space, action space
= Transition model P, (s,.1 | s, a,)
= /Noreward function

= Teacher’s demonstration: s, ag, sy, a1, Sy, @y, .-
(= trace of the teacher’s policy ©*)

Inverse RL:

= Can we recover R ?

= Apprenticeship learning via inverse RL

=« Can we then use this R to find a good policy ?

Behavioral cloning

= Can we directly learn the teacher’s policy using supervised learning?
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IRL vs. Imitation learning: which one is better?

e |t depends if the policy or the reward is more complicated!
e |f the policy is simple learning it is easy supervised learning
o |f the reward is simpler, IRL is better

e |IRL also allows you to optimize if eg the transition function changes (eg
autonomous driving, complex map navigation)
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Main idea

e Assume the trajectories we have come from an optimal expert

e Therefore, the expert must have a reward function R* such that:

>k

E Zm*(sm] VT

t=0

Z V' R*(s¢)|m*
t=0

Now solve this type of equation for R*!

e Problem: reward function ambiguity!

— Many reward functions satisfy this equation, including eg R*(s) = 0Vs
— We only have some traces, not all of 7*
— The expert has to be optimal
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Feature-based reward functions
m Let R(s) = w'¢(s), where w € ®", and ¢ : S — R™.

ee]

E[Y +'R(s)ln] = E[}_~'w'¢(s)ln]

t=0

= w'E[} 7'¢(se)ln]

= w' p(n)

Expected cumulative discounted sum of
feature values or “feature expectations”

s Subbing into E[}-,2 Y R*(s¢)|7*] > E[> "2 V' R*(s¢)|n]  Vn
gives us:
Find w* such that w* " p(7*) > w* ' u(r) Vr

Notice that p is the successor feature, which can be learned from data
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Feature matching

e Abbeel and Ng (2004): for a policy m to perform almost as well as
the optimal policy 7*, it suffices that the successor feature expectations
match:

() — p(m™)[[1 < e
where 0 < e <1
e |f so, Vw with norm less than 1:

[w! p(m) — wh ()| < e

e Optimization problem can be solved in complexity that depends on 1/¢?
and on the number of features in the reward function, NOT depending
on complexity of 7* or the number of states

e Approximation property even if the true reward cannot be represented
through linear combination of features
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Apprenticeship learning (Abbeel and Ng, 2004)
= Assume Ruy(s) = w'¢(s) forafeaturemap o : S — R
= Initialize: pick some controller r,.
= Iteratefor: =1, 2, ... :

= 'Guess” the reward function:

Find a reward function such that the teacher maximally outperforms
all previously found controllers.

max v
vw:|lwll2<1

st. w' p(m®) >w'p(r)+v Vr € {mg,m1,..., w1}
=« Find optimal control policy r. for the current guess of the reward
function R,

« Ify <e/2 exit the algorithm.
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Example: Learning to park (Abbeel and Ng, 2004)
= Demonstrate parking lot navigation on “train parking lots.”
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= Run our apprenticeship learning algorithm to find the reward
function.

= Receive “test parking lot” map + starting point and
destination.

= Find the trajectory that maximizes the /earned reward
function for navigating the test parking lot.
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Learned policies reflect the data!

e Training on nice data (left) vs sloppy data (middle) vs reverse as well
(right)
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Helping with disambiguation: Maximum-entropy IRL

e |[RL is essentially trying to match the feature distribution in expert
demonstrations

e But we need to add further constraints to make this well conditioned
(previously discussed work uses a margin)

e Principle of maximum entropy: Given prior information about a
distribution, the best approximation is the distribution matching the
data with the largest uncertainty

e Because this makes the fewest assumptions about the true distribution!

e Another interpretation: we want to avoid overfitting the data
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Helping with disambiguation: Maximum-entropy IRL
(Ziebart et al, 2008)

e Main idea: match feature distributions but otherwise maximize the
entropy of trajectory distributions

o Recall the definition of entropy: H(P) = — ) P(x)log P(x)

e Recall the probability of a trajectory 7 = sgpag. .. st:

T-1

P™(7) = po(s0) | | w(aelse)P(seqalse, ar)

e We want to maximize the entropy of P™ while matching feature
expectations:

mBXH(PW) s.t. pu(m) = p(m*)

e Can be re-written as: min,; F; 4~ [log(m(als)]
e Can be solved using a Lagrangian and gradients (various flavors exist)
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Learnign from data vs learnign from feedback

e Batch RL: have trajectories (with or without rewards), learn to copy
them (by generating a policy or a reward function that is then optimized)

e One flavor that we did not discuss: data is only states, actions have to
be inferred

Eg learning from video demonstrations

e But what if we don't have trajectories? How can we still get a reward
function?

e Crux of modern LLM stuff!
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Learning from Human Feedback (Knox, 2012)

Delayed reward

h

Credit Action
assigner selector
TAMER

agent

(State, Reward) Action

Supervised
learner

e Numerical reward is a high-variance signal even when learned
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Deep RL from Human Feedback (Christiano et al, 2017)

predicted
rewa rd/

RL algorithm

reward predictor [«

) observak

human

feedback

«

»
>

action

environment

e People provide a preference among two choices

e Assuming there is a latent variable explaining the choice, reward is fit
using maximum likelihood (Bradley-Terry model)

e Cf. https://arxiv.org/pdf/1706.03741.pdf
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Bradely-Terry reward model

e Collect data from human raters (pairs of ¥, y; responses to a prompt
x)

e Optimize the expected value of:

—log(o(re(x, Yuw) — rel(x,v1)))

wrt reward parameter vector 6
e Cf. Ouyang et al, InstructGPT

e Corresponds to maximum likelihood fitting of binomial preference
function if reward is linear over the variables
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Direct Preference Optimization

>
model

. ) Reward
e model Reward-based
Preference RL
dataset
Preference reward Agent
modeling
Unlabeled
dataset
Preference
model
DPPO (Ours)
Preference
dataset Agent
Unlabeled

dataset

e Cf. An et al, NeurlPS'2023 (https://arxiv.org/pdf/2301.12842.pdf)

e Direct preference optimization (Rafailov et al, NeurlPS5'2023,
https://arxiv.org/pdf/2305.18290.pdf)

e Several other almost-concurrent papers in this space
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Optimizing Preferences: Setup

e An agent interacting with an environment receives observations for a set
O and performs action from set A

e A history h; is a sequence of observation-action pairs (0g, ag, 01, a1, - . . 0¢)
e A policy 7 is a mapping from histories to actions: 7 : H — A
e Consider a binary relation over trajectory distributions <

e A policy m in an environment e induces a probability distribution over
trajectories, D™

e See Colaco-Carr et al, AISTATS'2024 (https://arxiv.org/abs/2311.01990)
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Preference Relations and Their Properties

e We will formalize preference relations through pre-orders

e For trajectory distributions A and B, A < B means is that B is at least
as preferred as A

e < is a pre-order if it satisfies:

— Reflexivity: A X A
— Transitivity:if A< B and B<C the A<C

e A pre-order is total if forand A, B, A<Band B=< A
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Direct Preference Process

e A Direct Preference Process is a tuple O, A, T, e, < where:

— O is an observation set

— A is an action set

— T is a time horizon

— e is an environment (transition function from achievable history-action
pairs to the next observation)

— = is a binary (preference) relation over trajectory distributions

e < is expressible through a reward function r : H — R if:
T T

VA,B,A=Bifandonly if E4 | r(H:)| <Ep|> r(H)

t=0 t=0
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Preference Relations and Their Properties

e A total pre-order is consistent if

Va € (0,1),VA,B,C/A<B — aA+(1—a)C 2aB+ (1—-a)C
e A total pre-order is convex if

Va € (0,1),VA,B,C, A < B. if and only if tdA+(1—a)C < aB+(1—a)C
e A total pre-order has the interpolation property if

VA,B,C,A =< B and B < C implies da € (0,1),0A+ (1 — a)C ~ B

e Von Neumann-Morgenstern theorem: if all the above hold, < can be
expressed by a utility function
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When Are Preferences Representable By Reward
Functions?

e Main result

— If convexity and/or interpolation do not hold, =< is NOT is expressible

through a reward function
— However, total consistent pre-orders have deterministic optimal policy!

e [ he latter situation is not exotic or rarel
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Examples when Optimal Policies Exist Without Rewards

Total consistent convex pre-order not satisfying interpolation: tie-

breaking criteria

— Use a first criterion, if tied go to a second criterion
— See not flooding vs water in second reservoir in power plant example

e Jotal consistent pre-order that is non-convex: excess risk

— If risky event does not occur, linear utility
— Risky event occurring entails exponential penalty
— No flooding neighbouring areas in power plant example
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How Do We Compute Optimal Policies?

e |f < is a total consistent pre-order and a policy 7 satisfies the following
for any attainable history h;, ¢ < T and any action a;:

D™ (hs - az) < D™ (hy)

then 7 is <-optimal
e So we are justified to do policy search!

o |f < is expressible through a reward function, value iteration is a direct
consequence of this result
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Discussion

e Nice to know that aproaches such as direct preference optimization are
justified

e Our results are currently on distributions - working on sample-based
extensions

e If we can fit a reward function, should we?
— Bias-variance trade-off? Sample complexity considerations?

e What can we do if other properties of pre-orders are violated?
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Learning with non-transitive preferences: NashLLM

e Objective:find a policy 7* which is preferred over any other policy

. /
7 = argmax min P(7" < )
7T 7'("

e Think of this as a game: one player picks 7 the other picks 7’
e When both players use 7* this is a Nash equilibrium for the game

e For this game an equilibrium exists (even if eg preferences are not
transitive)

e Cf. Munos et al, 2024 (https://arxiv.org/pdf/2312.00886.pdf)
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NashLLM-style algorithms

e Fit a two-argument preference function by supervised learning

e Decide what is the set of opponent policies

e |deally, the max player should play against a mixture of past policies

e Optimize using eg online mirror descent, convex-concave optimization...

e A lot of algorithmic variations to explore!
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NashLLM results
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Using preferences instead of rewards leads to less overfitting
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