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On-policy vs off-policy vs offline RL

16

What does offline RL mean?
on-policy RL off-policy RL

offline reinforcement learning

generally not known
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Why is this important?

• Collecting new data may be expensive / infeasible

• We may have access to existing/historical data instead

18

Why should we care?

this is done
many times
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Problem formulationO✏ine RL / batch RL

A historical dataset D =
�
(s(i), a(i), s0(i))

 
: N independent copies of

s ⇠ ⇢b, a ⇠ ⇡b(· | s), s0 ⇠ P (· | s, a)

for some state distribution ⇢b and behavior policy ⇡b

Goal: given some test distribution ⇢ and accuracy level ", find an
"-optimal policy b⇡ based on D obeying

V ?(⇢)� V b⇡(⇢) = E
s⇠⇢

⇥
V ?(s)

⇤
� E

s⇠⇢

⇥
V b⇡(s)

⇤
 "

— in a sample-e�cient manner

42 / 50

COMP579 Lecture 20, 2025 3



Challenges of offline / batch RL (1)
Challenges of o✏ine RL

• Distribution shift:

distribution(D) 6= target distribution under ⇡?

• Partial coverage of state-action space:

⇡1
<latexit sha1_base64="HOtT/knFpXQvJu3D0VmkGYGdmzo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpF262YTdjVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTpu6SRTDH2WiER1QqpRcIm+4UZgJ1VI41BgOxzfzfz2EyrNE/loJikGMR1KHnFGjZX8Xsr7Xr9SdWvuHGSVeAWpQoFmv/LVGyQsi1EaJqjWXc9NTZBTZTgTOC33Mo0pZWM6xK6lksaog3x+7JScW2VAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE90EOZdpZlCyxaIoE8QkZPY5GXCFzIiJJZQpbm8lbEQVZcbmU7YheMsvr5JWveZd1uoPV9XGbRFHCU7hDC7Ag2towD00wQcGHJ7hFd4c6bw4787HonXNKWZO4A+czx939Y51</latexit>

⇡2
<latexit sha1_base64="3Dko6JGAMj+mmDNO5z4Revw0ypo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k91LRr/crVbfmzkFWiVeQKhRo9itfvUHCspgrZJIa0/XcFIOcahRM8mm5lxmeUjamQ961VNGYmyCfHzsl51YZkCjRthSSufp7IqexMZM4tJ0xxZFZ9mbif143w+gmyIVKM+SKLRZFmSSYkNnnZCA0ZygnllCmhb2VsBHVlKHNp2xD8JZfXiWtes27rNUfrqqN2yKOEpzCGVyAB9fQgHtogg8MBDzDK7w5ynlx3p2PReuaU8ycwB84nz95eY52</latexit>

⇡1
<latexit sha1_base64="HOtT/knFpXQvJu3D0VmkGYGdmzo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpF262YTdjVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTpu6SRTDH2WiER1QqpRcIm+4UZgJ1VI41BgOxzfzfz2EyrNE/loJikGMR1KHnFGjZX8Xsr7Xr9SdWvuHGSVeAWpQoFmv/LVGyQsi1EaJqjWXc9NTZBTZTgTOC33Mo0pZWM6xK6lksaog3x+7JScW2VAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE90EOZdpZlCyxaIoE8QkZPY5GXCFzIiJJZQpbm8lbEQVZcbmU7YheMsvr5JWveZd1uoPV9XGbRFHCU7hDC7Ag2towD00wQcGHJ7hFd4c6bw4787HonXNKWZO4A+czx939Y51</latexit>

⇡2
<latexit sha1_base64="3Dko6JGAMj+mmDNO5z4Revw0ypo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k91LRr/crVbfmzkFWiVeQKhRo9itfvUHCspgrZJIa0/XcFIOcahRM8mm5lxmeUjamQ961VNGYmyCfHzsl51YZkCjRthSSufp7IqexMZM4tJ0xxZFZ9mbif143w+gmyIVKM+SKLRZFmSSYkNnnZCA0ZygnllCmhb2VsBHVlKHNp2xD8JZfXiWtes27rNUfrqqN2yKOEpzCGVyAB9fQgHtogg8MBDzDK7w5ynlx3p2PReuaU8ycwB84nz95eY52</latexit>

uniform coverage over entire space (su�ciently explored)

partial coverage (inadequately explored)

1

uniform coverage over entire space (su�ciently explored)

partial coverage (inadequately explored)

1

uniform coverage over entire space (su�ciently explored)

partial coverage (inadequately explored)

1

uniform coverage over entire space (su�ciently explored)

partial coverage (inadequately explored)

1

uniform coverage over entire space (su�ciently explored)

partial coverage (inadequately explored)

D

1

uniform coverage over entire space (su�ciently explored)

partial coverage (inadequately explored)

D
samples cover all (s, a) & all policies

1

uniform coverage over entire space (su�ciently explored)

partial coverage (inadequately explored)

D
samples cover all (s, a) & all policies historical dataset

1

uniform coverage over entire space (su�ciently explored)
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1
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Challenges of offline / batch RL (2)

• Data is censored: we only observe outcomes for decisions made (and
need to generalize from them)1HHG�IRU�*HQHUDOL]DWLRQ

2XWFRPH����

2XWFRPH����

2XWFRPH����

"
ÂÄ

• Need for counterfactual inference: what would happen if one would take
a different action?

• Often we do not observe rewards, just states and actions!
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Dataset quality assessmentHow to quantify quality of historical dataset D (induced by ⇡b)?

Single-policy concentrability coe�cient

C? := max
s,a

d⇡
?
(s, a)

d⇡b(s, a)
=

����
occupancy density of ⇡?

occupancy density of ⇡b

����
1
� 1

where d⇡(s, a) = (1 � �)
P1

t=0 �
tP
�
(st, at) = (s, a) |⇡

�

• captures distributional shift

• allows for partial coverage ⇡1
<latexit sha1_base64="HOtT/knFpXQvJu3D0VmkGYGdmzo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpF262YTdjVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTpu6SRTDH2WiER1QqpRcIm+4UZgJ1VI41BgOxzfzfz2EyrNE/loJikGMR1KHnFGjZX8Xsr7Xr9SdWvuHGSVeAWpQoFmv/LVGyQsi1EaJqjWXc9NTZBTZTgTOC33Mo0pZWM6xK6lksaog3x+7JScW2VAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE90EOZdpZlCyxaIoE8QkZPY5GXCFzIiJJZQpbm8lbEQVZcbmU7YheMsvr5JWveZd1uoPV9XGbRFHCU7hDC7Ag2towD00wQcGHJ7hFd4c6bw4787HonXNKWZO4A+czx939Y51</latexit>

⇡2
<latexit sha1_base64="3Dko6JGAMj+mmDNO5z4Revw0ypo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k91LRr/crVbfmzkFWiVeQKhRo9itfvUHCspgrZJIa0/XcFIOcahRM8mm5lxmeUjamQ961VNGYmyCfHzsl51YZkCjRthSSufp7IqexMZM4tJ0xxZFZ9mbif143w+gmyIVKM+SKLRZFmSSYkNnnZCA0ZygnllCmhb2VsBHVlKHNp2xD8JZfXiWtes27rNUfrqqN2yKOEpzCGVyAB9fQgHtogg8MBDzDK7w5ynlx3p2PReuaU8ycwB84nz95eY52</latexit>

⇡�
<latexit sha1_base64="iqr6wuLcMtqjcfhh1eGDtJOJmBA=">AAAB8HicdVDLSsNAFJ34rPVVdelmsAiuQpKGtu6KblxWsA9pYplMJ+3QmUmYmQil9CvcuFDErZ/jzr9x0lZQ0QMXDufcy733RCmjSjvOh7Wyura+sVnYKm7v7O7tlw4O2yrJJCYtnLBEdiOkCKOCtDTVjHRTSRCPGOlE48vc79wTqWgibvQkJSFHQ0FjipE20m2Q0rtAaST7pbJjn9ernl+Fju04Nddzc+LV/IoPXaPkKIMlmv3SezBIcMaJ0JghpXquk+pwiqSmmJFZMcgUSREeoyHpGSoQJyqczg+ewVOjDGCcSFNCw7n6fWKKuFITHplOjvRI/fZy8S+vl+m4Hk6pSDNNBF4sijMGdQLz7+GASoI1mxiCsKTmVohHSCKsTUZFE8LXp/B/0vZst2J71365cbGMowCOwQk4Ay6ogQa4Ak3QAhhw8ACewLMlrUfrxXpdtK5Yy5kj8APW2ydT6ZDD</latexit>

C� <1
<latexit sha1_base64="OkNkM06J2op6/zU9FLP9Q6tlTww=">AAAB+HicdVBdSwJBFJ21L7MPrR57GZKgJ9ldRQ16kHzp0SA/QE1mx1kdnJ1dZu4GJv6SXnoootd+Sm/9m2bVoKIOXDiccy/33uNFgmuw7Q8rtba+sbmV3s7s7O7tZ3MHhy0dxoqyJg1FqDoe0UxwyZrAQbBOpBgJPMHa3qSe+O07pjQP5Q1MI9YPyEhyn1MCRhrksvXbngai8EWPSx+mg1zeLpxXy26pjO2CbVcc10mIWykVS9gxSoI8WqExyL33hiGNAyaBCqJ117Ej6M+IAk4Fm2d6sWYRoRMyYl1DJQmY7s8Wh8/xqVGG2A+VKQl4oX6fmJFA62ngmc6AwFj/9hLxL68bg1/tz7iMYmCSLhf5scAQ4iQFPOSKURBTQwhV3NyK6ZgoQsFklTEhfH2K/yctt+AUC+51KV+7XMWRRsfoBJ0hB1VQDV2hBmoiimL0gJ7Qs3VvPVov1uuyNWWtZo7QD1hvn7CWkyA=</latexit>
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Classes of algorithms

1. Behavior cloning (no rewards required)

2. Learn a model, use it for model-based RL (LSTD, LSPI)

3. Pessimistic algorithms (require rewards)

4. Inverse RL (learn reward function from data, use it for RL agent)
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Part 1: Behavior cloning

• Take dataset D, learn a policy from states to actions

• Often uses a rich policy class (neural net)

20

COMP-424: Artificial intelligence Joelle Pineau39

Example: ALVINN (Pomerleau, 1993)

• Task: automatically learn how to steer a car.

• Inputs: grey-level pixels from images captured by camera on top of car.

• Output: 30 units, corresponding to different steering angles.

• The action is picked according to which unit has the highest activation.

• Training data gathered during roughly 2 hours of driving by a person.

• Training algorithm: backpropagation.

• Was able to drive across the US (with a person braking, and on

highways only.)

COMP-424: Artificial intelligence Joelle Pineau40

Example: ALVINN (Pomerleau, 1993)

• The right shows the weights of one of the hidden units to the output

(top row) and the weights coming into the hidden units from the inputs.
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Problem: compounding errorsProblem: Compounding Errors

Error at time t with probability ✏

Approximate intuition: E[Total errors]
 ✏(T + (T � 1) + (T � 2) . . . + 1) / ✏T 2

Real result requires more formality. See Theorem 2.1 in
http://www.cs.cmu.edu/~sross1/publications/

Ross-AIStats10-paper.pdf with proof in supplement:
http://www.cs.cmu.edu/~sross1/publications/

Ross-AIStats10-sup.pdf

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online
Learning, Ross et al. 2011

Emma Brunskill (CS234 Reinforcement Learning. )Imitation Learning in Large State Spaces1 Winter 2023 25 / 49
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One solution: dataset aggregationDAGGER: Dataset Aggregation

Idea: Get more labels of the expert action along the path taken by
the policy computed by behavior cloning

Obtains a stationary deterministic policy with good performance
under its induced state distribution

Key limitation?

Emma Brunskill (CS234 Reinforcement Learning. )Imitation Learning in Large State Spaces1 Winter 2023 26 / 49
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Least-squares regression

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Least Squares Prediction

Given value function approximation v̂(s,w) ⇡ v⇡(s)

And experience D consisting of hstate, valuei pairs

D = {hs1, v⇡
1 i, hs2, v⇡

2 i, ..., hsT , v⇡
T i}

Which parameters w give the best fitting value fn v̂(s,w)?

Least squares algorithms find parameter vector w minimising
sum-squared error between v̂(st ,w) and target values v⇡

t ,

LS(w) =
TX

t=1

(v⇡
t � v̂(st ,w))2

= ED
⇥
(v⇡ � v̂(s,w))2

⇤
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Part 2: Least-squares regression

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Linear Least Squares Prediction (2)

At minimum of LS(w), the expected update must be zero

ED [�w] = 0

↵

TX

t=1

x(st)(v
⇡
t � x(st)

>w) = 0

TX

t=1

x(st)v
⇡
t =

TX

t=1

x(st)x(st)
>w

w =

 
TX

t=1

x(st)x(st)
>
!�1 TX

t=1

x(st)v
⇡
t

For N features, direct solution time is O(N3)

Incremental solution time is O(N2) using Shermann-Morrison
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Model-based solution: Least-squares algorithms

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Linear Least Squares Prediction Algorithms

We do not know true values v⇡
t

In practice, our “training data” must use noisy or biased
samples of v⇡

t

LSMC Least Squares Monte-Carlo uses return
v⇡
t ⇡ Gt

LSTD Least Squares Temporal-Di↵erence uses TD target
v⇡
t ⇡ Rt+1 + �v̂(St+1,w)

LSTD(�) Least Squares TD(�) uses �-return
v⇡
t ⇡ G�

t

In each case solve directly for fixed point of MC / TD / TD(�)
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LSMC and LSTD

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Linear Least Squares Prediction Algorithms (2)

LSMC 0 =
TX

t=1

↵(Gt � v̂(St ,w))x(St)

w =

 
TX

t=1

x(St)x(St)
>
!�1 TX

t=1

x(St)Gt

LSTD 0 =
TX

t=1

↵(Rt+1 + �v̂(St+1,w)� v̂(St ,w))x(St)

w =

 
TX

t=1

x(St)(x(St)� �x(St+1))
>
!�1 TX

t=1

x(St)Rt+1

LSTD(�) 0 =
TX

t=1

↵�tEt

w =

 
TX

t=1

Et(x(St)� �x(St+1))
>
!�1 TX

t=1

EtRt+1
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LSMC and LSTD

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Linear Least Squares Prediction Algorithms (2)

LSMC 0 =
TX

t=1

↵(Gt � v̂(St ,w))x(St)

w =

 
TX

t=1

x(St)x(St)
>
!�1 TX

t=1

x(St)Gt

LSTD 0 =
TX

t=1

↵(Rt+1 + �v̂(St+1,w)� v̂(St ,w))x(St)

w =

 
TX

t=1

x(St)(x(St)� �x(St+1))
>
!�1 TX

t=1

x(St)Rt+1

LSTD(�) 0 =
TX

t=1

↵�tEt

w =

 
TX

t=1

Et(x(St)� �x(St+1))
>
!�1 TX

t=1

EtRt+1
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Theoretical properties: Policy evaluation

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Convergence of Linear Least Squares Prediction Algorithms

On/O↵-Policy Algorithm Table Lookup Linear Non-Linear

On-Policy

MC 3 3 3

LSMC 3 3 -
TD 3 3 7

LSTD 3 3 -

O↵-Policy
MC 3 3 3

LSMC 3 3 -
TD 3 7 7

LSTD 3 3 -
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Theoretical properties: Control

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Control

Convergence of Control Algorithms

Algorithm Table Lookup Linear Non-Linear

Monte-Carlo Control 3 (3) 7

Sarsa 3 (3) 7

Q-learning 3 7 7

LSPI 3 (3) -

(3) = chatters around near-optimal value function
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Part 3: Pessimism in the face of uncertainty

• Conservative approach

• Assume that states or state-action pairs not visited are bad

• Use a penalty to avoid the new policy visiting them
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Value iteration with lower confidence boundsA model-based o✏ine algorithm: VI-LCB

Pessimism in the face of uncertainty: penalize value estimate of those
(s, a) pairs that were poorly visited [Jin et al., 2021, Rashidinejad et al., 2021]

Algorithm: value iteration w/ lower confidence bounds

• compute empirical estimate bP of P

• initialize bQ = 0, and repeat

bQ(s, a)  max
n

r(s, a) + �
⌦ bP (· | s, a), bV

↵
� b(s, a; bV )| {z }

Bernstein-style confidence bound

, 0
o

for all (s, a), where bV (s) = maxa
bQ(s, a)

45 / 50

Q-learning version exists as well
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Alternative approach: Batch-Constrained RL

• Do NOT try to optimize value function/policy everywhere, if you only
have a limited batch

• Instead, only look at policies π such that the batch contains pairs (s, a)
that π visits
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Motivation: Two versions of DDPG

Value Predictions
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Motivation: Two versions of DDPG

• Orange agent interacts with the environment in a standard RL loop:
collect data, put it in replay buffer, train, repeat

• Blue agent is trained with data collected by the orange agent concurrently

• Even though the data and algorithm are the same, being off-policy throws
the learning off!!!
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Why? Extrapolation error
Extrapolation Error

ܳ ǡݏ ܽ ՚ ݎ  ܳߛ Ԣǡݏ ܽԢ

GIVEN GENERATEDExtrapolation Error

ܳ ǡݏ ܽ ՚ ݎ  ܳߛ Ԣǡݏ ܽԢ
ᇱǡݏ ܽᇱ ב ݐ݁ݏܽݐܽܦ ՜ ܳ ᇱǡݏ ܽᇱ ൌ ܌܉܊

՜ ܳ ǡݏ ܽ ൌ ܌܉܊
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Batch-constrained RL

Batch-Constrained Reinforcement Learning

1. ߨ̱� ݏ such that ݏǡ ܽ א .ݐ݁ݏܽݐܽܦ
2. ߨ̱� ݏ such that ݏᇱǡ ߨ ᇱݏ א .ݐ݁ݏܽݐܽܦ
3. ߨ̱� ݏ such that ܳሺݏǡ ܽሻ is maxed.
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Batch-constrained Q-learningBatch-Constrained Deep Q-Learning (BCQ)

First imitate dataset via generative model:
ሻݏሺܽȁܩ ൎ ܲ௧௦௧ሺܽȁݏሻ.

ߨ ݏ ൌ ������ ܳ ሺݏǡ ܽሻ, where ̱ܽܩ
(I.e. select the best action that is likely under the dataset)

(+ some additional deep RL magic)
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Revisiting previous example

DDPGז BCQז

DDPGז BCQז
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BCQ comparison,PSRUWDQW�LQ�3UDFWLFH

%&4�ILJXUH�IURP�)XMLPRWR��
0HJHU��3UHFXS�,&0/�����

��
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