Batch / Offline Reinforcement Learning

With thanks to Emma Brunskill, Scott Fujimoto, Pieter Abeell, George Tucker, Sergey Levine, Bilal Piot,
Yuxin Chen, Yuejie Chi
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On-policy vs off-policy vs offline RL

on-policy RL

f / \
rollout data {(s;.a;.s}.r;)}

rollout(s)

datacollected ONCE w= == == == =
with anv nalicv trainina ohase
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off-policy RL

o o
rollout data {(s;.a;.s;,7;)}

Formally:
D= {(S’ia a;, S;7 Irz)}
s~ d"(s)
generally not known
a~ mg(als) —
s’ ~ p(S/|Sa a)
r < r(s,a)
T
RL objective: mgxz By dn(s).ay~m(als) V7 (51, ar)]
t=0



Why is this important?

e Collecting new data may be expensive / infeasible

e We may have access to existing/historical data instead

this is done
many times
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Problem formulation

A historical dataset D = {(s'9,a(?, s'D)}: N independent copies of
s~ p°, a~ (-] s), s' ~ P(-|s,a)

for some state distribution p® and behavior policy 7°

Goal: given some test distribution p and accuracy level ¢, find an
g-optimal policy 7 based on D obeying

~

V¥(p)=V™(p)= E [V*(s)] - E [V%(s)] <e

s~p S~p

— in a sample-efficient manner
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e Distribution shift

Challenges of offline / batch RL (1)

distribution(D) # target distribution under 7

e Partial coverage of state-action space
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Challenges of offline / batch RL (2)

e Data is censored: we only observe outcomes for decisions made (and
need to generalize from them)

§=- (’d; =  Qutcome: 92

= B$2 #= = Ooutcome: 91

=) ydj A -) Outcome: 85

Q- ?

e Need for counterfactual inference: what would happen if one would take
a different action?

e Often we do not observe rewards, just states and actions!
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Dataset quality assessment

Single-policy concentrability coefficient

C™* := max d b(s,a,) =
s,a d™ (s, a)

where d”(s,a) = (1 —v) Y2 Y'P((s",a") = (s,a) | )

occupancy density of m*

- b
occupancy density of w° ||

e captures distributional shift ,\

e allows for partial coverage (

COMP579 Lecture 20, 2025



Classes of algorithms

Behavior cloning (no rewards required)
Learn a model, use it for model-based RL (LSTD, LSPI)

Pessimistic algorithms (require rewards)

= W=

Inverse RL (learn reward function from data, use it for RL agent)
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Part 1: Behavior cloning

e Take dataset D, learn a policy from states to actions

e Often uses a rich policy class (neural net)
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Problem: compounding errors

@ Error at time t with probability €

e Approximate intuition: E[Total errors]
<e(TH(T-1)+(T—-2)...4+1) xeT?
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One solution: dataset aggregation

Initialize D « 0.

Initialize 7; to any policy in II.

for: =1to N do
Let m; = G;7" + (1 — ﬁz)ﬁz
Sample 7'-step trajectories using ;.
Get dataset D; = {(s,7*(s))} of visited states by ;
and actions given by expert.
Aggregate datasets: D «— D |JD;.
Train classifier ;41 on D.

end for

Return best 7; on validation.

@ Ildea: Get more labels of the expert action along the path taken by
the policy computed by behavior cloning

@ Obtains a stationary deterministic policy with good performance
under its induced state distribution
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Least-squares regression

m Given value function approximation V(s,w) = v,(s)

m And experience D consisting of (state, value) pairs

D = {(s1,v1), (52,3 )5 -, (ST, vT) }

m Which parameters w give the best fitting value fn V(s,w)?

m Least squares algorithms find parameter vector w minimising
sum-squared error between ¥(s;,w) and target values v,

2

[
]~

LS(w)

(vi' = V(s w))

I
Y

t

Ep [(v" — 0(s,w))?]
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Part 2: Least-squares regression

m At minimum of LS5(w), the expected update must be zero

Ep [Aw] = 0

aZx(st) ™ —x(s;)'w)=0

Z X(st)v{ = Z x(s¢)x(s¢)  w
WS <Z x(st)x(st)T> Z x(s¢) vy

m For N features, direct solution time is O(N?3)

m Incremental solution time is O(N?) using Shermann-Morrison
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Model-based solution: Least-squares algorithms

m We do not know true values v/
m In practice, our “training data” must use noisy or biased
samples of v[
LSMC Least Squares Monte-Carlo uses return
v =~ G
LSTD Least Squares Temporal-Difference uses TD target
v & Rep1 +70(St41, w)
LSTD(A) Least Squares TD(\) uses A-return

T o~ (A

m In each case solve directly for fixed point of MC / TD / TD(\)
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LSMC and LSTD

LSMC 0 a(Gy — V(S:,w))x(S;)

[
]~

t=1

w = (Z x(St)x(St)T> > x(5)G
LSTD 0= Z (Res1 +70(Sev1, W) — 0(Se, w))x(St)
W= (Z x(5¢)(x(S¢) — ’YX(5t+1))T> ZX(St)RtH
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LSMC and LSTD

LSMC 0 a(Gy — V(S:,w))x(S;)

[
]~

t=1

w = (Z x(St)x(St)T> > x(5)G
LSTD 0= Z (Res1 +70(Sev1, W) — 0(Se, w))x(St)
W= (Z x(5¢)(x(S¢) — ’YX(5t+1))T> ZX(St)RtH
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Theoretical properties: Policy evaluation

On/Off-Policy  Algorithm  Table Lookup Linear Non-Linear

MC v v v

. LSMC v v -
On-Policy D / / X
LSTD v v -

. MC v v v
Off-Policy LSMC / / ]
D v X X

LSTD v v -
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Theoretical properties: Control

Algorithm Table Lookup Linear Non-Linear
Monte-Carlo Control v (V) X
Sarsa v (V) X
Q-learning v X X
LSPI v (V) -

(v/) = chatters around near-optimal value function
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Part 3: Pessimism in the face of uncertainty

e (onservative approach
e Assume that states or state-action pairs not visited are bad

e Use a penalty to avoid the new policy visiting them

COMP579 Lecture 20, 2025

18



Value iteration with lower confidence bounds

Pessimism in the face of uncertainty: penalize value estimate of those
(s,a) pairs that were poorly visited [Jin et al., 2021, Rashidinejad et al., 2021]

Algorithm: value iteration w/ lower confidence bounds

e compute empirical estimate P of P

e initialize @ = 0, and repeat

@(s,a) ¢ max {r(s,a)+7<]3('\s,a),‘7> — b(s,a; ‘7) , O}

Bernstein-style confidence bound

for all (s,a), where V(s) = max, Q(s, a)

Q-learning version exists as well
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Alternative approach: Batch-Constrained RL

e Do NOT try to optimize value function/policy everywhere, if you only
have a limited batch

e Instead, only look at policies 7 such that the batch contains pairs (s, a)
that 7 visits
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Motivation: Two versions of DDPG
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Time steps (1e6) Time steps (1e6)
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Motivation: Two versions of DDPG

e Orange agent interacts with the environment in a standard RL loop:
collect data, put it in replay buffer, train, repeat

e Blue agent is trained with data collected by the orange agent concurrently

e Even though the data and algorithm are the same, being off-policy throws
the learning off!!!
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Why? Extrapolation error

Q(s,a) «r+yQ(s',a)
jae

GIVEN GENERATED

Q(s,a) «r+yQ(s,a)

(s’,a’) & Dataset —» Q(s’,a’) = bad
- Q(s,a) = bad



Batch-constrained RL

1. a~m(s) suc
2. a~m(s) suc
3. a~m(s) suc
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N 1
N T

N 1

nat (s, a) € Dataset.
nat (S’,n(s’)) € Dataset.

nat Q (s, a) is maxed.
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Batch-constrained Q-learning

First imitate dataset via generative model:
G(als) = Ppgtaset(als).

n(s) = argmaxg, Q (s, a;), where a;~G
(l.e. select the best action that is likely under the dataset)

(+ some additional deep RL Magic)
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Revisiting previous example
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m BCQ

m DDPG
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BCQ comparison
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