
Lecture 20: Off-Policy
Learning

Off-policy Methods

❐ Learn the value of the target policy π from experience due
to behavior policy 𝜇

❐ For example, π is the greedy policy (and ultimately the
optimal policy) while 𝜇 is exploratory (e.g., 𝜀-soft)

❐ In general, we only require coverage, i.e., that 𝜇 generates
behavior that covers, or includes, π

❐ Idea: importance sampling
– Weight each return by the ratio of the probabilities of

the trajectory under the two policies

2

110 CHAPTER 5. MONTE CARLO METHODS

that ⇡(a|s) > 0 implies µ(a|s) > 0. This is called the assumption of coverage. It
follows from coverage that µ must be stochastic in states where it is not identical
to ⇡. The target policy ⇡, on the other hand, may be deterministic, and, in fact,
this is a case of particular interest in control problems. In control, the target policy
is typically the deterministic greedy policy with respect to the current action-value
function estimate. This policy becomes a deterministic optimal policy while the
behavior policy remains stochastic and more exploratory, for example, an "-greedy
policy. In this section, however, we consider the prediction problem, in which ⇡ is
unchanging and given.

Almost all o↵-policy methods utilize importance sampling, a general technique for
estimating expected values under one distribution given samples from another. We
apply importance sampling to o↵-policy learning by weighting returns according to
the relative probability of their trajectories occurring under the target and behavior
policies, called the importance-sampling ratio. Given a starting state St, the prob-
ability of the subsequent state–action trajectory, At, St+1, At+1, . . . , ST , occurring
under any policy ⇡ is

T�1Y

k=t

⇡(Ak|Sk)p(Sk+1|Sk, Ak),

where p here is the state-transition probability function defined by (3.8). Thus,
the relative probability of the trajectory under the target and behavior policies (the
importance-sampling ratio) is

⇢T

t

.
=

Q
T�1
k=t

⇡(Ak|Sk)p(Sk+1|Sk, Ak)Q
T�1
k=t

µ(Ak|Sk)p(Sk+1|Sk, Ak)
=

T�1Y

k=t

⇡(Ak|Sk)

µ(Ak|Sk)
. (5.3)

Note that although the trajectory probabilities depend on the MDP’s transition
probabilities, which are generally unknown, all the transition probabilities cancel.
The importance sampling ratio ends up depending only on the two policies and not
at all on the MDP.

Now we are ready to give a Monte Carlo algorithm that uses a batch of observed
episodes following policy µ to estimate v⇡(s). It is convenient here to number time
steps in a way that increases across episode boundaries. That is, if the first episode
of the batch ends in a terminal state at time 100, then the next episode begins at
time t = 101. This enables us to use time-step numbers to refer to particular steps in
particular episodes. In particular, we can define the set of all time steps in which state
s is visited, denoted T(s). This is for an every-visit method; for a first-visit method,
T(s) would only include time steps that were first visits to s within their episodes.
Also, let T (t) denote the first time of termination following time t, and Gt denote the
return after t up through T (t). Then {Gt}t2T(s) are the returns that pertain to state

s, and {⇢T (t)
t

}t2T(s) are the corresponding importance-sampling ratios. To estimate
v⇡(s), we simply scale the returns by the ratios and average the results:

V (s)
.
=

P
t2T(s) ⇢T (t)

t
Gt

|T(s)| . (5.4)

Importance Sampling in General

3

Importance sampling

• Suppose we want to estimate the expected value of a function f

depending on a random variable X drawn according to the target

probability distribution P (X).

• If we had N samples xi drawn from P (X), we could estimate the
expectation using the empirical mean:

EP [f] ⇡
1

N

NX

i=1

f(xi)

• But instead, we have only samples drawn according to a di↵erent proposal
or sampling distribution Q(X).

• How can we do the estimation?

COMP-652 and ECSE-608, February 16, 2016 11

Regular Importance Sampling

4

Unnormalized importance sampling

• We do a simple trick:

EP [f] =
X

x

f(x)P (X = x)

=
X

x

f(x)Q(X = x)
P (X = x)

Q(X = x)
= EQ

f
P

Q

�

• Only requirement: if P (x) > 0 then Q(x) > 0
• So for an estimator, we should average each sample of the function,

f(xi) weighted by the ratio of its probability under the target and the
sampling distribution:

Ep[f] ⇡
1

N

NX

i=1

f(xi)
P (xi)

Q(xi)

COMP-652 and ECSE-608, February 16, 2016 12

Applying IS to Policy Evaluation

❐ Function for which we want the expectation is the return
❐ Target distribution P is the distribution of trajectories under

target policy π
❐ Proposal distribution Q is distribution of trajectories under

behavior policy 𝜇

❐ Note that P and Q can be very different depending on the
horizon!

❐ But there is structure in P and Q that we can exploit

5

❐ Probability of the rest of the trajectory, after St, under π:

❐ In importance sampling, each return is weighted by the
relative probability of the trajectory under the two policies

❐ This is called the importance sampling ratio
❐ All importance sampling ratios have expected value 1

Importance Sampling Ratio

6

114 CHAPTER 5. MONTE CARLO METHODS

that ⇡(a|s) > 0 implies µ(a|s) > 0. This is called the assumption of coverage. It
follows from coverage that µ must be stochastic in states where it is not identical
to ⇡. The target policy ⇡, on the other hand, may be deterministic, and, in fact,
this is a case of particular interest in control problems. In control, the target policy
is typically the deterministic greedy policy with respect to the current action-value
function estimate. This policy becomes a deterministic optimal policy while the
behavior policy remains stochastic and more exploratory, for example, an "-greedy
policy. In this section, however, we consider the prediction problem, in which ⇡ is
unchanging and given.

Almost all o↵-policy methods utilize importance sampling, a general technique for
estimating expected values under one distribution given samples from another. We
apply importance sampling to o↵-policy learning by weighting returns according to
the relative probability of their trajectories occurring under the target and behavior
policies, called the importance-sampling ratio. Given a starting state St, the prob-
ability of the subsequent state–action trajectory, At, St+1, At+1, . . . , ST , occurring
under any policy ⇡ is

Pr{At, St+1, At+1, . . . , ST | St, At:T�1 ⇠ ⇡}
= ⇡(At|St)p(St+1|St, At)⇡(At+1|St+1) · · · p(ST |ST�1, AT�1)

=
T�1Y

k=t

⇡(Ak|Sk)p(Sk+1|Sk, Ak),

where p here is the state-transition probability function defined by (3.10). Thus,
the relative probability of the trajectory under the target and behavior policies (the
importance-sampling ratio) is

⇢T

t =

Q
T�1
k=t

⇡(Ak|Sk)p(Sk+1|Sk, Ak)Q
T�1
k=t

µ(Ak|Sk)p(Sk+1|Sk, Ak)
=

T�1Y

k=t

⇡(Ak|Sk)

µ(Ak|Sk)
. (5.3)

Although the trajectory probabilities depend on the MDP’s transition probabilities,
which are generally unknown, they appear identically in both the numerator and
denominator, and thus cancel. The importance sampling ratio ends up depending
only on the two policies and the sequence, not on the MDP.

Now we are ready to give a Monte Carlo algorithm that uses a batch of observed
episodes following policy µ to estimate v⇡(s). It is convenient here to number time
steps in a way that increases across episode boundaries. That is, if the first episode
of the batch ends in a terminal state at time 100, then the next episode begins at
time t = 101. This enables us to use time-step numbers to refer to particular steps in
particular episodes. In particular, we can define the set of all time steps in which state
s is visited, denoted T(s). This is for an every-visit method; for a first-visit method,
T(s) would only include time steps that were first visits to s within their episodes.
Also, let T (t) denote the first time of termination following time t, and Gt denote the
return after t up through T (t). Then {Gt}t2T(s) are the returns that pertain to state

s, and {⇢T (t)
t

}t2T(s) are the corresponding importance-sampling ratios. To estimate

ρt:T−1 =
∏T−1

k=t π(Ak |Sk)P(Sk+1 |Sk, Ak)

∏T−1
k=t μ(Ak |Sk)P(Sk+1 |Sk, Ak)

=
T−1

∏
k=t

π(Ak |Sk)
μ(Ak |Sk)

𝔼μ [π(Ak |Sk

μ(Ak |Sk)] = ∑
a

μ(a |Sk)
π(a |Sk)
μ(a |Sk) ∑

a

π(a |Sk) = 1

Per-reward Importance Sampling

❐ Another way of reducing variance, even if 𝜸 = 1

❐ Uses the fact that the return is a sum of rewards

❐ where

7

⇢Tt Rt+k =
⇡(At|St)

µ(At|St)

⇡(At+1|St+1)

µ(At+1|St+1)
· · · ⇡(At+k|St+k)

µ(At+k|St+k)
· · · ⇡(AT�1|ST�1)

µ(AT�1|ST�1)
Rt+k

⇢Tt Gt = ⇢Tt Rt+1 + �⇢Tt Rt+2 + · · ·+ �k�1⇢Tt Rt+k + · · ·+ �T�t�1⇢Tt RT

❐ Another way of reducing variance, even if 𝜸 = 1

❐ Uses the fact that the return is a sum of rewards

❐ where

❐ Per-reward ordinary IS:

Per-reward Importance Sampling

8

⇢t:T�1Rt+k =
⇡(At|St)

b(At|St)

⇡(At+1|St+1)

b(At+1|St+1)
· · · ⇡(At+k|St+k)

b(At+k|St+k)
· · · ⇡(AT�1|ST�1)

b(AT�1|ST�1)
Rt+k.

| {z }
G̃t

∴

⇢t:T�1Gt = ⇢t:T�1Rt+1 + · · ·+ �k�1⇢t:T�1Rt+k + · · ·+ �T�t�1⇢t:T�1RT

∴

118 CHAPTER 5. MONTE CARLO METHODS

reduce variance even in the absence of discounting (that is, even if � = 1). In the
o↵-policy estimators (5.4) and (5.5), each term of the sum in the numerator is itself
a sum:

⇢t:T�1Gt = ⇢t:T�1
�
Rt+1 + �Rt+2 + · · · + �T�t�1RT

�

= ⇢t:T�1Rt+1 + �⇢t:T�1Rt+2 + · · · + �T�t�1⇢t:T�1RT . (5.10)

The o↵-policy estimators rely on the expected values of these terms; let us see if we
can write them in a simpler way. Note that each sub-term of (5.10) is a product of
a random reward and a random importance-sampling ratio. For example, the first
sub-term can be written, using (5.3), as

⇢t:T�1Rt+1 =
⇡(At|St)

b(At|St)

⇡(At+1|St+1)

b(At+1|St+1)

⇡(At+2|St+2)

b(At+2|St+2)
· · · ⇡(AT�1|ST�1)

b(AT�1|ST�1)
Rt+1.

Now notice that, of all these factors, only the first and the last (the reward) are
correlated; all the other ratios are independent random variables whose expected
value is one:

E

⇡(Ak|Sk)

b(Ak|Sk)

�
.
=

X

a

b(a|Sk)
⇡(a|Sk)

b(a|Sk)
=

X

a

⇡(a|Sk) = 1. (5.11)

Thus, because the expectation of the product of independent random variables is the
product of their expectations, all the ratios except the first drop out in expectation,
leaving just

E[⇢t:T�1Rt+1] = E[⇢t:tRt+1] .

If we repeat this analysis for the kth term of (5.10), we get

E[⇢t:T�1Rt+k] = E[⇢t:t+k�1Rt+k] .

It follows then that the expectation of our original term (5.10) can be written

E[⇢t:T�1Gt] = E
h
G̃t

i
,

where

G̃t = ⇢t:tRt+1 + �⇢t:t+1Rt+2 + �2⇢t:t+2Rt+3 + · · · + �T�t�1⇢t:T�1RT .

We call this idea per-reward importance sampling. It follows immediately that there
is an alternate importance-sampling estimator, with the same unbiased expectation
as the ordinary-importance-sampling estimator (5.4), using G̃t:

V (s)
.
=

P
t2T(s) G̃t

|T(s)| , (5.12)

which we might expect to sometimes be of lower variance.

Is there a per-reward version of weighted importance sampling? This is less clear.
So far, all the estimators that have been proposed for this that we know of are not
consistent (that is, they do not converge to the true value with infinite data).

⇤Exercise 5.9 Modify the algorithm for o↵-policy Monte Carlo control (page 115)
to use the idea of the truncated weighted-average estimator (5.9). Note that you will
first need to convert this equation to action values. ⇤

E[⇢t:T�1Gt] = E
⇥
⇢t:tRt+1 + · · ·+ �k�1⇢t:t+k�1Rt+k + · · ·+ �T�t�1⇢t:T�1RT

⇤

118 CHAPTER 5. MONTE CARLO METHODS

reduce variance even in the absence of discounting (that is, even if � = 1). In the
o↵-policy estimators (5.4) and (5.5), each term of the sum in the numerator is itself
a sum:

⇢t:T�1Gt = ⇢t:T�1
�
Rt+1 + �Rt+2 + · · · + �T�t�1RT

�

= ⇢t:T�1Rt+1 + �⇢t:T�1Rt+2 + · · · + �T�t�1⇢t:T�1RT . (5.10)

The o↵-policy estimators rely on the expected values of these terms; let us see if we
can write them in a simpler way. Note that each sub-term of (5.10) is a product of
a random reward and a random importance-sampling ratio. For example, the first
sub-term can be written, using (5.3), as

⇢t:T�1Rt+1 =
⇡(At|St)

b(At|St)

⇡(At+1|St+1)

b(At+1|St+1)

⇡(At+2|St+2)

b(At+2|St+2)
· · · ⇡(AT�1|ST�1)

b(AT�1|ST�1)
Rt+1.

Now notice that, of all these factors, only the first and the last (the reward) are
correlated; all the other ratios are independent random variables whose expected
value is one:

E

⇡(Ak|Sk)

b(Ak|Sk)

�
.
=

X

a

b(a|Sk)
⇡(a|Sk)

b(a|Sk)
=

X

a

⇡(a|Sk) = 1. (5.11)

Thus, because the expectation of the product of independent random variables is the
product of their expectations, all the ratios except the first drop out in expectation,
leaving just

E[⇢t:T�1Rt+1] = E[⇢t:tRt+1] .

If we repeat this analysis for the kth term of (5.10), we get

E[⇢t:T�1Rt+k] = E[⇢t:t+k�1Rt+k] .

It follows then that the expectation of our original term (5.10) can be written

E[⇢t:T�1Gt] = E
h
G̃t

i
,

where

G̃t = ⇢t:tRt+1 + �⇢t:t+1Rt+2 + �2⇢t:t+2Rt+3 + · · · + �T�t�1⇢t:T�1RT .

We call this idea per-reward importance sampling. It follows immediately that there
is an alternate importance-sampling estimator, with the same unbiased expectation
as the ordinary-importance-sampling estimator (5.4), using G̃t:

V (s)
.
=

P
t2T(s) G̃t

|T(s)| , (5.12)

which we might expect to sometimes be of lower variance.

Is there a per-reward version of weighted importance sampling? This is less clear.
So far, all the estimators that have been proposed for this that we know of are not
consistent (that is, they do not converge to the true value with infinite data).

⇤Exercise 5.9 Modify the algorithm for o↵-policy Monte Carlo control (page 115)
to use the idea of the truncated weighted-average estimator (5.9). Note that you will
first need to convert this equation to action values. ⇤

Implementation

❐ Importance sampling ratios fold into the eligibility trace
❐ Multiply at each step by an extra factor
❐ But on long trajectories traces will get cut a lot!

9

Remi Munos Google DeepMind

Importance sampling

Unbiased estimate of
Large (possibly infinite) variance Not efficient!
[Precup, Sutton, Singh, 2000], [Mahmood, Yu, White, Sutton, 2015] ,...

10

Recall: Q-Learning is Off-Policy TD Control

6.5. Q-LEARNING: OFF-POLICY TD CONTROL 139

6.5 Q-learning: O↵-Policy TD Control

One of the most important breakthroughs in reinforcement learning was the devel-
opment of an o↵-policy TD control algorithm known as Q-learning (Watkins, 1989).
Its simplest form, one-step Q-learning , is defined by

Q(St, At) Q(St, At) + ↵
h
Rt+1 + � max

a
Q(St+1, a)�Q(St, At)

i
. (6.6)

In this case, the learned action-value function, Q, directly approximates q⇤, the op-
timal action-value function, independent of the policy being followed. This dramat-
ically simplifies the analysis of the algorithm and enabled early convergence proofs.
The policy still has an e↵ect in that it determines which state–action pairs are visited
and updated. However, all that is required for correct convergence is that all pairs
continue to be updated. As we observed in Chapter 5, this is a minimal requirement
in the sense that any method guaranteed to find optimal behavior in the general case
must require it. Under this assumption and a variant of the usual stochastic approx-
imation conditions on the sequence of step-size parameters, Q has been shown to
converge with probability 1 to q⇤. The Q-learning algorithm is shown in procedural
form in Figure 6.10.

What is the backup diagram for Q-learning? The rule (6.6) updates a state–action
pair, so the top node, the root of the backup, must be a small, filled action node.
The backup is also from action nodes, maximizing over all those actions possible in
the next state. Thus the bottom nodes of the backup diagram should be all these
action nodes. Finally, remember that we indicate taking the maximum of these “next
action” nodes with an arc across them (Figure 3.7). Can you guess now what the
diagram is? If so, please do make a guess before turning to the answer in Figure 6.12.

Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ✏-greedy)
Take action A, observe R, S0

Q(S, A) Q(S, A) + ↵
⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

S S0;
until S is terminal

Figure 6.10: Q-learning: An o↵-policy TD control algorithm.

One-step Q-learning:

6.5. Q-LEARNING: OFF-POLICY TD CONTROL 143

Reward
per

epsiode

!100

!75

!50

!25

0 100 200 300 400 500

Episodes

Sarsa

Q-learning

S G

r = !100

T h e C l i f f

r = !1 safe path

optimal path

R

R

Sum of
rewards
during

episode

Figure 6.5: The cli↵-walking task. The results are from a single run, but smoothed by
averaging the reward sums from 10 successive episodes.

The lower part of Figure 6.5 shows the performance of the Sarsa and Q-learning
methods with "-greedy action selection, " = 0.1. After an initial transient, Q-learning
learns values for the optimal policy, that which travels right along the edge of the
cli↵. Unfortunately, this results in its occasionally falling o↵ the cli↵ because of
the "-greedy action selection. Sarsa, on the other hand, takes the action selection
into account and learns the longer but safer path through the upper part of the
grid. Although Q-learning actually learns the values of the optimal policy, its on-
line performance is worse than that of Sarsa, which learns the roundabout policy.
Of course, if " were gradually reduced, then both methods would asymptotically
converge to the optimal policy.

Exercise 6.9 Why is Q-learning considered an o↵-policy control method?

Q-learning Expected Sarsa

Figure 6.6: The backup diagrams for Q-learning and expected Sarsa.Behavior is randomized, but we are evaluating the greedy policy

Off-policy Expected Sarsa

11

Expected Sarsa generalizes to arbitrary behavior policies 𝜇

in which case it includes Q-learning as the special case in which
π is the greedy policy

6.6. EXPECTED SARSA 141

Q-learning Expected Sarsa

Figure 6.12: The backup diagrams for Q-learning and expected Sarsa.

6.6 Expected Sarsa

Consider the learning algorithm that is just like Q-learning except that instead of
the maximum over next state–action pairs it uses the expected value, taking into
account how likely each action is under the current policy. That is, consider the
algorithm with the update rule

Q(St, At) Q(St, At) + ↵
h
Rt+1 + �E[Q(St+1, At+1) | St+1]�Q(St, At)

i

 Q(St, At) + ↵
h
Rt+1 + �

X

a

⇡(a|St+1)Q(St+1, a)�Q(St, At)
i
, (6.7)

but that otherwise follows the schema of Q-learning (as in Figure 6.10). Given the
next state, St+1, this algorithm moves deterministically in the same direction as
Sarsa moves in expectation, and accordingly it is called expected Sarsa. Its backup
diagram is shown in Figure 6.12.

Expected Sarsa is more complex computationally than Sarsa but, in return, it
eliminates the variance due to the random selection of At+1. Given the same amount
of experience we might expect it to perform slightly better than Sarsa, and indeed it
generally does. Figure 6.13 shows summary results on the cli↵-walking task with Ex-
pected Sarsa compared to Sarsa and Q-learning. As an on-policy method, Expected
Sarsa retains the significant advantage of Sarsa over Q-learning on this problem. In
addition, Expected Sarsa shows a significant improvement over Sarsa over a wide
range of values for the step-size parameter ↵. In cli↵ walking the state transitions
are all deterministic and all randomness comes from the policy. In such cases, Ex-
pected Sarsa can safely set ↵ = 1 without su↵ering any degradation of asymptotic
performance, whereas Sarsa can only perform well in the long run at a small value
of ↵, at which short-term performance is poor. In this and other examples there is
a consistent empirical advantage of Expected Sarsa over Sarsa.

In these cli↵ walking results we have taken Expected Sarsa to be an on-policy
algorithm, but in general we can use a policy di↵erent from the target policy ⇡ to
generate behavior, in which case Expected Sarsa becomes an o↵-policy algorithm.
For example, suppose ⇡ is the greedy policy while behavior is more exploratory;
then Expected Sarsa is exactly Q-learning. In this sense Expected Sarsa subsumes
and generalizes Q-learning while reliably improving over Sarsa. Except for the small
additional computational cost, Expected Sarsa may completely dominate both of the
other more-well-known TD control algorithms.

6.6. EXPECTED SARSA 141

Q-learning Expected Sarsa

Figure 6.12: The backup diagrams for Q-learning and expected Sarsa.

6.6 Expected Sarsa

Consider the learning algorithm that is just like Q-learning except that instead of
the maximum over next state–action pairs it uses the expected value, taking into
account how likely each action is under the current policy. That is, consider the
algorithm with the update rule

Q(St, At) Q(St, At) + ↵
h
Rt+1 + �E[Q(St+1, At+1) | St+1]�Q(St, At)

i

 Q(St, At) + ↵
h
Rt+1 + �

X

a

⇡(a|St+1)Q(St+1, a)�Q(St, At)
i
, (6.7)

but that otherwise follows the schema of Q-learning (as in Figure 6.10). Given the
next state, St+1, this algorithm moves deterministically in the same direction as
Sarsa moves in expectation, and accordingly it is called expected Sarsa. Its backup
diagram is shown in Figure 6.12.

Expected Sarsa is more complex computationally than Sarsa but, in return, it
eliminates the variance due to the random selection of At+1. Given the same amount
of experience we might expect it to perform slightly better than Sarsa, and indeed it
generally does. Figure 6.13 shows summary results on the cli↵-walking task with Ex-
pected Sarsa compared to Sarsa and Q-learning. As an on-policy method, Expected
Sarsa retains the significant advantage of Sarsa over Q-learning on this problem. In
addition, Expected Sarsa shows a significant improvement over Sarsa over a wide
range of values for the step-size parameter ↵. In cli↵ walking the state transitions
are all deterministic and all randomness comes from the policy. In such cases, Ex-
pected Sarsa can safely set ↵ = 1 without su↵ering any degradation of asymptotic
performance, whereas Sarsa can only perform well in the long run at a small value
of ↵, at which short-term performance is poor. In this and other examples there is
a consistent empirical advantage of Expected Sarsa over Sarsa.

In these cli↵ walking results we have taken Expected Sarsa to be an on-policy
algorithm, but in general we can use a policy di↵erent from the target policy ⇡ to
generate behavior, in which case Expected Sarsa becomes an o↵-policy algorithm.
For example, suppose ⇡ is the greedy policy while behavior is more exploratory;
then Expected Sarsa is exactly Q-learning. In this sense Expected Sarsa subsumes
and generalizes Q-learning while reliably improving over Sarsa. Except for the small
additional computational cost, Expected Sarsa may completely dominate both of the
other more-well-known TD control algorithms.

aNothing
changes

here

Q-learning with Eligibility Traces

12

Remi Munos Google DeepMind

algorithm
[Harutyunyan, Bellemare, Stepleton, Munos, 2016]

 works if

 may not work otherwise Not safe!

Tree Backup

13

Remi Munos Google DeepMind

Tree backup TB(λ) algorithm
[Precup, Sutton, Singh, 2000]

 Reweight the traces by the product of target probabilities

Blueprint Off-policy Q-Algorithms

14

Remi Munos Google DeepMind

General off-policy return-based algorithm:

 Algorithm: Trace coefficient: Problem:

 IS high variance

 not safe (off-policy)

 not efficient (on-policy)

Retrace (Munos et al, 2016)

15

Remi Munos Google DeepMind

Our recommendation:

 Use Retrace(λ) defined by

Properties:
● Low variance since

● Safe (off policy): cut the traces when needed

● Efficient (on policy): but only when needed. Note that

Retrace in Atari

16

Remi Munos Google DeepMind

Atari 2600 environments: Retrace vs DQN

Games:
Asteroids, Defender, Demon Attack, Hero, Krull,
River Raid, Space Invaders, Star Gunner, Wizard of Wor, Zaxxon

Retrace vs Tree Backup

17

Remi Munos Google DeepMind

Experiments on 60 Atari games

Off-policy is much harder with Function Approximation

❐ Even linear FA
❐ Even for prediction (two fixed policies π and 𝜇)

❐ Even for Dynamic Programming
❐ The deadly triad: FA, TD, off-policy

 Any two are OK, but not all three
 With all three, we may get instability

(elements of 𝜽 may increase to ±∞)

18

Two Off-Policy Learning Problems

❐ The easy problem is that of off-policy targets (future)
 Use importance sampling in the target

❐ The hard problem is that of the distribution of states to
update (present): we are no longer updating according to
the on-policy distribution

19

Baird’s counterexample

20

11.2. BAIRD’S COUNTEREXAMPLE 245

Episodes

✓7

✓8

✓1– ✓6

Components
of the parameter vector

at the end of the episode

Figure 11.2: Demonstration of instability on Baird’s counterexample. The step size was
↵ = 0.001, and the initial weights were ✓ = (1, 1, 1, 1, 1, 1, 10, 1)>.

In this case, there is no randomness and no asynchrony. Each state is updated exactly
once per sweep as in a classical DP backup. The method is entirely conventional
except in its use of semi-gradient function approximation. Yet still the system is
unstable, as is also shown in Figure 11.2. The same instability can occurs if semi-
gradient Q-learning is used (11.3)...

If we alter just the distribution of DP backups in Baird’s counterexample, from
the uniform distribution to the on-policy distribution (which generally requires asyn-
chronous updating), then convergence is guaranteed to a solution with error bounded
by (9.14). This example is striking because the TD and DP methods used are ar-
guably the simplest and best-understood bootstrapping methods, and the linear,
semi-descent method used is arguably the simplest and best-understood kind of
function approximation. The example shows that even the simplest combination
of bootstrapping and function approximation can be unstable if the backups are not
done according to the on-policy distribution.

There are also counterexamples similar to Baird’s showing divergence for Q-learning.
This is cause for concern because otherwise Q-learning has the best convergence
guarantees of all control methods. Considerable e↵ort has gone into trying to find
a remedy to this problem or to obtain some weaker, but still workable, guarantee.
For example, it may be possible to guarantee convergence of Q-learning as long as
the behavior policy (the policy used to select actions) is su�ciently close to the esti-
mation policy (the policy used in GPI), for example, when it is the "-greedy policy.
To the best of our knowledge, Q-learning has never been found to diverge in this
case, but there has been no theoretical analysis. In the rest of this section we present
several other ideas that have been explored.

Suppose that instead of taking just a step toward the expected one-step return on
each iteration, as in Baird’s counterexample, we actually change the value function
all the way to the best, least-squares approximation. Would this solve the instability

11.2. BAIRD’S COUNTEREXAMPLE 245

Episodes

✓7

✓8

✓1– ✓6

Components
of the parameter vector

at the end of the episode

Figure 11.2: Demonstration of instability on Baird’s counterexample. The step size was
↵ = 0.001, and the initial weights were ✓ = (1, 1, 1, 1, 1, 1, 10, 1)>.

In this case, there is no randomness and no asynchrony. Each state is updated exactly
once per sweep as in a classical DP backup. The method is entirely conventional
except in its use of semi-gradient function approximation. Yet still the system is
unstable, as is also shown in Figure 11.2. The same instability can occurs if semi-
gradient Q-learning is used (11.3)...

If we alter just the distribution of DP backups in Baird’s counterexample, from
the uniform distribution to the on-policy distribution (which generally requires asyn-
chronous updating), then convergence is guaranteed to a solution with error bounded
by (9.14). This example is striking because the TD and DP methods used are ar-
guably the simplest and best-understood bootstrapping methods, and the linear,
semi-descent method used is arguably the simplest and best-understood kind of
function approximation. The example shows that even the simplest combination
of bootstrapping and function approximation can be unstable if the backups are not
done according to the on-policy distribution.

There are also counterexamples similar to Baird’s showing divergence for Q-learning.
This is cause for concern because otherwise Q-learning has the best convergence
guarantees of all control methods. Considerable e↵ort has gone into trying to find
a remedy to this problem or to obtain some weaker, but still workable, guarantee.
For example, it may be possible to guarantee convergence of Q-learning as long as
the behavior policy (the policy used to select actions) is su�ciently close to the esti-
mation policy (the policy used in GPI), for example, when it is the "-greedy policy.
To the best of our knowledge, Q-learning has never been found to diverge in this
case, but there has been no theoretical analysis. In the rest of this section we present
several other ideas that have been explored.

Suppose that instead of taking just a step toward the expected one-step return on
each iteration, as in Baird’s counterexample, we actually change the value function
all the way to the best, least-squares approximation. Would this solve the instability

244 CHAPTER 11. OFF-POLICY METHODS WITH APPROXIMATION

2✓2+✓82✓1+✓8 2✓3+✓8 2✓4+✓8 2✓5+✓8 2✓6+✓8

✓7+2✓8

µ(dashed|·) = 6/7

µ(solid|·) = 1/7

⇡(solid|·) = 1

99% 1%

Figure 11.1: Baird’s counterexample. The approximate state-value function for this Markov
process is of the form shown by the linear expressions inside each state. The solid action
usually results in the seventh state, and the dashed action usually results in one of the other
six states, each with equal probability. The episode terminates on all transitions with 1%
probability, much like a � = 0.99 discount rate. The reward is always zero.

state, ending the episode. (This is similar to a discount rate of 99%.) The behavior
policy µ takes the two actions with probabilities 6/7 and 1/7, so that the next-state
distribution under it is uniform (the same for all nonterminal states), which is also
the starting distribution for each episode. The target policy ⇡ always takes the solid
action, and so the on-policy distribution is concentrated in the seventh state. The
reward is zero on all transitions.

Consider estimating the state-value under the linear parameterization indicated
by the expression shown in each state circle. For example, the estimated value of
the first state is 2✓1 + ✓8, where the subscript corresponds to the component of the
overall weight vector ✓; this corresponds to a feature vector for the first state being
�(1) = (2, 0, 0, 0, 0, 0, 0, 1)>. The reward is zero on all transitions, so the true value
function is v⇡(s) = 0, for all s, which can be exactly approximated if ✓ = 0. In fact,
there are many solutions, as there are more components to the weight vector (8) than
there are nonterminal states (7). Moreover, the set of feature vectors, {�(s) : s 2 S},
corresponding to this function is a linearly independent set. In all ways, this task
seems a favorable case for linear function approximation.

If we apply semi-gradient TD(0) to this problem (11.2), then the weights diverge
to infinity, as shown in Figure 11.2. The instability occurs for any positive step size,
no matter how small. In fact, it even occurs if we do a DP-style expected backup
instead of a learning backup. That is, if the weight vector, ✓k, is updated in sweeps
through the state space, performing a synchronous, semi-gradient backup at every
state, s, using the DP (full backup) target:

✓k+1
.
= ✓k + ↵

X

s

h
E[Rt+1 + �v̂k(St+1) | St =s] � v̂k(s)

i
rv̂k(s).

244 CHAPTER 11. OFF-POLICY METHODS WITH APPROXIMATION

2✓2+✓82✓1+✓8 2✓3+✓8 2✓4+✓8 2✓5+✓8 2✓6+✓8

✓7+2✓8

µ(dashed|·) = 6/7

µ(solid|·) = 1/7

⇡(solid|·) = 1

99% 1%

Figure 11.1: Baird’s counterexample. The approximate state-value function for this Markov
process is of the form shown by the linear expressions inside each state. The solid action
usually results in the seventh state, and the dashed action usually results in one of the other
six states, each with equal probability. The episode terminates on all transitions with 1%
probability, much like a � = 0.99 discount rate. The reward is always zero.

state, ending the episode. (This is similar to a discount rate of 99%.) The behavior
policy µ takes the two actions with probabilities 6/7 and 1/7, so that the next-state
distribution under it is uniform (the same for all nonterminal states), which is also
the starting distribution for each episode. The target policy ⇡ always takes the solid
action, and so the on-policy distribution is concentrated in the seventh state. The
reward is zero on all transitions.

Consider estimating the state-value under the linear parameterization indicated
by the expression shown in each state circle. For example, the estimated value of
the first state is 2✓1 + ✓8, where the subscript corresponds to the component of the
overall weight vector ✓; this corresponds to a feature vector for the first state being
�(1) = (2, 0, 0, 0, 0, 0, 0, 1)>. The reward is zero on all transitions, so the true value
function is v⇡(s) = 0, for all s, which can be exactly approximated if ✓ = 0. In fact,
there are many solutions, as there are more components to the weight vector (8) than
there are nonterminal states (7). Moreover, the set of feature vectors, {�(s) : s 2 S},
corresponding to this function is a linearly independent set. In all ways, this task
seems a favorable case for linear function approximation.

If we apply semi-gradient TD(0) to this problem (11.2), then the weights diverge
to infinity, as shown in Figure 11.2. The instability occurs for any positive step size,
no matter how small. In fact, it even occurs if we do a DP-style expected backup
instead of a learning backup. That is, if the weight vector, ✓k, is updated in sweeps
through the state space, performing a synchronous, semi-gradient backup at every
state, s, using the DP (full backup) target:

✓k+1
.
= ✓k + ↵

X

s

h
E[Rt+1 + �v̂k(St+1) | St =s] � v̂k(s)

i
rv̂k(s).

244 CHAPTER 11. OFF-POLICY METHODS WITH APPROXIMATION

2✓2+✓82✓1+✓8 2✓3+✓8 2✓4+✓8 2✓5+✓8 2✓6+✓8

✓7+2✓8

µ(dashed|·) = 6/7

µ(solid|·) = 1/7

⇡(solid|·) = 1

99% 1%

Figure 11.1: Baird’s counterexample. The approximate state-value function for this Markov
process is of the form shown by the linear expressions inside each state. The solid action
usually results in the seventh state, and the dashed action usually results in one of the other
six states, each with equal probability. The episode terminates on all transitions with 1%
probability, much like a � = 0.99 discount rate. The reward is always zero.

state, ending the episode. (This is similar to a discount rate of 99%.) The behavior
policy µ takes the two actions with probabilities 6/7 and 1/7, so that the next-state
distribution under it is uniform (the same for all nonterminal states), which is also
the starting distribution for each episode. The target policy ⇡ always takes the solid
action, and so the on-policy distribution is concentrated in the seventh state. The
reward is zero on all transitions.

Consider estimating the state-value under the linear parameterization indicated
by the expression shown in each state circle. For example, the estimated value of
the first state is 2✓1 + ✓8, where the subscript corresponds to the component of the
overall weight vector ✓; this corresponds to a feature vector for the first state being
�(1) = (2, 0, 0, 0, 0, 0, 0, 1)>. The reward is zero on all transitions, so the true value
function is v⇡(s) = 0, for all s, which can be exactly approximated if ✓ = 0. In fact,
there are many solutions, as there are more components to the weight vector (8) than
there are nonterminal states (7). Moreover, the set of feature vectors, {�(s) : s 2 S},
corresponding to this function is a linearly independent set. In all ways, this task
seems a favorable case for linear function approximation.

If we apply semi-gradient TD(0) to this problem (11.2), then the weights diverge
to infinity, as shown in Figure 11.2. The instability occurs for any positive step size,
no matter how small. In fact, it even occurs if we do a DP-style expected backup
instead of a learning backup. That is, if the weight vector, ✓k, is updated in sweeps
through the state space, performing a synchronous, semi-gradient backup at every
state, s, using the DP (full backup) target:

✓k+1
.
= ✓k + ↵

X

s

h
E[Rt+1 + �v̂k(St+1) | St =s] � v̂k(s)

i
rv̂k(s).

under semi-gradient
off-policy TD(0)
(similar for DP)

TD(0) can diverge: A simple example

21

TD update:

TD fixpoint:

θ 2θ
r=1

δ = r + γθ!φ′ − θ!φ

= 0 + 2θ − θ

= θ

∆θ = αδφ

= αθ

θ∗ = 0

Diverges!

What causes the instability?

❐ It has nothing to do with learning or sampling
 Even dynamic programming suffers from divergence

with FA
❐ It has nothing to do with exploration, greedification, or

control
 Even prediction alone can diverge

❐ It has nothing to do with local minima
 or complex non-linear approximators
 Even simple linear approximators can produce instability

22

The deadly triad

❐ The risk of divergence arises whenever we combine three
things:
❐ Function approximation

❐ significantly generalizing from large numbers of examples
❐ Bootstrapping

❐ learning value estimates from other value estimates,
as in dynamic programming and temporal-difference learning

❐ Off-policy learning
❐ learning about a policy from data not due to that policy,

as in Q-learning, where we learn about the greedy policy from
data with a necessarily more exploratory policy

23

How to survive the deadly triad

❐ Least-squares methods like off-policy LSTD(λ) (Yu 2010,
Mahmood et al. 2015, Bradtke & Barto 1996, Boyan 2000)
computational costs scale with the square of the number of
parameters

❐ True-gradient RL methods (Gradient-TD and proximal-
gradient-TD) (Maei et al, 2011, Mahadevan et al, 2015)

❐ Emphatic-TD methods (Sutton, White & Mahmood 2015,
Yu 2015). These semi-gradient methods attain stability
through an extension of the early on-policy theorems

24

Linear Least-Squares

25

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Linear Least Squares Prediction (2)

At minimum of LS(w), the expected update must be zero

ED [�w] = 0

↵
TX

t=1

x(st)(v
⇡
t � x(st)

>w) = 0

TX

t=1

x(st)v
⇡
t =

TX

t=1

x(st)x(st)
>w

w =

TX

t=1

x(st)x(st)
>

!�1 TX

t=1

x(st)v
⇡
t

For N features, direct solution time is O(N3)

Incremental solution time is O(N2) using Shermann-Morrison

LSTD

26

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Linear Least Squares Prediction Algorithms

We do not know true values v⇡t
In practice, our “training data” must use noisy or biased
samples of v⇡t

LSMC Least Squares Monte-Carlo uses return
v
⇡
t ⇡ Gt

LSTD Least Squares Temporal-Di↵erence uses TD target
v
⇡
t ⇡ Rt+1 + �v̂(St+1,w)

LSTD(�) Least Squares TD(�) uses �-return
v
⇡
t ⇡ G

�
t

In each case solve directly for fixed point of MC / TD / TD(�)

Convergence Properties

27

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Convergence of Linear Least Squares Prediction Algorithms

On/O↵-Policy Algorithm Table Lookup Linear Non-Linear

On-Policy

MC 3 3 3
LSMC 3 3 -
TD 3 3 7

LSTD 3 3 -

O↵-Policy
MC 3 3 3

LSMC 3 3 -
TD 3 7 7

LSTD 3 3 -

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Control

Convergence of Control Algorithms

Algorithm Table Lookup Linear Non-Linear
Monte-Carlo Control 3 (3) 7

Sarsa 3 (3) 7
Q-learning 3 7 7

LSPI 3 (3) -

(3) = chatters around near-optimal value function

Value function geometry

28

T

V
θ

Π

TV
θ

ΠTV
θ

Φ, D

R
M
S
B
E

RMSPB
E

The space spanned by the feature vectors,
weighted by the state visitation distribution

T takes you
outside
the space

Π projects you
back
into it

D = diag(d)

Vθ = ΠTVθ

Is the TD fix-point

Better objective fn?

Previous work on
gradient methods for TD

minimized this objective fn
(Baird 1995, 1999)

Mean Square Projected Bellman Error (MSPBE)

Gradient-Based TD

❐ Bootstraps (genuine TD)
❐ Works with linear function approximation

(stable, reliably convergent)
❐ Is simple, like linear TD — O(n)
❐ Learns fast, like linear TD
❐ Can learn off-policy
❐ Learns from online causal trajectories

(no repeat sampling from the same state)

29

δ = r + γθ!φ′ − θ!φ

TD is not the gradient of anything

30

∆θ = αδφ

∂2J

∂θj∂θi
=

∂(δφi)
∂θj

= (γφ′
j − φj)φi

∂2J

∂θi∂θj
=

∂(δφj)
∂θi

= (γφ′
i − φi)φj

∂J

∂θi
= δφi

Assume there is a J such
that:

Then look at the second
derivative:

∂2J

∂θj∂θi
!= ∂2J

∂θi∂θj

TD(0) algorithm:

}
Real 2nd derivatives must be symmetric

Contradiction!

Etienne Barnard 1993

The Gradient-TD Family of Algorithms

❐ True gradient-descent algorithms in the Projected
Bellman Error

❐ GTD(λ) and GQ(λ), for learning V and Q
❐ Solve two open problems:

 convergent linear-complexity off-policy TD learning
 convergent non-linear TD

❐ Extended to control variate, proximal forms by
Mahadevan et al.

31

First relate the geometry to the iid statistics

32

T

V
θ

Π

TV
θ

ΠTV
θ

Φ, D

R
M
S
B
E

RMSPB
E

ΦT D(TVθ − Vθ) = E[δφ]

ΦT DΦ = E[φφT]

Fast Gradient-Descent Methods for Temporal-Difference Learning with Linear Function Approximation

T

V
!

"

TV
!

"TV
!

!, D

R
M
S
B
E

RMSPB
E

Figure 1. Geometric relationships between (the square root of) the
two Bellman-error objective functions.

point. That is, we use as our objective function the mean-
square projected Bellman error:

MSPBE(θ) = ‖ Vθ −ΠTVθ ‖2
D . (5)

Figure 1 shows the relationship between this and the
MSBE objective function geometrically.

Further insight can be gained by considering the episodic
examples in Figure 2. In the system on the left, trajectories
start in state A and then either terminate immediately with
a reward of zero, or transition to state B with a reward of
zero and then terminate with a reward of 1. The two choices
occur each with 50% probability, and γ = 1, so the right
values for states A and B are clearly 0.5 and 1 respectively
(these values minimize both MSBE and MSPBE). Dayan
(1992) used this example to show that a naive gradient-
descent approach (based on gradient descent in the mean-
squared TD error, E

[
δ2

]
) works poorly in that it ends up as-

signing values of 1/3 and 2/3 to A and B even in the tabular
case. The example also illustrates the need for two inde-
pendent samples in the residual-gradient algorithm (Baird
1995) as, with a single example, that algorithm finds the
1/3, 2/3 solution. With two samples, residual gradient cor-
rectly finds the 0.5, 1 solution. However, consider now the
example in the right panel. Here function approximation is
in play, in that we have two states, A1 and A2, that share the
same feature representation; they look the same and must
be given the same approximate value. Trajectories start in
each of the two A states with 50% probability; one leads de-
terministically to B and 1, while the other leads determinis-
tically to 0. From the observed feature vectors, this exam-
ple looks like the previous, except that here taking multiple
samples is no help as the system is deterministic and they
will all be the same. Because of this, the residual-gradient
algorithm will find the 1/3, 2/3 solution here. However,
the problem is not with the algorithm, but with the objec-
tive. The 1/3, 2/3 solution is in fact the minimum-MSBE
solution on this problem; only the MSPBE criterion puts
the minimum at 0.5, 1 on this problem. The MSBE ob-
jective causes function approximation resources to be ex-
pended trying to reduce the Bellman error associated with

A

B

1 0

50%50%

100%

A1 A2

B

1 0

100%

100%

100%

Figure 2. The A-split (left) and split-A (right) examples.

A1 and A2, whereas the MSPBE objective takes into ac-
count that their approximated values will ultimately be pro-
jected onto the same point.

Finally, we close this discussion of objective functions by
giving the function used to derive the original GTD algo-
rithm. This objective function does not seem to have a
ready geometric interpretation. Here we call it the norm
of the expected TD update:

NEU(θ) = E[δφ]! E[δφ] . (6)

4. Derivation of the new algorithms
In this section we derive two new algorithms as stochastic
gradient descent in the projected Bellman error objective
(5). We first establish some relationships between the rele-
vant expectations and vector-matrix quantities:

E
[
φφ!

]
=

∑

s

dsφsφ
!
s = Φ!DΦ,

E[δφ] =
∑

s

dsφs

(
Rs + γ

∑

s′

Pss′Vθ(s′)− Vθ(s)

)

= Φ!D(TVθ − Vθ),

and note that

Π!DΠ = (Φ(Φ!DΦ)−1Φ!D)!D(Φ(Φ!DΦ)−1Φ!D)
= D!Φ(Φ!DΦ)−1Φ!DΦ(Φ!DΦ)−1Φ!D

= D!Φ(Φ!DΦ)−1Φ!D.

Using these relationships, the projected objective can be
written in terms of expectations as

MSPBE(θ)
= ‖ Vθ −ΠTVθ ‖2

D

= ‖ Π(Vθ − TVθ) ‖2
D

= (Π(Vθ − TVθ))!D(Π(Vθ − TVθ))
= (Vθ − TVθ)!Π!DΠ(Vθ − TVθ)
= (Vθ − TVθ)!D!Φ(Φ!DΦ)−1Φ!D(Vθ − TVθ)
= (Φ!D(TVθ − Vθ))!(Φ!DΦ)−1Φ!D(TVθ − Vθ)

= E[δφ]! E
[
φφ!

]−1 E[δφ] .

Fast gradient-descent methods for temporal-difference learning with linear function approximation

2. Linear value-function approximation
We consider a prototypical case of temporal-difference
learning, that of learning a linear approximation to the
state-value function for a given policy and Markov deci-
sion process (MDP) from sample transitions. We take both
the MDP and the policy to be stationary, so their combina-
tion determines the stochastic dynamics of a Markov chain.
The state of the chain at each time t is a random variable,
denoted st ∈ {1, 2, ..., N}, and the state-transition proba-
bilities are given by a matrix P . On each transition from
st to st+1, there is also a reward, rt+1, whose distribution
depends on both states. We seek to learn the parameter
θ ∈ �n of an approximate value function Vθ : S → � such
that

Vθ(s) = θ�φs ≈ V (s) = E

� ∞�

t=0

γtrt+1 | s0 = s

�
, (1)

where φs ∈ �n is a feature vector characterizing state s,
and γ ∈ [0, 1) is a constant called the discount rate.

In this paper we consider one-step temporal-difference
learning (corresponding to λ = 0 in TD(λ)), in which
there is one independent update to θ for each state tran-
sition and associated reward. There are several settings
corresponding to how the state transitions are generated.
In the on-policy setting, for example, the state transitions
come directly from the continuing evolution of the Markov
chain. We assume that the Markov chain is ergodic and
uni-chain, so there exists a limiting distribution d such that
ds = limt→∞ P(st = s).1 In the on-policy case, d is linked
to the transition probabilities (in particular, we know that
P�d = d) and this linkage is critical to the convergence
of algorithms such as conventional TD. In this paper, we
consider a general setting (introduced in Sutton, Szepesvári
& Maei 2009) in which the first state of each transition is
chosen i.i.d. according to an arbitrary distribution d that
may be unrelated to P (this corresponds to off-policy learn-
ing). This setting defines a probability over independent
triples of state, next state, and reward random variables,
denoted (sk, s�k, rk), with associated feature-vector random
variables φk = φsk and φ�k = φs�

k
. From these we can de-

fine, for example, the temporal-difference error,

δk = rk + γθ�k φ�k − θ�k φk,

used in the conventional linear TD algorithm (Sutton
1988):

θk+1 ← θk + αkδkφk, (2)

where αk is a sequence of positive step-size parameters.
1Our results apply also to the episodic case if ds is taken to be

the proportion of time steps in state s. In this case, the sum in (1)
is only over a finite number of time steps, the rows of P may sum
to less than 1, and γ may be equal to 1 (as long as (γP)∞ = 0).

3. Objective functions
An objective function is some function of the modifiable
parameter θ that we seek to minimize by updating θ. In
gradient descent, the updates to θ are proportional to the
gradient or sample gradient of the objective function with
respect to θ. The first question then, is what to use for the
objective function? For example, one natural choice might
be the mean squared error (MSE) between the approximate
value function Vθ and the true value function V , averaged
over the state space according to how often each state oc-
curs. The MSE objective function is

MSE(θ) =
�

s

ds (Vθ(s)− V (s))2

def= � Vθ − V �2D .

In the second equation, Vθ and V are viewed as vectors with
one element for each state, and the norm � v �2D = v�Dv
is weighted by the matrix D that has the ds on its diagonal.

In temporal-difference methods, the idea is instead to use
an objective function representing how closely the approx-
imate value function satisfies the Bellman equation. The
true value function V satisfies the Bellman equation ex-
actly:

V = R + γPV
def= TV,

where R is the vector with components E{rt+1 | st = s}
and T is known as the Bellman operator. A seemingly nat-
ural measure of how closely the approximation Vθ satisfies
the Bellman equation is the mean-square Bellman error:

MSBE(θ) = � Vθ − TVθ �2D . (3)

This is the objective function used by the most important
prior effort to develop gradient-descent algorithms, that by
Baird (1995, 1999). However, most temporal-difference al-
gorithms, including TD, LSTD, and GTD, do not converge
to the minimum of the MSBE. To understand this, note that
the Bellman operator follows the underlying state dynam-
ics of the Markov chain, irrespective of the structure of the
function approximator. As a result, TVθ will typically not
be representable as Vθ for any θ. Consider the projection
operator Π which takes any value function v and projects it
to the nearest value function representable by the function
approximator:

Πv = Vθ where θ = arg min
θ
� Vθ − v �2D .

In a linear architecture, in which Vθ = Φθ (where Φ is the
matrix whose rows are the φs), the projection operator is
linear and independent of θ:

Π = Φ(Φ�DΦ)−1Φ�D

matrix of the feature vectors for all states

Derivation of the TDC algorithm

33

s
r−→s′

φ φ′

This is the
trick!

 is a
second set of

weights

w ∈ "n

∆θ = −1

2
α∇θJ(θ) = −1

2
α∇θ � Vθ −ΠTVθ �2D

= −1

2
α∇θ

�
E [δφ]E

�
φφ��−1 E [δφ]

�

= −α (∇θE [δφ])E
�
φφ��−1 E [δφ]

= −αE
�
∇θ[φ

�
r + γφ��θ − φ�θ

�
]
�
E
�
φφ��−1 E [δφ]

= −αE
�
φ (γφ� − φ)

�
��

E
�
φφ��−1 E [δφ]

= −α
�
γE

�
φ�φ��− E

�
φφ���E

�
φφ��−1 E [δφ]

= αE [δφ]− αγE
�
φ�φ��E

�
φφ��−1 E [δφ]

≈ αE [δφ]− αγE
�
φ�φ��w

(sampling) ≈ αδφ− αγφ�φ�w

TD with gradient correction (TDC) algorithm

❐ on each transition

❐ update two parameters

❐ where, as usual

34

θ ← θ + αδφ− αγφ′
(
φ"w

)

w ← w + β(δ − φ!w)φ

δ = r + γθ!φ′ − θ!φ

s
r−→s′

φ φ′

TD(0) with gradient
correction

estimate of the
TD error () for
the current state

δ
φ

aka GTD(0)

Convergence theorems

❐ All algorithms converge w.p.1 to the TD fix-point:

❐ GTD, GTD-2 converges at one time scale

❐ TD-C converges in a two-time-scale sense

35

α,β −→ 0
α

β
−→ 0

α = β −→ 0

E[δφ] −→ 0

Off-policy result: Baird’s counter-example

36

! "! #! $! %! &!! &"! &#! &$! &%! "!!
!

"

#

$

%

&!

'
(
)
*
+
,

)-../0

123

234

123!"

! "!!! #!!! $!!! %!!! &!!!
"!

!"!

"!
!&

"!
!

"!
&

"!
"!

'
(
)(
*
+
,+
)-
.!
/0
1

23++45

!

!

"!

67!

&

Gradient algorithms converge. TD diverges.

A little more theory

37

∆θ ∝ δφ =
�
r + γθ�φ� − θ�φ

�
φ

= θ�(γφ� − φ)φ+ rφ

= φ (γφ� − φ)
�
θ + rφ

E [∆θ] ∝ −E
�
φ (φ− γφ�)

�
�
θ + E [rφ]

E [∆θ] ∝ −Aθ + b
convergent if
A is pos. def.

therefore, at
the TD

fixpoint:
C = E

�
φφ��

covariance
matrix

−1

2
∇θMSPBE = −A�C−1(Aθ − b)

always pos. def.

Aθ∗ = b

θ∗ = A−1b
LSTD computes this directly

❐ Learn a linear value function (probability of winning)
for 9x9 Go from self play

❐ One million features, each corresponding to a template
on a part of the Go board

38

0

0.2

0.4

0.6

0.8

.000001 .000003 .00001 .00003 .0001 .0003 .001

!

RNEU

TD

GTD2

GTD

TDC

GTD2

TDC

Example: Go

Summary

39

per second using thousands of features, with linear-complexity methods we were able to
predict almost ten thousand di↵erent sensory events, whereas with quadratic complexity
methods we could predict only one. It is clear to us that there are already cases where
computational costs are critical and the advantage of linear methods is decisive. As the
power of modern computers increases, we can expect to have more learned parameters and
the advantage to linear-complexity methods can be expected only to increase.

Having explained the choices underlying our approach, we can now outline our main
results, as summarized in the table in Figure 1. The table has seven columns, two corre-
sponding to DP algorithms and five to TDL algorithms. The first column, for example,
corresponds to the classical algorithm TD(�) (and Sarsa(�), the analogous algorithm for
learning state–action values). The last two rows correspond to the new gradient-TD family
of algorithms presented in this article. The rows correspond to five issues or properties
that we would like the algorithms to have. First, as discussed just above, we would like the
algorithms to have linear computational complexity, and most do, with LSTD(�) being one
of the listed exceptions. Another row corresponds to whether the algorithm will work with
general nonlinear function approximators (subject to smoothness conditions, as described
below). We see that TD(�) is linear complexity, but is not guaranteed to converge with
nonlinear function approximation. In fact, counterexamples are known. We will show that
gradient-TD algorithms converge on any MDP, and in particular on these counterexamples.
TD(�) is also not guaranteed to converge under o↵-policy training (third row). Again,
counterexamples are known, and we show that gradient-TD methods converge on them.
Note that according to four of the five properties listed here, TD(�) and approximate DP

A L G O R I T H MA L G O R I T H MA L G O R I T H MA L G O R I T H MA L G O R I T H MA L G O R I T H MA L G O R I T H M

TD(λ),
Sarsa(λ)

Approx.
DP

LSTD(λ),
LSPE(λ)

Fitted-Q
Residual
gradient

GDP GTD(λ),
GQ(λ)

Linear
computation

Nonlinear
convergent

Off-policy
convergent

Model-free,
online

Converges to
PBE = 0

✓ ✓ ✖ ✖ ✓ ✓ ✓
✖ ✖ ✖ ✓ ✓ ✓ ✓
✖ ✖ ✓ ✖ ✓ ✓ ✓
✓ ✖ ✓ ✖ ✓ ✖ ✓
✓ ✓ ✓ ✓ ✖ ✓ ✓

Issues with bootstrapping algorithms
for approximate parametric policy evaluation

I
S

S
U

E

Figure 1: Issues with bootstrapping algorithms for approximate parametric policy evalua-
tion. There are many aspects of each symbol that deserve further remarks and
clarifications, which will go here.

4

