Lecture 20: Off-Policy Learning

Off-policy Methods

- Learn the value of the *target policy* π from experience due to *behavior policy* μ
- □ For example, π is the greedy policy (and ultimately the optimal policy) while μ is exploratory (e.g., ε -soft)
- In general, we only require *coverage*, i.e., that μ generates behavior that covers, or includes, π

 $\pi(a|s) > 0$ implies $\mu(a|s) > 0$

- **Idea:** *importance sampling*
 - Weight each return by the *ratio of the probabilities* of the trajectory under the two policies

Importance Sampling in General

- Suppose we want to estimate the expected value of a function f depending on a random variable X drawn according to the *target* probability distribution P(X).
- If we had N samples x_i drawn from P(X), we could estimate the expectation using the empirical mean:

$$E_P[f] \approx \frac{1}{N} \sum_{i=1}^N f(x_i)$$

- But instead, we have only samples drawn according to a different *proposal* or *sampling* distribution Q(X).
- How can we do the estimation?

Regular Importance Sampling

• We do a simple trick:

$$E_P[f] = \sum_x f(x)P(X = x)$$

=
$$\sum_x f(x)Q(X = x)\frac{P(X = x)}{Q(X = x)} = E_Q\left[f\frac{P}{Q}\right]$$

- Only requirement: if P(x) > 0 then Q(x) > 0
- So for an estimator, we should average each sample of the function, $f(x_i)$ weighted by the ratio of its probability under the target and the sampling distribution:

$$E_p[f] \approx \frac{1}{N} \sum_{i=1}^N f(x_i) \frac{P(x_i)}{Q(x_i)}$$

Applying IS to Policy Evaluation

- **I** Function for which we want the expectation is the return
- Target distribution P is the distribution of trajectories under *target policy* π
- The Proposal distribution Q is distribution of trajectories under *behavior policy* μ
- Note that P and Q can be very different depending on the horizon!
- **But there is structure in P and Q that we can exploit**

Importance Sampling Ratio

In importance sampling, each return is weighted by the relative probability of the trajectory under the two policies

$$\rho_{t:T-1} = \frac{\prod_{k=t}^{T-1} \pi(A_k | S_k) P(S_{k+1} | S_k, A_k)}{\prod_{k=t}^{T-1} \mu(A_k | S_k) P(S_{k+1} | S_k, A_k)} = \prod_{k=t}^{T-1} \frac{\pi(A_k | S_k)}{\mu(A_k | S_k)}$$

- This is called the *importance sampling ratio*
- □ All importance sampling ratios have expected value 1

$$\mathsf{E}_{\mu}\left[\frac{\pi(A_{k} \mid S_{k})}{\mu(A_{k} \mid S_{k})}\right] = \sum_{a} \mu(a \mid S_{k}) \frac{\pi(a \mid S_{k})}{\mu(a \mid S_{k})} \sum_{a} \pi(a \mid S_{k}) = 1$$

Per-reward Importance Sampling

 \square Another way of reducing variance, even if $\gamma = 1$

Uses the fact that the return is a *sum of rewards*

 $\rho_t^T G_t = \rho_t^T R_{t+1} + \gamma \rho_t^T R_{t+2} + \dots + \gamma^{k-1} \rho_t^T R_{t+k} + \dots + \gamma^{T-t-1} \rho_t^T R_T$ where $\rho_t^T R_{t+k} = \frac{\pi(A_t | S_t)}{\mu(A_t | S_t)} \frac{\pi(A_{t+1} | S_{t+1})}{\mu(A_{t+1} | S_{t+1})} \dots \frac{\pi(A_{t+k} | S_{t+k})}{\mu(A_{t+k} | S_{t+k})} \dots \frac{\pi(A_{T-1} | S_{T-1})}{\mu(A_{T-1} | S_{T-1})} R_{t+k}$

Per-reward Importance Sampling

- \square Another way of reducing variance, even if $\gamma = 1$
- Uses the fact that the return is a *sum of rewards*

$$\rho_{t:T-1}G_t = \rho_{t:T-1}R_{t+1} + \dots + \gamma^{k-1}\rho_{t:T-1}R_{t+k} + \dots + \gamma^{T-t-1}\rho_{t:T-1}R_T$$

$$\rho_{t:T-1}R_{t+k} = \frac{\pi(A_t|S_t)}{b(A_t|S_t)}\frac{\pi(A_{t+1}|S_{t+1})}{b(A_{t+1}|S_{t+1})} \cdots \frac{\pi(A_{t+k}|S_{t+k})}{b(A_{t+k}|S_{t+k})} \cdots \frac{\pi(A_{T-1}|S_{T-1})}{b(A_{T-1}|S_{T-1})}R_{t+k}.$$

 $\therefore \mathbb{E}[\rho_{t:T-1}R_{t+k}] = \mathbb{E}[\rho_{t:t+k-1}R_{t+k}]$

$$\therefore \mathbb{E}[\rho_{t:T-1}G_t] = \mathbb{E}\left[\underbrace{\rho_{t:t}R_{t+1} + \dots + \gamma^{k-1}\rho_{t:t+k-1}R_{t+k} + \dots + \gamma^{T-t-1}\rho_{t:T-1}R_T}_{\tilde{G}_t}\right]$$

$$V(s) \doteq \frac{\sum_{t \in \mathfrak{T}(s)} \tilde{G}_t}{|\mathfrak{T}(s)|}$$

Implementation

- Importance sampling ratios fold into the eligibility trace
- Multiply at each step by an extra factor
- But on long trajectories traces will get cut a lot!

Recall: Q-Learning is Off-Policy TD Control

One-step Q-learning:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

Behavior is randomized, but we are evaluating the greedy policy

Off-policy Expected Sarsa

- Expected Sarsa generalizes to arbitrary behavior policies μ
 - in which case it includes Q-learning as the special case in which π is the greedy policy

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha \Big[R_{t+1} + \gamma \mathbb{E}[Q(S_{t+1}, A_{t+1}) \mid S_{t+1}] - Q(S_{t}, A_{t}) \Big]$$

$$\leftarrow Q(S_{t}, A_{t}) + \alpha \Big[R_{t+1} + \gamma \sum_{a} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_{t}, A_{t}) \Big]$$

$$\leftarrow Q(S_{t}, A_{t}) + \alpha \Big[R_{t+1} + \gamma \sum_{a} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_{t}, A_{t}) \Big]$$

$$\leftarrow Q(S_{t}, A_{t}) + \alpha \Big[R_{t+1} + \gamma \sum_{a} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_{t}, A_{t}) \Big]$$

$$\leftarrow Q(S_{t}, A_{t}) + \alpha \Big[R_{t+1} + \gamma \sum_{a} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_{t}, A_{t}) \Big]$$

$$\leftarrow Q(S_{t}, A_{t}) + \alpha \Big[R_{t+1} + \gamma \sum_{a} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_{t}, A_{t}) \Big]$$

$$\leftarrow Q(S_{t}, A_{t}) + \alpha \Big[R_{t+1} + \gamma \sum_{a} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_{t}, A_{t}) \Big]$$

$$\leftarrow Q(S_{t}, A_{t}) + \alpha \Big[R_{t+1} + \gamma \sum_{a} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_{t}, A_{t}) \Big]$$

$$\leftarrow Q(S_{t}, A_{t}) + \alpha \Big[R_{t+1} + \gamma \sum_{a} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_{t}, A_{t}) \Big]$$

$$\leftarrow Q(S_{t}, A_{t}) + \alpha \Big[R_{t+1} + \gamma \sum_{a} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_{t}, A_{t}) \Big]$$

$$\leftarrow Q(S_{t}, A_{t}) + \alpha \Big[R_{t+1} + \gamma \sum_{a} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_{t}, A_{t}) \Big]$$

$$\leftarrow Q(S_{t}, A_{t}) + \alpha \Big[R_{t+1} + \gamma \sum_{a} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_{t}, A_{t}) \Big]$$

$$\leftarrow Q(S_{t}, A_{t}) + \alpha \Big[R_{t+1} + \gamma \sum_{a} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_{t}, A_{t}) \Big]$$

$$\leftarrow Q(S_{t}, A_{t}) + \alpha \Big[R_{t+1} + \gamma \sum_{a} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_{t}, A_{t}) \Big]$$

Q-learning with Eligibility Traces

Tree Backup

Reweight the traces by the product of target probabilities

Blueprint Off-policy Q-Algorithms

$$\Delta Q(x,a) = \sum_{t \ge 0} \gamma^t \Big(\prod_{1 \le s \le t} c_s\Big) \Big(\underbrace{r_t + \gamma \mathbb{E}_{\pi} Q(x_{t+1}, \cdot) - Q(x_t, a_t)}_{\delta_t}\Big)$$

Algorithm:	Trace coefficient:	Problem:
IS	$c_s = \frac{\pi(a_s x_s)}{\mu(a_s x_s)}$	high variance
$Q^{\pi}(\lambda)$	$c_s = \lambda$	not safe (off-policy)
$TB(\lambda)$	$c_s = \lambda \pi(a_s x_s)$	not efficient (on-policy)

Use Retrace(
$$\lambda$$
) defined by $c_s = \lambda \min\left(1, \frac{\pi(a_s|x_s)}{\mu(a_s|x_s)}\right)$

Properties:

- Low variance since $c_s \leq 1$
- Safe (off policy): cut the traces when needed $c_s \in \left[0, \frac{\pi(a_s|x_s)}{\mu(a_a|x_s)}\right]$
- Efficient (on policy): but only when needed. Note that $c_s \ge \lambda \pi (a_s | x_s)$

Retrace in Atari

Games:

Asteroids, Defender, Demon Attack, Hero, Krull, River Raid, Space Invaders, Star Gunner, Wizard of Wor, Zaxxon

Retrace vs Tree Backup

Off-policy is much harder with Function Approximation

- Even linear FA
- **\Box** Even for prediction (two fixed policies π and μ)
- **D** Even for Dynamic Programming
- □ The deadly triad: FA, TD, off-policy
 - Any two are OK, but not all three
 - With all three, we may get instability (elements of θ may increase to ±∞)

Two Off-Policy Learning Problems

The easy problem is that of off-policy targets (future)

- Use importance sampling in the target
- The hard problem is that of the distribution of states to update (present): we are no longer updating according to the on-policy distribution

Baird's counterexample

 $\theta_7 + 2\theta_8$

TD(0) can diverge: A simple example

TD fixpoint: $\theta^* = 0$

What causes the instability?

□ It has nothing to do with learning or sampling

- Even dynamic programming suffers from divergence with FA
- It has nothing to do with exploration, greedification, or control
 - Even prediction alone can diverge
- It has nothing to do with local minima or complex non-linear approximators
 - Even simple linear approximators can produce instability

The deadly triad

- The risk of divergence arises whenever we combine three things:
 - Function approximation
 - significantly generalizing from large numbers of examples
 - Bootstrapping
 - learning value estimates from other value estimates, as in dynamic programming and temporal-difference learning
 - Off-policy learning
 - learning about a policy from data not due to that policy, as in Q-learning, where we learn about the greedy policy from data with a necessarily more exploratory policy

How to survive the deadly triad

- Least-squares methods like off-policy LSTD(λ) (Yu 2010, Mahmood et al. 2015, Bradtke & Barto 1996, Boyan 2000) computational costs scale with the *square* of the number of parameters
- True-gradient RL methods (Gradient-TD and proximalgradient-TD) (Maei et al, 2011, Mahadevan et al, 2015)
- Emphatic-TD methods (Sutton, White & Mahmood 2015, Yu 2015). These semi-gradient methods attain stability through an extension of the early on-policy theorems

Linear Least-Squares

• At minimum of $LS(\mathbf{w})$, the expected update must be zero

$$\mathbb{E}_{\mathcal{D}} \left[\Delta \mathbf{w} \right] = 0$$

$$\alpha \sum_{t=1}^{T} \mathbf{x}(s_t) (v_t^{\pi} - \mathbf{x}(s_t)^{\top} \mathbf{w}) = 0$$

$$\sum_{t=1}^{T} \mathbf{x}(s_t) v_t^{\pi} = \sum_{t=1}^{T} \mathbf{x}(s_t) \mathbf{x}(s_t)^{\top} \mathbf{w}$$

$$\mathbf{w} = \left(\sum_{t=1}^{T} \mathbf{x}(s_t) \mathbf{x}(s_t)^{\top} \right)^{-1} \sum_{t=1}^{T} \mathbf{x}(s_t) v_t^{\pi}$$

For N features, direct solution time is $O(N^3)$

Incremental solution time is $O(N^2)$ using Shermann-Morrison

LSTD

- We do not know true values v_t^{π}
- In practice, our "training data" must use noisy or biased samples of v_t^{π}
 - LSMC Least Squares Monte-Carlo uses return $v_t^{\pi} \approx G_t$
 - LSTD Least Squares Temporal-Difference uses TD target $v_t^{\pi} \approx R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$
- $\begin{array}{l} \mathsf{LSTD}(\lambda) \ \ \mathsf{Least} \ \mathsf{Squares} \ \mathsf{TD}(\lambda) \ \mathsf{uses} \ \lambda\text{-return} \\ v_t^\pi \approx \mathbf{G}_t^\lambda \end{array}$

In each case solve directly for fixed point of MC / TD / TD(λ)

Convergence Properties

On/Off-Policy	Algorithm	Table Lookup	Linear	Non-Linear
	MC	\checkmark	\checkmark	\checkmark
On-Policy	LSMC	\checkmark	\checkmark	-
	TD	\checkmark	\checkmark	×
	LSTD	\checkmark	\checkmark	-
	MC	\checkmark	\checkmark	\checkmark
Off-Policy	LSMC	✓	\checkmark	-
	TD	\checkmark	×	×
	LSTD	\checkmark	√	-

Algorithm	Table Lookup	Linear	Non-Linear	
Monte-Carlo Control	✓	()	×	
Sarsa	\checkmark	(\checkmark)	×	
Q-learning	\checkmark	X	×	
LSPI	\checkmark	(\checkmark)	-	

 (\checkmark) = chatters around near-optimal value function

Value function geometry

Mean Square Projected Bellman Error (MSPBE)

Gradient-Based TD

- Bootstraps (genuine TD)
- Works with linear function approximation (stable, reliably convergent)
- □ Is simple, like linear TD O(n)
- Learns fast, like linear TD
- Can learn off-policy
- Learns from online causal trajectories (no repeat sampling from the same state)

TD is not the gradient of anything

TD(0) algorithm:

Assume there is a J such that:

$$\Delta \theta = \alpha \delta \phi$$

$$\delta = r + \gamma \theta^{\top} \phi' - \theta^{\top} \phi$$

$$\frac{\partial J}{\partial \theta_i} = \delta \phi_i$$

Then look at the second derivative:

$$\frac{\partial^2 J}{\partial \theta_j \partial \theta_i} = \frac{\partial (\delta \phi_i)}{\partial \theta_j} = (\gamma \phi'_j - \phi_j) \phi_i$$

$$\frac{\partial^2 J}{\partial \theta_i \partial \theta_j} = \frac{\partial (\delta \phi_j)}{\partial \theta_i} = (\gamma \phi'_i - \phi_i) \phi_j$$

$$\frac{\partial^2 J}{\partial \theta_j \partial \theta_i} \neq \frac{\partial^2 J}{\partial \theta_i \partial \theta_j}$$
Contradiction:

Real 2nd derivatives must be symmetric

Etienne Barnard 199

The Gradient-TD Family of Algorithms

- True gradient-descent algorithms in the Projected Bellman Error
- **T** GTD(λ) and GQ(λ), for learning V and Q
- Solve two open problems:
 - convergent linear-complexity off-policy TD learning
 - convergent non-linear TD
- Extended to control variate, proximal forms by Mahadevan et al.

First relate the geometry to the iid statistics

Derivation of the TDC algorithm

TD with gradient correction (TDC) algorithm

Convergence theorems

□ All algorithms converge w.p.1 to the TD fix-point:

 $\square \text{ GTD, GTD-2 converges at one time scale}$

$$\alpha=\beta\longrightarrow 0$$

TD-C converges in a two-time-scale sense $\alpha, \beta \longrightarrow 0 \qquad \frac{\alpha}{\beta} \longrightarrow 0$

Off-policy result: Baird's counter-example

Gradient algorithms converge. TD diverges.

A little more theory

$$\Delta\theta \propto \delta\phi = (r + \gamma\theta^{\mathsf{T}}\phi' - \theta^{\mathsf{T}}\phi)\phi$$

$$= \theta^{\mathsf{T}}(\gamma\phi' - \phi)\phi + r\phi$$

$$= \phi(\gamma\phi' - \phi)^{\mathsf{T}}\theta + r\phi$$

$$\mathbb{E}[\Delta\theta] \propto -\mathbb{E}\left[\phi(\phi - \gamma\phi')^{\mathsf{T}}\right]\theta + \mathbb{E}[r\phi]$$

$$\mathbb{E}[\Delta\theta] \propto -A\theta + b$$
convergent if
 $A \text{ is pos. def.}$
therefore, at
the TD
 $\theta^* = A^{-1}b$
LSTD computes this directly
fixpoint:
 $-\frac{1}{2}\nabla_{\theta}\text{MSPBE} = -A^{\mathsf{T}}C^{-1}(A\theta - b)$
always pos. def.
 $C = \mathbb{E}\left[\phi\phi^{\mathsf{T}}\right]$
covariance
matrix

Example: Go

- Learn a linear value function (probability of winning) for 9x9 Go from self play
- One million features, each corresponding to a template on a part of the Go board

Summary

		ALGORITHM						
		$TD(\lambda),$ Sarsa (λ)	Approx. DP	$\begin{array}{l} LSTD(\lambda),\\ LSPE(\lambda) \end{array}$	Fitted-Q	Residual gradient	GDP	$\begin{array}{c} {\rm GTD}(\lambda),\\ {\rm GQ}(\lambda) \end{array}$
ISSUE	Linear computation	\checkmark	\checkmark	*	*	\checkmark	\checkmark	\checkmark
	Nonlinear convergent	*	*	*	\checkmark	\checkmark	\checkmark	\checkmark
	Off-policy convergent	*	*	\checkmark	*	\checkmark	\checkmark	\checkmark
	Model-free, online	\checkmark	*	\checkmark	×	\checkmark	₩	\checkmark
	Converges to PBE = 0	\checkmark	\checkmark	\checkmark	\checkmark	*	\checkmark	\checkmark