More on Hierarchical Reinforcement Learning

With thanks to Rich Sutton, Satinder Singh, Gheorghe Comanici, Anna Harutyunyan, Andre Barreto, David
Silver, Pierre-Luc Bacon, Jean Harb, Shibl Mourad, Khimya Khetarpal, Zafarali Ahmed, David Abel, Sasha
Vezhnevets, Shaobo Hou, Philippe Hamel, Eser Aygun, Diana Borsa, Justin Novosad, Will Dabney, Nicholas

Heess, Remi Munos

COMP579 Lecture 18, 2025

Recall: Options

e An option w consists of 3 components

— An initiation set I,, C S (aka precondition)
— A policy m,, : § x A — [0, 1]

Tw(a|s) is the probability of taking a in s when following option w
— A termination condition 8, : S — [0, 1]:

B, (s) is the probability of terminating the option w upon entering s

e Eg., robot navigation: if there is no obstacle in front (1), go forward
(m,,) until you get too close to another object (5,)

e Inspired from macro-actions / behaviors in robotics / hybrid planning
and control

Cf. Sutton, Precup & Singh, 1999; Precup, 2000

COMP579 Lecture 18, 2025 1

Recall: Decision-Making with Options

Time —

MDP /\/\/ Istate
SMDP /W

Options)'/\ /\ —
over MDP A

Learning and planning algorithms are the same at all levels of abstraction!

COMP579 Lecture 18, 2025

How Should Options Be Created?

e Options can be given by a system designer (eg robotics)

e If subgoals / secondary reward structure is given, the option policy can be
obtained, by solving a smaller planning or learning problem (cf. Precup,
2000)

— Eg. acquiring certain objects in a game
— Eg. Intrinsic motivation

o What is a good set of subgoals / options?
e This is a representation discovery problem
e Studied a lot over the last 20 years

e Bottleneck states and change point detection currently the most
successful methods

COMP579 Lecture 18, 2025 3

Bottleneck States

"} A
L4 N

e Perhaps the most explored idea in options construction
e A bottleneck allows “circulating” between many different states
e Lots of different approaches!
— Frequency of states (McGovern et al, 2001, Stolle & Precup, 2002)
— Graph partitioning / state graph analysis (Simsek et al, 2004, Menache
et al, 2004, Bacon & Precup, 2013) / graph Laplacian (eg Klissarov

and Machado, 2023)
— Information-theoretic ideas (Peters et al., 2010)

e People seem quite good at generating these (cf. Botvinick, 2001, Solway
et al, 2014)
e Main drawback: expensive both in terms of sample size and computation

COMP579 Lecture 18, 2025 4

1.0

Simpler ldea: Random Subgoals

PFV]

0.8 F
0.6 |-
0.4F

0.2F
oo R

0.0

COMP579 Lecture 18, 2025

0.2

0.4 0.6 0.8 1.0

1.0
0.8
0.6
0.4
0.2
0.0

0.0 0.2 0.4

LAV

% &> :

C‘D“'?G@@%

0.8 1.0

Cf. Mann, Mannor & Precup, 2015

Inventory management application

e Manage a warehouse that can stock 8 different commodities
e At most 500 items can be stored at any given time
e Demand is stochastic and depends on time of year

e Negative rewards are given for unfulfilled orders and for the cost of
ordered items

e Hand-crafted options: order nothing until some threshold is crossed

e Primitive actions: specify amount of order for each item

COMP579 Lecture 18, 2025 6

Inventory management results

e Comparing a random policy and a 1-step greedy choice with using just
primitives (PFVI) using primitives and hand-crafted options (OFVI),
using “landmarks” (LOFVI) and using landmarks and only computing
values for landmarks states (LAVI)

7000

6000 -

5000 |

4000 -

G 0 0 0 0 0 0 0 00 O O O O O {
- LOFVI(100)

== | LAVI(100)
== OFVI

— PFVI

¢=—¢ 1-Step Greedy
= Rand i

3000 ¢4

Cumulative Reward

Do
(=3
=3
[=}

Discounted

1000 |-

0 5 10 15 20
lteration #

e Randomly generated landmarks/subgoals perform much better

COMP579 Lecture 18, 2025 7

Performance and time evaluation

e Performance of initial and final policy (left) and running time (right)
averaged offer 20 independent runs

7000 —

wW
[=}

6000 -

S~}
ot

(==}
(=}
(=}
T
Do
(=]

4000

15

Performance
]
g

—
[=}

2000

Time (s) per lteration

1000

o) NS > 5 S &N \3

S N N 0 N SO ~\

& < 3 Q RS S <

¢ & K ¢ T ®] S 8

e Computing values only at landmark states yields a good policy almost
immediately

e Handcrafted options are better than primitives in the beginning but
slightly worse in the long run but randomly generated landmarks are
much better

COMP579 Lecture 18, 2025 8

Option-Critic: Learn Options that Optimize Return

e Explicitly state an optimization objective and then solve it to find a set
of options

e Handle both discrete and continuous set of state and actions

e Learning options should be continual (avoid combinatorially-flavored
computations)

e Options should provide improvement within one task (or at least not
cause slow-down...)

COMP579 Lecture 18, 2025 9

Actor-Critic Architecture

Actor
{ Po}fcy }
Gradient

Critic TD error
st)f Valu'le @1
| function

Tt

()

L Environment ¥

e Clear optimization objective: average or discounted return
e Continual learning
e Handles both discrete and continuous states and actions

COMP579 Lecture 18, 2025

Option-Critic Architecture

St

Behavior policy

Gradients

Critic (Qu. A
Q

U,

Tt

TD error

Environment

at

e Given a number of desired options, optimize internal policies and

termination conditions using the cumulative reward signal

COMP579 Lecture 18, 2025

cf. Bacon et al, AAAI'2017

11

Results: Transfer in Rooms Domain
Hallways Initial goal Uniformly random goal

l/

500 T
— AC
‘\ Sarsa
OC 2 options
400 ‘ OC 4 options H
{ —— OC 6 options
— OC 8 options
300 | e
n
o
5]
et
n
200 \M
v i L _

l l l
0 500 1000 1500 2000
Episodes

COMP579 Lecture 18, 2025 12

Option-Critic Architecture

Last 4 frames Dense layer
84 x 84 pixels 512 units
32 filters G%Lfiltlelrs 64 filters R
/ 8 X 8 X 3x3 Qo(-]s)
@‘ Eﬂ+ |] Bo(s,)
W@("Sa)

e Given a number of desired options, optimize internal policies and
termination conditions using the reward signal

e DQN-style or advantage asynchronous option-critic (A20C) (other
choices possible)

COMP579 Lecture 18, 2025 13

Quantitative results in Atari games

2500

10000
2000

8000 ”A/»n
)
1500

S 6000
:>:° 4000 1000
2000 - — - -
— Option-Critic 500 — Option-Critic
0 — DQN — DQN

0 50 100 150 200 0O 50 100 150 200
Epoch Epoch
(a) Asterix (b) Ms. Pacman
8000
10000[{— Option-Critic
— DQN
8000 Q W 6000 /\“"\\ ,/-/'WJ
6000 4000
4000
2000 2000
— Option-Critic
0 0 — DQN
0 50 100 150 200 0 50 100 150 200
Epoch Epoch
(c) Seaquest (d) Zaxxon

e Performance matching or better than DQN /learning within a single task

e Out of 8 games tested, option-critic does better that published results in
7, with A3C version superior to DQN - mainly due to exploration

COMP579 Lecture 18, 2025 14

Qualitative results in Atari games

Time

Option 0

Option 1

e In Seaquest, separate options are learned to go up and down

COMP579 Lecture 18, 2025 15

Preserving Procedural Knowledge over Time

e Successful simultaneous learning of terminations and option policies

e But, as expected, options shrink over time unless additional regularization
Is imposed

Cf. time-regularized options, Mann et al, (2014)

e [ntuitively, using longer options increase the speed of learning and
planning (but may lead to a worse result in call-and-return execution)

e Diverse options are useful for exploration in continual learning setting

COMP579 Lecture 18, 2025 16

Bounded Rationality as Regularization

e Problem: optimizing return leads to option collapse (primitive actions
are sufficient for optimal behaviour)

e Bounded rationality: reasoning about action choices is expensive (energy
consumption and missed-opportunity cost)

Eg Russell, 1995, Lieder & Griffiths, 2018

e |dea: switching options incurs an additional cost

Time

Base MDP + Options

Deliberation Costs O O“O\.\O . °

e Can be shown equivalent to requiring that advantage exceeds a threshold
before switching

COMP579 Lecture 18, 2025 17

lllustration: Amidar

*

.—-Iﬁ Ifl--ll!-I fmm

IS

(a) Without a deliberation cost, options ter- (b) Options are used for extended periods (c) Termination is sparse when using the
minate instantly and are used in any scenario and in specific scenarios through a trajectory, deliberation cost. The agent terminates op-

without specialization. when using a deliberation cost. tions at intersections requiring high level de-
cisions.

e Deliberation costs prevent options from becoming too short

e [erminations are intuitive

COMP579 Lecture 18, 2025

18

Leveraging Large Models to Construct Options

Goal Image

Initial Image

o
AR

\

Y

Generate Programs

achieve the goal?
1. Move the gripper to the “M”
shaped object.

2. Move the “M” shaped object

to the brown box.

What tasks the agent must complete to

Repeat for n tasks

How would you know

the task is done?

How would you know the

final goal is completed?

What do you think the final goal is?
Move the item with the letter

"M", into the brown box.

Y

Y

—

< / D Identify Objects

def identify robot (image) :

def identify M_shape (image) :

<P

def check_distiances (image) :

Completion Check

4 / D identify Objects

def identify box (image) :

’ Random Trajectories

Verify Programs

7~ x 100

)

m s

v/ < 10% Complete J

Completion Check

<<

def check M_in_box (image) :

o
-

Use for Training l V
" <UT/ ar, ;;>

t A Tt

T

KGenerate Rollouts t é Update 7
[o o <]

< / D Identify Objects
def identify M_shape (image) :

def identify robot (image) :

> AR

4 / D Identify Objects

def identify box(image) :

< /) Task Completion Check

def check_distiances (image) :

=

{ / > Goal Completion Check

def check M in_box (image) :

S

Tasks Complete

GoaK%mplete Y J

o
AR

Expert Trajectories

Tt X 2

gy .\

COMP579 Lecture 18, 2025

Cf. Venuto et al, ICML'2024

19

lllustration: Generated Code Options Improve RL!

Pushjoints-v3 SlideJoints-v3

0.8 —— Environment Rewards 0.5 1 —— Environment Rewards

o —— VLM-CaR —— VLM-CaR
g ' . g 0.4
S 0.6 1 , T -
~ 05 / ~ 03] _
0) 7))
U 0.4 2 0’
S 03 o S /
(Vp] (Vp] >

0.2 1 / 0.1-

0.0 =
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000
Total Frames Total Frames

Cf. Venuto et al, ICML'2024, Klissarov et al, ICLR'2025

COMP579 Lecture 18, 2025 20

Predictive knowledge: Value Function

e Given a policy 7, a discount factor v and a reward function r, the value
function of the policy is given by:

ve(s) = B[7(Sk, AV TUS: = s, Apoe ~ 7]

M8 EM8

T(Sk,Ak H ’}/|St—8 AtooN]

1=t+1

7
Il

e 1 is the signal of interest for the prediction

e - defines the time scale over which we want to make the prediction (in
a very crude way)

e Optimal value function: given a discount factor v and a reward function
r, compute v+ and 7", the optimal policy wrt ~, r

COMP579 Lecture 18, 2025 21

Focusing on value function

e Definition allows us to leverage great tools: bootstrapping (as in dynamic
programming) and sampling

e We have good ideas for how to learn value functions from data using
temporal-difference methods, off-policy learning...

e Usual objection: this is restricted to one reward function and usually a
fixed time scale (discount)

e An agent may need to make predictions about many different things and
at many different time scales

COMP579 Lecture 18, 2025 22

There are many things to learn! (Adam White's thesis)

- “Lald !Ww WW
f H MM’U Tf HM*“ 1 second
\ | | - duration
I vt B
o U L"Ldj "'. ‘
AR TR
\|| 1 % AR
|"L.| M SR ; f;i’.}iim
ASA7 Arﬂ'“i‘ - " ” W ’
v ‘| J qllH 4 H 1 | l e
[N policy
. b‘j Uf-
HJn“h |
,.‘ F,I | I,'“\,\ _b!H 'M'UM Pu M f J MHU 4 argtmr:an
‘\| ‘ I.‘ | h“‘J\ ‘ policy
¥ U .
10 30 50 70 8 10 30 '35_...; 70 90 10 l:30 50 70 90
seconds seconds seconds

Sensory stream of Critterbot robot about different sensors for different policies
Can we learn about all these signals in parallel from one stream of data?

COMP579 Lecture 18, 2025 23

Temporally Abstract Predictions: General Value
Functions (GVFs)

e Given a cumulant function ¢, state-dependent continuation function ~
and policy 7, the General Value Function v . is defined as:

00 k
/Uw,c,*y<3) = E Z C(Ska Aka Sk+1> H 7<Sz)|St = S, At:oo ~ T
k=t 1=t+1

e Cumulant ¢ can output a vector (even a matrix)

e Continuation function v maps states to [0,1] (further generalizations are
possible)

e Cf. Horde architecture (Sutton et al, 2011); Adam White's thesis;
inspiration from Pandemonium architecture

e Special case: policy is optimal wrt ¢, 7, v,

approximation (UVFA) (Schaul et al, 2015)

- Universal Value Function

COMP579 Lecture 18, 2025 24

Special case: Successor States

a Recomputing value for changing reward

<
%)
®
o
(%)
b 1
- 7 . .
e~ V(s*) = = M(s*, s') Ry(s) = 0.1
5] ‘@, i=1
E g o< Compute value of state st using SR
8= 7D
R
T3 5 0 0 0 0 0 0
T O
> (@

[92]
=
I
=4
(]
—
m\

e Successor states (Dayan, 1992): expected occupancy of future states,
for a given policy

e Allow the value function for any reward to be quickly computed
e Evidence linking to the hippocampus (Stachenfeld et al, 2018)

COMP579 Lecture 18, 2025 25

Special case: Successor Features

e Successor features (Barreto et al, 2017, 2018) are a natural extension of
successor states

o |f states are defined by a feature vector ¢(s), successor features are GVFs
where the cumulant is ¢ = ¢, and there is a fixed policy and discount

e |[nteresting property highlighted in Barreto et al:

/UT(',WTC,’}/(S) — WTUW,C,’Y(S)

which leads to one-shot computation of new GVFs

COMP579 Lecture 18, 2025 26

Cpecial case: Option models

e The reward model for an option w is defined as:
rw(s) = Eu[r(Se, Ar) + (1 = Bu(St41))7w(Se41)[Se = 3]

e This means the option reward model is a GVF:

— policy is
— cumulant is the environment reward r
— continuation function is v(1 — f3,,)

e Option transition model can be similarly written as a GVF

COMP579 Lecture 18, 2025

27

Many other approaches that can be expressed as GVFs

e Option-value functions (Precup, 2000; Sutton, Precup & Singh, 1999)
e Feudal networks (Dayan, 1994; Vezhnevets et al, 2017)

e Value transport (Hung et al, 2018)

e Auxilliary tasks (Jaderberg et al, 2016)

e Are GVFs just an interesting insight or can they be useful?

COMP579 Lecture 18, 2025

28

GVFs for synthesizing new behaviors

i
L

T ®
Cumulant € = Z W; C4

(]

:

GPE + GPI —1]T

Option-keyboard - Barreto et al, 2019, based on ideas of Rich Sutton

COMP579 Lecture 18, 2025

29

Policy Evaluation and Policy Improvement

e Consider a Markov Decision Process (S, A, P,r) and a policy 7 : S —

Dist(A)

e Classic dynamic programming relies on two basic operations:

— Policy evaluation: given policy m, compute the value function V7

and/or QT

— Policy improvement: given value function)7, compute an improved

policy: m'(s) = argmax,c4 Q7 (s,a’)
e Policy improvement guarantee:

Q7 (s,a) > Q7(s,a), Vs € S,Ya € A

e Dynamic programming: interleave these steps (executed exactly)
e Reinforcement learning: carry out these steps approximately

COMP579 Lecture 18, 2025

30

Visualizing Policy Evaluation and Policy Improvement

e Generalize this process to multiple reward functions (ie tasks) r € R and
multiple policies m € 11

COMP579 Lecture 18, 2025 31

Generalized Policy Updates

e Generalized policy evaluation (GPE): compute the value of a policy 7 on
a set of reward functions R

e Generalized policy improvement (GPI). given a set of policies II and a
reward function r, compute a new policy such that:

Q:l(s, a) > supQr(s,a), Vs € SVa € A

mell

e |f we have only one r and one 7, we recover usual policy evaluation and
policy improvement

COMP579 Lecture 18, 2025 32

Visualizing Generalized Policy Updates

72
jr = -~
o N
GPE /’ ’// | I \\ (\\
s I N
7 / I | \\
7 / o \
’ ’
R y Lo \ N
[:
/ // o \\ \\ R
/ 1 N
T \
. y . ! Vrr31 \
N V7r1 I o | V‘Il’z c \
= Yr1 | = ;, T2 '
. V'sz B V™ YWQ
‘,—(\]] ‘]-(\]] ‘,—(\l]
task rq task ro task 73

COMP579 Lecture 18, 2025

33

Fast Generalized Policy Evaluation

e If we had a nice map from r to Q)7, GPE could be efficient
e Consider the class of reward functions that are linear in some feature

space ¢(s,a):

rw(s,a) = w' ¢(s,a) and Ry =A{rwlw € R}
Note that ¢ can be learned and non-linear
o Successor features: Y™ (s,a) = Ex[> " v'o(st, at)|so = s, a0 = a]

e Then the value function for a specified reward function can be easily
computed as a function of the successor features:

Qu(s,a) = w9 (s, a)

e Successor features can be pre-computed for ™ once and re-used thereafter
(a form of model!)
e Connections to hippocampus representations

COMP579 Lecture 18, 2025 34

Fast Generalized Policy Improvement

e Compute the improved policy as:

/ _ T
m(s) = arg max maxQy(s, a)

e Note that #’ could choose actions that are not chosen by any of the w

e The process takes only one iteration, after which no further change to

the policy " would happen

e |n contrast with iterative policy improvement...

COMP579 Lecture 18, 2025

35

lllustration

e The three policies correspond to three weight vectors: like red (w; =

[1,0]%), like blue (wq = [0,1]7) and like red not blue (w3 = [1, —1]%)
e Note that w can be viewed as a preference function over features!

e We can pre-train the policies that optimize for each preference, and train

their successor features as well

e Then just do GPE/GPI!

COMP579 Lecture 18, 2025

36

lllustration: Results

>
99)

5+ Q-learning after 106 sample transitions 5+ Q-learning after 10° sample transitions
7 7
2 o
o m o
=4 =4
Y |- — Q - = .
ey pr = T O T T LY st T S e
) : p o) /ﬁn—n— . —
3 / 3 >
£ , £ ST
7 / 23 -
/ S
2 / o2 /‘ o
(@)] / (@) R4
© / S i’ 5 —— GPE+GPI with true w
) / . GL_, + ," =s== GPE+GPI with regressed w
3: 1 ,/ == Q-learning . 3: 11 4» = = GPE+GPI with regressed w and learned ¢ of dimension 2
e — GPE+GPI with true w o »=+= GPE+GPI with regressed w and learned ¢ of dimension 3
_=7 =++= GPE+GPI with regressed w ==+ GPE+GPI with regressed w and learned ¢ of dimension 4
—_ . T T T - - 0
%.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 200 400 600 800 1000 1200 1400

le5

Number of sample transitions (x10°) Number of sample transitions

e Training the successor features for wy, wy over 5 x 10° samples then
GPE/GPI for wj

e GPE/GPI with successor features achieves 75x improvement in sample
size compared to Q-learning

e Obtaining w, ¢ by learning almost as good as knowing these in advance

COMP579 Lecture 18, 2025 37

Option-Keyboard for Moving Target Arena

0 EEm Option 1
30 - s Option 2
. I Option 3
2 - — Combined options
: a
=}
3 20-
@
g
£ 15- OK training 270° 90°
g
Q
% 10- = DPG Player
>
<<

== Q-Learning Player (8)
== Q-Learning Player (6)
== Q-Learning Player (4)
== DPG

== Q-Learning + Options

225° 135°

]] |]]
o 1 2 e 4 5
Steps 1e7 180°

General way to synthesize quickly new behavior for combinations of reward functions!
How to efficiently compute many GVFs/successor features form one stream of experience?

COMP579 Lecture 18, 2025 38

