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Recall: Options

e An option w consists of 3 components

— An initiation set I,, C S (aka precondition)
— A policy m,, : § x A — [0, 1]

Tw(a|s) is the probability of taking a in s when following option w
— A termination condition 8, : S — [0, 1]:

B, (s) is the probability of terminating the option w upon entering s

e Eg., robot navigation: if there is no obstacle in front (1), go forward
(m,,) until you get too close to another object (5,)

e Inspired from macro-actions / behaviors in robotics / hybrid planning
and control

Cf. Sutton, Precup & Singh, 1999; Precup, 2000
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Recall: Decision-Making with Options
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Learning and planning algorithms are the same at all levels of abstraction!
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How Should Options Be Created?

e Options can be given by a system designer (eg robotics)

e If subgoals / secondary reward structure is given, the option policy can be
obtained, by solving a smaller planning or learning problem (cf. Precup,
2000)

— Eg. acquiring certain objects in a game
— Eg. Intrinsic motivation

o What is a good set of subgoals / options?
e This is a representation discovery problem
e Studied a lot over the last 20 years

e Bottleneck states and change point detection currently the most
successful methods
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Bottleneck States

"} A
L4 N

e Perhaps the most explored idea in options construction
e A bottleneck allows “circulating” between many different states
e Lots of different approaches!
— Frequency of states (McGovern et al, 2001, Stolle & Precup, 2002)
— Graph partitioning / state graph analysis (Simsek et al, 2004, Menache
et al, 2004, Bacon & Precup, 2013) / graph Laplacian (eg Klissarov

and Machado, 2023)
— Information-theoretic ideas (Peters et al., 2010)

e People seem quite good at generating these (cf. Botvinick, 2001, Solway
et al, 2014)
e Main drawback: expensive both in terms of sample size and computation
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Inventory management application

e Manage a warehouse that can stock 8 different commodities
e At most 500 items can be stored at any given time
e Demand is stochastic and depends on time of year

e Negative rewards are given for unfulfilled orders and for the cost of
ordered items

e Hand-crafted options: order nothing until some threshold is crossed

e Primitive actions: specify amount of order for each item
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Inventory management results

e Comparing a random policy and a 1-step greedy choice with using just
primitives (PFVI) using primitives and hand-crafted options (OFVI),
using “landmarks” (LOFVI) and using landmarks and only computing
values for landmarks states (LAVI)
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e Randomly generated landmarks/subgoals perform much better
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Performance and time evaluation

e Performance of initial and final policy (left) and running time (right)
averaged offer 20 independent runs
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e Computing values only at landmark states yields a good policy almost
immediately

e Handcrafted options are better than primitives in the beginning but
slightly worse in the long run but randomly generated landmarks are
much better
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Option-Critic: Learn Options that Optimize Return

e Explicitly state an optimization objective and then solve it to find a set
of options

e Handle both discrete and continuous set of state and actions

e Learning options should be continual (avoid combinatorially-flavored
computations)

e Options should provide improvement within one task (or at least not
cause slow-down...)
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Actor-Critic Architecture
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e Clear optimization objective: average or discounted return
e Continual learning
e Handles both discrete and continuous states and actions
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Option-Critic Architecture
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e Given a number of desired options, optimize internal policies and

termination conditions using the cumulative reward signal
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Results: Transfer in Rooms Domain
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Option-Critic Architecture

Last 4 frames Dense layer
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e Given a number of desired options, optimize internal policies and
termination conditions using the reward signal

e DQN-style or advantage asynchronous option-critic (A20C) (other
choices possible)
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Quantitative results in Atari games
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e Performance matching or better than DQN /learning within a single task

e Out of 8 games tested, option-critic does better that published results in
7, with A3C version superior to DQN - mainly due to exploration
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Qualitative results in Atari games

Time

Option 0

Option 1

e In Seaquest, separate options are learned to go up and down
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Preserving Procedural Knowledge over Time

e Successful simultaneous learning of terminations and option policies

e But, as expected, options shrink over time unless additional regularization
Is imposed

Cf. time-regularized options, Mann et al, (2014)

e [ntuitively, using longer options increase the speed of learning and
planning (but may lead to a worse result in call-and-return execution)

e Diverse options are useful for exploration in continual learning setting

COMP579 Lecture 18, 2025 16



Bounded Rationality as Regularization

e Problem: optimizing return leads to option collapse (primitive actions
are sufficient for optimal behaviour)

e Bounded rationality: reasoning about action choices is expensive (energy
consumption and missed-opportunity cost)

Eg Russell, 1995, Lieder & Griffiths, 2018

e |dea: switching options incurs an additional cost

Time

Base MDP + Options

Deliberation Costs O O“O\.\O . °

e Can be shown equivalent to requiring that advantage exceeds a threshold
before switching
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lllustration: Amidar
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(a) Without a deliberation cost, options ter- (b) Options are used for extended periods (c) Termination is sparse when using the
minate instantly and are used in any scenario  and in specific scenarios through a trajectory, deliberation cost. The agent terminates op-

without specialization. when using a deliberation cost. tions at intersections requiring high level de-
cisions.

e Deliberation costs prevent options from becoming too short

e [erminations are intuitive
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Leveraging Large Models to Construct Options
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lllustration: Generated Code Options Improve RL!
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Cf. Venuto et al, ICML'2024, Klissarov et al, ICLR'2025
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Predictive knowledge: Value Function

e Given a policy 7, a discount factor v and a reward function r, the value
function of the policy is given by:

ve(s) = B[ 7(Sk, AV TUS: = s, Apoe ~ 7]

M8 EM8

T(Sk,Ak H ’}/|St—8 AtooN ]

1=t+1

7
Il

e 1 is the signal of interest for the prediction

e - defines the time scale over which we want to make the prediction (in
a very crude way)

e Optimal value function: given a discount factor v and a reward function
r, compute v+ and 7", the optimal policy wrt ~, r
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Focusing on value function

e Definition allows us to leverage great tools: bootstrapping (as in dynamic
programming) and sampling

e We have good ideas for how to learn value functions from data using
temporal-difference methods, off-policy learning...

e Usual objection: this is restricted to one reward function and usually a
fixed time scale (discount)

e An agent may need to make predictions about many different things and
at many different time scales
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There are many things to learn! (Adam White's thesis)
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Sensory stream of Critterbot robot about different sensors for different policies
Can we learn about all these signals in parallel from one stream of data?
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Temporally Abstract Predictions: General Value
Functions (GVFs)

e Given a cumulant function ¢, state-dependent continuation function ~
and policy 7, the General Value Function v . is defined as:

00 k
/Uw,c,*y<3) = E Z C(Ska Aka Sk+1> H 7<Sz)|St = S, At:oo ~ T
k=t 1=t+1

e Cumulant ¢ can output a vector (even a matrix)

e Continuation function v maps states to [0,1] (further generalizations are
possible)

e Cf. Horde architecture (Sutton et al, 2011); Adam White's thesis;
inspiration from Pandemonium architecture

e Special case: policy is optimal wrt ¢, 7, v,

approximation (UVFA) (Schaul et al, 2015)

- Universal Value Function
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Special case: Successor States

a Recomputing value for changing reward
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e Successor states (Dayan, 1992): expected occupancy of future states,
for a given policy

e Allow the value function for any reward to be quickly computed
e Evidence linking to the hippocampus (Stachenfeld et al, 2018)
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Special case: Successor Features

e Successor features (Barreto et al, 2017, 2018) are a natural extension of
successor states

o |f states are defined by a feature vector ¢(s), successor features are GVFs
where the cumulant is ¢ = ¢, and there is a fixed policy and discount

e |[nteresting property highlighted in Barreto et al:

/UT(',WTC,’}/(S) — WTUW,C,’Y(S)

which leads to one-shot computation of new GVFs

COMP579 Lecture 18, 2025 26



Cpecial case: Option models

e The reward model for an option w is defined as:
rw(s) = Eu[r(Se, Ar) + (1 = Bu(St41))7w(Se41)[Se = 3]

e This means the option reward model is a GVF:

— policy is
— cumulant is the environment reward r
— continuation function is v(1 — f3,,)

e Option transition model can be similarly written as a GVF
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Many other approaches that can be expressed as GVFs

e Option-value functions (Precup, 2000; Sutton, Precup & Singh, 1999)
e Feudal networks (Dayan, 1994; Vezhnevets et al, 2017)

e Value transport (Hung et al, 2018)

e Auxilliary tasks (Jaderberg et al, 2016)

e Are GVFs just an interesting insight or can they be useful?
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GVFs for synthesizing new behaviors
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Option-keyboard - Barreto et al, 2019, based on ideas of Rich Sutton
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Policy Evaluation and Policy Improvement

e Consider a Markov Decision Process (S, A, P,r) and a policy 7 : S —

Dist(A)

e Classic dynamic programming relies on two basic operations:

— Policy evaluation: given policy m, compute the value function V7

and/or QT

— Policy improvement: given value function )7, compute an improved

policy: m'(s) = argmax,c4 Q7 (s,a’)
e Policy improvement guarantee:

Q7 (s,a) > Q7(s,a), Vs € S,Ya € A

e Dynamic programming: interleave these steps (executed exactly)
e Reinforcement learning: carry out these steps approximately
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Visualizing Policy Evaluation and Policy Improvement

e Generalize this process to multiple reward functions (ie tasks) r € R and
multiple policies m € 11
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Generalized Policy Updates

e Generalized policy evaluation (GPE): compute the value of a policy 7 on
a set of reward functions R

e Generalized policy improvement (GPI). given a set of policies II and a
reward function r, compute a new policy such that:

Q:l(s, a) > supQr(s,a), Vs € SVa € A

mell

e |f we have only one r and one 7, we recover usual policy evaluation and
policy improvement
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Visualizing Generalized Policy Updates
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Fast Generalized Policy Evaluation

e If we had a nice map from r to Q)7, GPE could be efficient
e Consider the class of reward functions that are linear in some feature

space ¢(s,a):

rw(s,a) = w' ¢(s,a) and Ry =A{rwlw € R}
Note that ¢ can be learned and non-linear
o Successor features: Y™ (s,a) = Ex[> " v'o(st, at)|so = s, a0 = a]

e Then the value function for a specified reward function can be easily
computed as a function of the successor features:

Qu(s,a) = w9 (s, a)

e Successor features can be pre-computed for ™ once and re-used thereafter
(a form of model!)
e Connections to hippocampus representations
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Fast Generalized Policy Improvement

e Compute the improved policy as:

/ _ T
m(s) = arg max maxQy(s, a)

e Note that #’ could choose actions that are not chosen by any of the w

e The process takes only one iteration, after which no further change to

the policy " would happen

e |n contrast with iterative policy improvement...
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lllustration

e The three policies correspond to three weight vectors: like red (w; =

[1,0]%), like blue (wq = [0,1]7) and like red not blue (w3 = [1, —1]%)
e Note that w can be viewed as a preference function over features!

e We can pre-train the policies that optimize for each preference, and train

their successor features as well

e Then just do GPE/GPI!
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lllustration: Results

>
99)

5+ Q-learning after 106 sample transitions 5+ Q-learning after 10° sample transitions
7 7
2 o
o m o
=4 =4
Y |- — Q - = .
ey pr = T O T T LY st T S e
) : p o) /ﬁn—n— . —
3 / 3 >
£ , £ ST
7 / 23 -
/ S
2 / o2 /‘ o
(@)] / (@) R4
© / S i’ 5 —— GPE+GPI with true w
) / . GL_, + ," =s== GPE+GPI with regressed w
3: 1 ,/ == Q-learning . 3: 11 4» = = GPE+GPI with regressed w and learned ¢ of dimension 2
e — GPE+GPI with true w o »=+= GPE+GPI with regressed w and learned ¢ of dimension 3
_=7 =++= GPE+GPI with regressed w ==+ GPE+GPI with regressed w and learned ¢ of dimension 4
—_ . T T T - - 0 . . . . . . .
%.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 200 400 600 800 1000 1200 1400

le5

Number of sample transitions (x10°) Number of sample transitions

e Training the successor features for wy, wy over 5 x 10° samples then
GPE/GPI for wj

e GPE/GPI with successor features achieves 75x improvement in sample
size compared to Q-learning

e Obtaining w, ¢ by learning almost as good as knowing these in advance
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Option-Keyboard for Moving Target Arena
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General way to synthesize quickly new behavior for combinations of reward functions!
How to efficiently compute many GVFs/successor features form one stream of experience?
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