RL: Policy Gradient

How do we decide what to do?

» Emotions/Intuition @ ‘/;5 (8) Qt (37 CL)

e Thinking

* Reflexes/Habits _’q/

Policy Approximation

m(als, 0) 4/

We want to learn this directly!

® Policy = a function from state to action
® How does the agent select actions?
® In such a way that it can be affected by learning?
® In such a way as to assure exploration!?

® Approximation: there are too many states and/or actions to represent all
policies

® To handle large/continuous action spaces

Gradient-bandit algorithm

Store action preferences H:(a)
rather than action-value estimates ();(a)

Instead of ¢-greedy, pick actions by an exponential soft-max:

th (a) .
Elg:l eth(®)

Also store the sample average of rewards as Rt

Pr{A;=a} = (@)

(97Tf (Af)
Then update: OH(a)

/m(At)

Hii1(a) = Hy(a) + Oé(Rt — Rt) |

How can we learnﬂ(a‘s, 9) ?

How can we learn’iT(a‘S, 9) ?

@ Directly from Experience?

@ From V and Q?

@ From a World-Model M(S,A)=S"?

How can we learnﬂ(a‘s, 9) ?

@ Directly from Experience?
@ REINFORCE
@ From V and Q?
@ Actor Critic Algorithms
@ Deterministic Policy Gradient (DPG)

@ From a World-Model M(S,A)=S"?

Parametrizing t, how do we write Jt as a
neural net?

@ For discrete actions?

@ For continuous actions?

Typical example - Deep Softmax Policies
for discrete actions:

exp(p(4;, 5))

AT x4, 9)

where ¢ Is a neural network,
or any other function approximation parametrize by some
weights.

Typical example - Gaussian Policies for
continuous actions:

T I T T I T L T I T T I T T I T T | T T I T I T I U | U I U

1.0
B =0, 02=0.2, ==
- /\ H=0, 0?=1.0, == -
081 [‘ [=0, 02=5.0, =
- H=-2, %?=0.5, ==
action os

prob. / \ | -
density 0'4:_ \\\ :
0.2 i ﬁ\ :

0.0

1 I 1 1 1 1 1
1 0 1 2 3 4

action

Typical example - Gaussian Policies for
continuous actions:

where ¢ is a neural network,
//t (S) o G(S) — ¢(S) or any other function approximation

parametrize by some weights.

a(A|S) = N (u(S), a(S))

Typical example - Gaussian Policies for
continuous actions: -« ot

_. » Example: the torques for
" 4 different motors.

i where ¢ is a neural network,
//t (S) o G(S) — ¢(S) or any other function approximation

parametrize by some weights.

a(A|S) = N (u(S), a(S))

Typical example - Gaussian Policies for
continuous actions:

where ¢ is a neural network,
//t (S) o G(S) — ¢(S) or any other function approximation

parametrize by some weights.

a(A|S) = N (u(S), a(S))

Act by sampling from the distribution:

A=ulS)+olSe, e~ N(0,1)

REINFORCE ALGORITHM

o I

X. & M

Gradient-bandit algorithm

Store action preferences H:(a)
rather than action-value estimates ();(a)

Instead of ¢-greedy, pick actions by an exponential soft-max:

th (a) .
Elg:l eth(®)

Also store the sample average of rewards as Rt

Pr{A;=a} = (@)

(97Tf (Af)
Then update: OHy(a)

/m(At)

Hii1(a) = Hy(a) + Oé(Rt — Rt) |

Policy Gradient

> Idea: ascent the gradient of the objective J(0)
AO = aVgJ(0)

» Where VgJ(0) is the policy gradient

87(0)
00,
VoJ(0) =
8J(6)
00,

‘:‘ SERCS

4 0'"""‘”"9;.» S
' i T
» and « is a step-size parameter i

SRS
OO

» Stochastic policies help ensure J() is smooth
(typically/mostly)

Contextual Bandits Policy Gradient

> Consider a one-step case (a contextual bandit) such that J(6) = E,,[R(S, A)].
(Expectation is over d (states) and 7 (actions))
(For now, d does not depend on 1)

» We cannot sample R;;; and then take a gradient:
R; .4 is just a number and does not depend on 6!

» Instead, we use the identity:
VoE 1, [R(S, A)| = Ex,[R(S, A)Vg log n(A|S)] .

(Proof on next slide)
» The right-hand side gives an expected gradient that can be sampled
» Also known as REINFORCE (Williams, 1992)

The score function trick

Letrgg, = E[R(S,A) | S =35, A = 5]

Vo [R(S, 4)] = Vo Z d(s) Z mo(als) rea

- Z d(s) Z rsa Vemg(als)

=S d6) Y e molals) L)

ng(als)
_ Z d(s) Z ng(als) rsq Vo log mg(als)

= Eg 74 [R(S, A) Vg log mg(AlS)]

Policy Gradient Theorem

» The policy gradient approach also applies to (multi-step) MDPs
> Replaces reward R with long-term return G, or value g (s, a)
» There are actually two policy gradient theorems (Sutton et al., 2000):

average return per episode & average reward per step

Policy gradient theorem (episodic)

Theorem
For any differentiable policy mg(s, a), let dy be the starting distribution over states in which we
begin an episode. Then, the policy gradient of J(@) = E[Gq | So ~ do] is

T
VoJ(8) = Exy | Y ¥ (St Ar)Vo log ma(Ac1S:) | So ~ do

=0
where

gr(s,a) = Ex[G; | S = 5, A; = a]
= Ex [Rt+1 + VC]n(SHl, At+1) | St =5, A; = a]

Notice this is the return and not the reward,
G not !

Policy gradient theorem (episodic)

Theorem (
For any differentiable policy mg(s, a), let dy be theftarting distribution over states in which we
begin an episode. Then, the policy gradient of J(§) = E [Go | So ~ do] is

T
VoJ(8) = Exy | Y ¥ (St Ar)Vo log ma(Ac1S:) | So ~ do

=0
where

gr(s,a) = Ex[G; | S = 5, A; = a]
= [Eﬂ[Rt+1 + Vqﬂ(SHl, At+1) | St =5, A; = a]

Important "Trick" / Identity

> b(s)Vem(als,0) = b(s)Ve > m(als,0) =b(s)Vel =0 Vs€S

a

Important "Trick" / Identity

> b(s)Vem(als,0) = b(s)Ve > m(als,0) =b(s)Vel =0 Vs€S

Or written 1n a different way:

E (b(s) Vglog(n(als,0)) = Z b(s)p(s)m(a|s,0)Vlog(n(als,O)

s,a

Important "Trick" / Identity

> b(s)Vem(als,0) = b(s)Ve > m(als,0) =b(s)Vel =0 Vs€S

Or written 1n a different way:

E (b(s) Vylog(z(a|s.0)) =) b(s)p(s)z(a|s,0) Vlog(a(als.0)
Vor(als,0)
n(als,0)

= Z b(s)p(s)n(als,O)

Important "Trick" / Identity

> b(s)Vem(als,0) = b(s)Ve > m(als,0) =b(s)Vel =0 Vs€S

Or written 1n a different way:

E (b(s) Vylog(z(a|s.0)) =) b(s)p(s)z(a|s,0) Vlog(a(als.0)
Vor(als,0)
n(als,0)

= Z b(s)p(s)n(als,O)

— Z b(s)p(s)Vym(als,0)

Important "Trick" / Identity

> b(s)Vem(als,0) = b(s)Ve > m(als,0) =b(s)Vel =0 Vs€S

Or written 1n a different way:

E (b(s) Vylog(z(a|s.0)) =) b(s)p(s)z(a|s,0) Vlog(a(als.0)
Vor(als,0)
n(als,0)

= Z b(s)p(s)n(als,O)

— Z b(s)p(s)Vym(als,0)

=0

Policy gradient theorem (episodic)

Theorem
For any differentiable policy mg(s, a), let dy be the starting distribution over states in which we
begin an episode. Then, the policy gradient of J(@) = E[Gq | So ~ do] is

T
VoJ(8) = Exy | Y ¥ (St Ar)Vo log ma(Ac1S:) | So ~ do

=0
where

gr(s,a) = Ex[G; | S = 5, A; = a]
= Ex [Rt+1 + VC]n(SHl, At+1) | St =5, A; = a]

Episodic policy gradient theorem — proof (1/3)

» Consider trajectory T = So, Ao, R1, S1, A1, R1, 8o, . . . with return G(1) = Z V'R,

Voly(m) = V,4E [G@)] = V4) G@)p(a)

Episodic policy gradient theorem — proof (1/3)

» Consider trajectory T = So, Ao, R1, S1, A1, R1, 8o, . . . with return G(1) = Z V'R,

Voly(m) = V,4E [G@)] = V4) G@)p(a)

=) G@)Vyp()

Episodic policy gradient theorem — proof (1/3)

» Consider trajectory T = So, Ao, R1, S1, A1, R1, 8o, . . . with return G(1) = Z V'R,

Voly(m) = V,4E [G@)] = V4) G@)p(a)

=memm

o P(7)
p(7)

—Zamm

Episodic policy gradient theorem — proof (1/3)

» Consider trajectory T = So, Ao, R1, S1, A1, R1, 8o, . . . with return G(1) = Z V'R,

Voly(m) = V,4E [G@)] = V4) G@)p(a)

=Zammm

o P(7)
p(7)

—Zawm

— Z p(0)G(7) Vylog(p(r))

Episodic policy gradient theorem — proof (1/3)

» Consider trajectory T = So, Ao, R1, S1, A1, R1, 8o, . . . with return G(1) = Z V'R,

Voly(m) = V,4E [G@)] = V4) G@)p(a)

=Zammm

o P(7)
p(7)

—Zawm

— Z p(0)G(7) Vylog(p(r))

= E [G(2) V,log(p(7))]

Episodic policy gradient theorem — proof (1/3)

» Consider trajectory T = So, Ao, R1, S1, A1, R1, 8o, . . . with return G(1) = Z V'R,

VoJo(7) = VoE [G(7)] = E[G(7)Vg log p(7)]

Episodic policy gradient theorem — proof (2/3)

» Consider trajectory T = So, Ao, R1, S1, A1, R1, 8o, . . . with return G(1) = Z V'R,

VoJo(7) = VoE [G(7)] = E[G(7)Vg log p(7)]

Vg logp(t) =

Episodic policy gradient theorem — proof (2/3)

» Consider trajectory T = So, Ao, R1, S1, A1, R1, 8o, . . . with return G(1) = Z V'R,

VoJo(7) = VoE [G(7)] = E[G(7)Vg log p(7)]

Vg log p(1) = Vg log | p(So)m(Ao|So)p(S1S0, Ao)m(A1]|S1) - - -

Episodic policy gradient theorem — proof (2/3)

» Consider trajectory T = So, Ao, R1, S1, A1, R1, 8o, . . . with return G(1) = Z V'R,

VoJo(m) = VoIE |G(7)] = E[G(7)Vg log p(7)]

Vo log p(r) = Vg log {pwo)n(Aowo)p(sl 1S6, Ao)(A1]S1) - -

= Vg [log p(So) + log m(Ao|So) + log p(S1|So, Ao) + log m(A1[S1) + - -

Episodic policy gradient theorem — proof (2/3)

» Consider trajectory T = So, Ao, R1, S1, A1, R1, 8o, . . . with return G(1) = Z V'R,

VoJo(m) = VoIE |G(7)] = E[G(7)Vg log p(7)]

Vg log p(1) = Vg log | p(So)m(Ao|So)p(S1S0, Ao)m(A1]|S1) - - -

= Vg | log p(So) + log m(Ao|So) + log p(S1]S0, Ag) + log m(A1|S71) + - - -

= Vg [log m(Ao|So) + log m(A1|S1) + - - -

Episodic policy gradient theorem — proof (2/3)

» Consider trajectory T = So, Ao, R1, S1, A1, R1, 8o, . . . with return G(1) = Z V'R,

VoJo(m) = VoIE |G(7)] = E[G(7)Vg log p(7)]

Vg log p(1) = Vg log | p(So)m(Ao|So)p(S1S0, Ao)m(A1]|S1) - - -

So:

log p(So) + log m(Ao|So) + log p(S1|So0, Ag) + log m(A1|S1) + - - -

log (Ao |So) + log m(A1]S1) + - - -

T
VoJo(r) = Ex[G(r)Vg) logm(A,|S)]
t=0

Episodic policy gradient theorem — prooft (3/3)

T
VoJo(m) = Ex[G(r) > Vglogm(A;|S:)]
t=0

Episodic policy gradient theorem — prooft (3/3)

T
VoJo(m) = Ex[G(r) > Vglogm(A;|S:)]
t=0

T
=E, [Z G(7)Vg log m(A¢|Sz)]
t=0

Episodic policy gradient theorem — prooft (3/3)

T
VoJo(r) = Ex[G(r)) Vg log m(As]Sy)]
t=0

= tEﬂ[Z G(7)Vg log m(A;|S;)]

T

Exl)

t=0

Z Y Rk+1) Vg log m(Az|S:)]

Episodic policy gradient theorem — prooft (3/3)

T
VoJo(m) = Ex[G(r) > Vglogm(A;|S:)]
t=0

T
= Ex[), G(1)Vologn(A/1S1)] Why?

t=0

Vg log m(A¢|St)]

Vg logn (At |St)]

Episodic policy gradient theorem — prooft (3/3)

T
VoJo(m) = Ex[G(r) > Vglogm(A;|S:)]
t=0

T
= Ex[), G(1)Vologn(A/1S1)] Why?

t=0
Z'}’ Ry 11

T

)

t=0

Vg log m(A¢|St)]

Vg logn (At |St)]

II
%M”
/\

gk
| ‘<
5
\ij =

Important "Trick" / Identity

> b(s)Vem(als,0) = b(s)Ve > _m(als,0) =b(s)Vel =0 Vs €S

Episodic policy gradient theorem — prooft (3/3)

T
VoJo(r) = Ex[G(r)) Vg log m(As]Sy)]
t=0

T
=FE, [Z G(7)Vg log m(A¢|Sz)]
t=0

T
= [EN[Z

t=0

Z ?’kRk+1) Vg log m(A¢|St)]
k=0
T

Z (Z Y Rk+1) Vo log m(A¢[St)]

t=0

Episodic policy gradient theorem — prooft (3/3)

T
VoJo(m) = Ex[G(r) > Vglogm(A;|S:)]
t=0

T
=FE, [Z G(7)Vg log m(A¢|Sz)]
t=0

T
=|Eﬂ[:£:

t=0

Z ?’kRk+1) Vg log m(A¢|St)]
k=0

T
= [E,t[z (Z Y Rk+1) Vo log m(A;|St)]
T

t=0

[Z(Z’}’ Rk+1) Vo log m(A¢|St)]

t=0 k=t

Episodic policy gradient theorem — prooft (3/3)

T
VgJo(r) = Ex[G(r)) Vglogm(A;|S:)]
t=0

T
=FE, [Z G(7)Vg log m(A¢|Sz)]
t=0

T
= [Eﬂ'[z

t=0
T

Z ?’kRk+1) Vg log m(A¢|St)]
k=0

= Ex[(Zy Rk+1) Vo log m(A;|St)]

gM

t

M~ zw

T
Exl (Z Rk+1)V01087T(At|St)]

T
(v Gt) Vo log m(A¢|Sy)] = Ex[) 7' qn(St, A1)Vg log m(As|Sp)]
t=0

~
Il
o

Episodic policy gradients algorithm

T
VoJo(m) = Ex[) 7' qx(Si. A)Vo log m(A,]S))]
=0

> We can sample this, given a whole episode

» Typically, people pull out the sum, and split up this into separate gradients, e.g.,
AG; = YthVO log m(A;|S;)
such that E,[D}; A@;] = VgJg(r)
> Typically, people ignore the y’ term, use A@; = G, Vg log m(A;|S;)

» This is actually okay-ish — we just partially pretend on each step that we could have
started an episode in that state instead. Or if we use y=1, this is also ok.
(alternatively, view it as a slightly biased gradient)

REINFORCE (Monte-Carlo)

T

VoJo(r) = Ex[) (¥ G:) Vg log n(As|S)]
£=0

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for =,

Input: a differentiable policy parameterization 7(a|s, @)
Algorithm parameter: step size a > 0

Initialize policy parameter 8 € RY (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ao, R1,...,S7—1,Ar_1, Ry, following 7(-|-, 8)
Loop for each step of the episode t =0,1,...,T — 1:
G« E{:t-}-l 'Yk_t_le (Gt)
0 — 0+ ay'GVIn7(ALS:, 0)

Example: REINFORCE

-11.6 - ____
20k optimal
stochastic
policy
-40 +
£-greedy right
J(0) = vrg (S)
-60 7 7 |
S| G
80§ e-greedy left
-100 -l 1 1 1 1 1

0 0.1 02 03 0f4 0i5 0f6 0f7 0.8 0.9
probability of right action

Example: REINFORCE

Go

Total reward
on episode

averaged over 100 runs

-10 -

=20+

-40 -

-60 |-

-80

-90 .
1 200

oo

-11

WIWMMM#

400

Episode

600

800

1000

Improvements to REINFORCE

VoJo(m) = [En[z ‘Gt) Vo log 7(A:S1)]

@ Can we use our "trick" E (b(s) Vylog(z(als,0)) =
to improve REINFORCE?

Improvements to REINFORCE

VoJo(m) = En[z ‘Gt) Vo log 7(A:S1)]

@ Can we use our "trick" E (b(s) Vylog(z(als,0)) =
to improve REINFORCE?

=0

T
VJy(m) = E [Z y! (Gt — G_) Vglog(n)]

Improvements to REINFORCE

T
VoJo(n) = Ex[) (v Gr) Vg log n(As|S1)]
t=0

@ Can we use our "trick" E (b(s) Vylog(z(als,6)) =0
to improve REINFORCE?

T
VJy(m) = E [Z y! (Gt — (_}) Vglog(n)]

=0

T
Voly(m) = E |:Z y! (qyz'(St’ A) — sz(St)) Velog(ﬂ)]

=0

REINFORCE with baseline:

REINFORCE with Baseline (episodic), for estimating mg =~ .,

Input: a differentiable policy parameterization 7(al|s,)
Input: a differentiable state-value function parameterization v(s,w)
Algorithm parameters: step sizes a® > 0, o™ > 0

Initialize policy parameter @ € R and state-value weights w € R¢ (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ao, R1,...,S7-1, Ar_1, Ry, following 7 (-|-, 0)
Loop for each step of the episode t =0,1,...,T — 1:
G ZZ:::H YR (G1)
d — G —0(Ss,w)
w— w+ oV dVo(Sy,w)
0+ 0+ a?+'5Vinm(AsS:, 0)

REINFORCE with baseline:

-10. REINFORCE with baseline o’ =27, a

MW#MHM\W*M‘%"M v M\WW‘ MWW ~—v.(50)
20/ {J" M M*Wt T WWW f’

U REINFORCE
13
G 0 _40l. N a=2"
Total reward
on episode
averaged over 100 runs

ﬂ’

-80

90}
1 200 400 600 800 1000

Episode

Actor-Critic Algorithms

@ ACTOR: policy &
@ CRITIC: value fct V (or Q)

