
Reinforcement learning
(COMP-579)

“Part of the appeal of reinforcement learning
is that it is in a sense the whole AI problem in
a microcosm.”
– Sutton, 1992

http://incompleteideas.net/papers/challengeofRL.pdf

Outline

Administrative issues

What is reinforcement learning (RL)?

Applications of RL

If we have time: multi-arm bandits

Course Overview

Instructors: Doina Precup and Isabeau Prémont-Schwartz

TAs: Shuyuan Zhang, Ali Saheb Pasand, Zihan Wang, Valliappan
Chidambaram Adaikkappan, Farnoosh Faraji

Class web page: http://www.cs.mcgill.ca/~comp579/W25

Lectures split between Doina and Isabeau

Lectures streamed on zoom and recorded on a best-effort only; questions
only from in-person participants

Office hours: to be posted

Please use Ed for questions!!

http://www.cs.mcgill.ca/~comp579/W25

Prerequisites

Knowledge of programming in Python

Probability, calculus, linear algebra; general comfort with math

Knowledge of machine learning (McGill courses: COMP-0451,
COMP-551, COMP-652)

If in doubt about your background, contact Doina or Isabeau

Course material

Required textbook: Sutton & Barto, Reinforcement learning: An
Introduction, Second edition, 2019 (available online)

Other required or suggested materials posted on the course web
page

Schedule posted on the web page; it is strongly recommended to
do the reading in order to really benefit from this course

Evaluation

Project (36%): individual or in groups of up to 3;

Three assignments (54%, dates posted on course web page)

Quizzes (10%)

Assignments consist of a mix of theoretical and implementation/
experimentation exercises.

Specific instructions will be posted by the TA in charge of each
assignment

Reinforcement Learning

Reward: Food or
electric shock

Reward: Positive and negative
numbers

•Learning by trial-and-error
•Numerical reward is often delayed

Contrast: Supervised Learning
Supervised learning

• Training experience: a set of labeled examples of the form
hx1 x2 . . . xn, yi, where xj are values for input variables and y is the
desired output

• This implies the existence of a “teacher” who knows the right answers
• What to learn: A function mapping inputs to outputs which optimizes
an objective function

• E.g. Face detection and recognition:

Samsung Deep Learning forum, October 2016 2

Contrast: Unsupervised learning
Unsupervised learning

• Training experience: unlabelled data

• What to learn: interesting associations in the data

• E.g., clustering, dimensionality reduction, density estimation

• Often there is no single correct answer

• Very necessary, but significantly more di�cult that supervised learning

Samsung Deep Learning forum, October 2016 3

A big success story: AlphaGo

The first AI
Go player to

defeat a human
(9 dan)

champion

Example: AlphaGo

• Perceptions: state of the board
• Actions: legal moves
• Reward: +1 or -1 at the end of the game
• Trained by playing games against itself
• Invented new ways of playing which seem superior

The Game of Go

~10170 unique positions

~200 moves long

~200 branching factor

~10360 complexity

Key Features of RL

Basic Principles of Reinforcement Learning

• All machine learning is driven to minimize prediction errors

• In reinforcement learning, the algorithm makes predictions
about the expected future cumulative reward

• These predictions should be consistent, i.e. similar to
each other over time

• Errors are computed between predictions made at
consecutive time steps

• If the situation improved since last time step, pick the last
action more often

An Intersection Field!

Lecture 1: Introduction to Reinforcement Learning

About RL

Many Faces of Reinforcement Learning

Computer Science

Economics

Mathematics

Engineering Neuroscience

Psychology

Machine
Learning

Classical/Operant
Conditioning

Optimal
Control

Reward
System

Operations
Research

Bounded
Rationality

Reinforcement
Learning

Initial successes: Games
• Learned the world’s best player of Backgammon (Tesauro

1995)

• Used to make strategic decisions in Jeopardy! (IBM’s Watson
2011)

• Achieved human-level performance on Atari games from pixel-
level visual input, in conjunction with deep learning (Google
DeepMind 2015)

• In all these cases, performance was better than could be
obtained by any other method, and was obtained without
human instruction

Example: TD Gammon

 B
bar 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 W

bar

V(s, w)

w

s

Example: TD-Gammon Tesauro, 1992-1995

Start with a random Network

Play millions of games against itself

Learn a value function from this simulated experience

Six weeks later it’s the best player of backgammon in the world
Originally used expert handcrafted features, later repeated with raw board positions

estimated state value
(≈ prob of winning)

Action selection
by a shallow search

RL + Deep Learing Performance on Atari Games

Space Invaders Breakout Enduro

• Learned to play 49 games for the Atari 2600 game console, 
without labels or human input, from self-play and the score alone

• Learned to play better than all previous algorithms 
and at human level for more than half the games 

RL + Deep Learning, applied to Classic Atari Games 
Google Deepmind 2015, Bowling et al. 2012

difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).

a b

c d

 0
 200
 400
 600
 800

 1,000
 1,200
 1,400
 1,600
 1,800
 2,000
 2,200

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.

RESEARCH LETTER

5 3 0 | N A T U R E | V O L 5 1 8 | 2 6 F E B R U A R Y 2 0 1 5

Macmillan Publishers Limited. All rights reserved©2015

mapping raw
screen pixels

to predictions
of final score
for each of 18

joystick actions

Same learning
algorithm applied
to all 49 games!

w/o human tuning

RL can produce agents that play complex games!

The Game of Go

~10170 unique positions

~200 moves long

~200 branching factor

~10360 complexity
AndroidEnv: A Reinforcement Learning Platform for Android

(a) Catch (b) Rocket Sleigh (c) Press Button (d) Apple Flinger (e) 2048 (f) Blockinger

Figure 5 | Small selection of tasks used in the experiments.

showing that the same agents can have drastically di�erent performance depending on each of these
factors. For example, most agents perform well on tasks such as catch that have a simple action interface
and dense rewards, whereas the combination of a highly structured interface, time sensitivity and sparse
rewards render blockinger particularly di�cult to solve.

Since none of these tasks require high-resolution inputs to achieve optimal behavior, we down-
sampled the image observation to 80 ⇥ 120 pixels. Since this size is comparable to the resolution
commonly used in the ATARI Learning Environment, we were able to run all agents using the network
architectures reported by the authors of each corresponding agent. We generated training data using
128 distributed actors and we compiled results for each hyper-parameter configuration by averaging the
performance of 4 independent runs using di�erent seeds. See Figure 6 for an overview of the results of
these experiments.

Figure 6 | Agent performance: The baseline continuous and discrete control agents ran on selection of
AndroidEnv tasks, covering games where the action interface requires interactions including localised
touches (catch), swiping (classic_2048), and drag-and-drop (apple_flinger). Continuous control
agents perform well only in tasks where the interface does not expect complex gestures, but fail to
achieve reasonable performance otherwise. Discrete control agents display better overall performance.
We compiled the results above by averaging human-normalized scores (with 1.0 corresponding to
average human performance) over four di�erent seeds for each agent configuration. Note the clear
di�erence in task di�culty, highlighted by the performance of baseline agents, with catch being solved
by almost all agents, while no agents can generate useful behavior on blockinger.

6

More successes: Complex control tasks

• Learned acrobatic helicopter autopilots (Ng, Abbeel, Coates et
al 2006+)

• Widely used in the placement and selection of advertisements
and pages on the web (e.g., A-B tests)

• Control of tokamak plasma reactors

• In all these cases, performance was better than could be
obtained by any other method, and was obtained without
human instruction

Example: Hajime Kimura’s RL Robots

Before After

Backward New Robot, Same algorithm

RL can solve many problems!

Power plant optimization
Grinberg et al, 2014

Helicopter control

Stimulations

Seizure

Figure 2: Trace example from the dataset

which stimulation protocol was in use at each time on each
trace. Artifacts were also noted, so that they could be re-
moved from the analysis.

Reinforcement Learning
Our state space S is constructed such that each element st

is a vector of 114 continuous dimensions, summarizing past
EEG activity. Our action set A consists of 4 options: no
stimulation, and stimulation at one of the fixed frequencies
of 0.2, 0.5, or 1.0 Hz. Each frame is assigned an action at

based on the labeling information.
We define a reward function rt = R(s, a) to penalize both

stimulation and seizure frames as follows:

rt =

8
>><

>>:

�1.0 if seizure and stimulation off
�1.04 if seizure and stimulation on
+0.01 if no seizure and stimulation off
�0.03 if no seizure and stimulation on.

(11)

This reward function reflects an unresolved trade-off be-
tween the cost of a seizure and the cost of stimulation. We
arbitrarily chose to make the seizure events 25 times more
costly than stimulation events.

Each element of the training set F is then constructed by
concatenating the experience-tuples < st, at, rt, st+1 >.

For all of our experiments, the discount factor � = 0.95.
We assume a discrete time step of 2 seconds. This is suf-

ficient to compute our input features in real time, yet is suf-
ficiently short to allow flexibility in the learned policy.

Training the regression trees
The procedure we use to train the trees is analogous to that
proposed by Ernst et al. (2006). A few of the implementa-
tion details are worth mentioning.

Note that in the experiments below, we grow a set of M =
48 trees for each action. The estimate Q̂(s, a) is obtained by
averaging the value returned by each tree in the a-th set, for
the current state s.

The parameter K, the number of candidate tests created
when expanding a node, was set to 30. The value of nmin,
the minimum number of elements at each leaf, was set to 5.

Performance of the algorithm was quite robust to these
parameter choices, within an order of magnitude. This is
consistent with the original empirical analysis of tree-based
RL (Ernst et al. 2006).

During the training phase, value iteration is applied over
the set of trees. For the first 30 iterations, we allow the set
of trees to be rebuilt entirely at each iteration. After this first

phase, the structure of the trees is fixed and iterations are
applied until the Bellman error falls below a given threshold.
When the tree structure is fixed, only the leaf values in the
trees are updated. It is necessary to fix the tree structure at
some point to ensure proper convergence. Fixing the tree
structure from the beginning is not desirable, as the early
structure may be inadequate to reflect the final Q-function.

Note that the extremely randomized trees can be built
completely in parallel since they are independent of each
other. Our implementation was multithreaded to take advan-
tage of this and allow faster learning.

Testing tree-based RL strategies
To validate our method for optimizing adaptive stimulation
strategies, the obvious option is to test it directly in vitro on
epileptic brain slices, against other strategies of stimulation.
However, this approach is extremely labour-intensive, and
therefore not practical as a first test of feasibility.

An easier alternative would be to use an in silico model
of epilepsy, as is usually done to validate RL algorithms.
However to date there are no good generative models of
temporal-lobe epilepsy. Existing state-of-the-art models,
such as that of Netoff et al. (2004) do not include sponta-
neous transition into, and out of, seizures. Furthermore they
do not include any mechanisms for applying electrical stim-
ulation. So while they are interesting from a physiological
perspective, they are not useful to evaluate the effectiveness
of seizure-control strategies.

So instead, we rely on some simple empirical indicators
which we can calculate using a hold-out testing set, which
is separate from our training data. Our original data set in-
cludes recordings from 5 animal slices. Therefore during
testing we perform a 5-fold cross-validation, whereby we
train on data from 4 different animal slices, and test on the
5th. This means that data in the test set comes from a differ-
ent animal than the training data. It is well-documented that
epileptic seizures vary greatly between animals (as well as
individuals), therefore this is an important test for the gener-
alizability of our approach.

However there is a well-known difficulty in using a test
set to validate a target policy ⇡. That is the fact that the test
set was collected under a given policy, thus the target policy
(which we wish to evaluate) cannot be applied on this test
set. The most common solution is to use a form of rejection
sampling to select only those segments of the test set which
are consistent with the target policy. Recall that the test set
is divided into single-step episodes: < si, ai, ri, si+1 >. We

based method improved with smaller values for ηmin, with an expected increase in the computational
cost. Thus, in order to give an overall characterization of the performance of fitted Q-iteration, we
report the results obtained with the extreme values of ηmin. The respective instances of the tree-based
approach are referred to as T20 and T200.

Figure 3 shows the results on the epilepsy-suppression task. In order to obtain different compro-
mises of the problem’s two conflicting objectives, we varied the relative magnitude of the penalties
associated with the occurrence of seizures and with the application of an electrical pulse [19, 20].
In particular, we fixed the latter at −1 and varied the former with values in {−10,−20,−40}. This
appears in the plots as subscripts next to the algorithms’s names. As shown in Figure 3a, LSPI’s poli-
cies seem to prioritize reduction of stimulation at the expense of higher seizure occurrence, which
is clearly sub-optimal from a clinical point of view. T200 also performs poorly, with solutions rep-
resenting no advance over the fixed-frequency stimulation strategies. In contrast, T20 and KBSF
are both able to generate decision policies superior to the 1 Hz policy, which is the most efficient
stimulation regime known to date in the clinical literature [21]. However, as shown in Figure 3b,
KBSF is able to do it at least 100 times faster than the tree-based method.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0
.1

0
0

.1
5

0
.2

0

Fraction of stimulation

F
ra

ct
io

n
 o

f
se

iz
u

re
s

0Hz

0.5Hz

1Hz
1.5Hz

T20
−40

T20
−10

T200
−40

T200
−20T200

−10

KBSF
−40

KBSF
−20

KBSF
−10

LSPI
−40

LSPI
−20

LSPI
−10

T20
−20

(a) Performance. The length of the rectangles’s edges repre-
sent 99% confidence intervals.

T20
−10

T200
−10

LSPI
−10

KBSF
−10

T20
−20

T200
−20

LSPI
−20

KBSF
−20

T20
−40

T200
−40

LSPI
−40

KBSF
−40

Seconds (log)

50 200 1000 5000

(b) Run times (confidence intervals
do not show up in logarithmic scale)

Figure 3: Results on the epilepsy-suppression problem averaged over 50 runs. The algorithms used
n = 500,000 sample transitions to build the approximations. The decision policies were evaluated
on episodes of 105 transitions starting from a fixed set of 10 test states drawn uniformly at random.

6 Conclusions
We presented KBSF, a reinforcement-learning algorithm that emerges from the application of the
stochastic-factorization trick to KBRL. As discussed, our algorithm is simple, fast, has good theo-
retical guarantees, and always converges to a unique solution. Our empirical results show that KBSF
is able to learn very good decision policies with relatively low computational cost. It also has pre-
dictable behavior, generally improving its performance as the number of sample transitions or the
size of its approximation model increases. In the future, we intend to investigate more principled
strategies to select the representative states, based on the large body of literature available on kernel
methods. We also plan to extend KBSF to the on-line scenario, where the intermediate decision
policies generated during the learning process guide the collection of new sample transitions.

Acknowledgments

The authors would like to thank Keith Bush for making the epilepsy simulator available and also Yuri
Grinberg for helpful discussions regarding this work. Funding for this research was provided by the
National Institutes of Health (grant R21 DA019800) and the NSERC Discovery Grant program.

8

Epileptic seizure control

Guez et al, 2008
Barreto et al, 2011, 2012

Comparison with Industry Solution

Optimizing Energy Production Using Policy Search and
Predictive State Representations

Yuri Grinberg, Doina Precup Michel Gendreau
School of Computer Science, McGill University,
Canada

NSERC/Hydro-Québec Industrial Research Chair on the Stochastic Optimization of Electricity Generation,
CIRRELT and Département de Mathématiques et de Génie Industriel, École Polytechnique de Montréal.

Abstract
We consider the challenging practical problem of optimizing the
power production of a complex of hydroelectric power plants,
which involves control over three continuous action variables, un-
certainty in the amount of water inflows and a variety of constraints
that need to be satisfied. We propose a policy-search-based ap-
proach coupled with predictive modelling to address this problem.
This approach has some key advantages compared to other alterna-
tives, such as dynamic programming: the policy representation and
search algorithm can conveniently incorporate domain knowledge;
the resulting policies are easy to interpret, and the algorithm is nat-
urally parallelizable. Our algorithm obtains a policy which outper-
forms the solution found by dynamic programming both quantita-
tively and qualitatively.

Hydroelectric Power Plant
Plant Architecture:

• 3 turbines to control (con-
tinuous variables), one per
reservoir

• turbine R1 is controlled by
the water flow

• (stochastic) ground water
inflows

• weekly time steps

• objective: maximize aver-
age annual power production
while satisfying constraints
(see below)

Constraints in the order of priority:

1. Minimum turbine speed at R1:

2. Stable turbine speeds at R1 (±35m
3
/s) during weeks 43-45

3. Minimum water volume at reservoir R2 : 1360hm
3

Modeling Inflows Stochastic Process
Water inflows are highly uncertain!

Challenges:

• Large inflows spill water to avoid reservoir
overflow (wasted resources)

• Small inflows risk of violating constraints 1 & 3

• Volatile inflows risk of violating constraint 2

Use Mixed Observable Predic-

tive State Representations (MO-

PSR) formalism [1] - well suited

for modeling periodic processes.

Policy Search Solution
Reward = annual power produced + penalty for constraint violations

Policy (per tubine) = trucated linear function of features

Features = amount of water in reservoirs, average inflow predictions

The algorithm performs local random search within different sub-
sets of policy parameters. Line search is then done in the direction
of improvement.

1: repeat

2: Call for SEARCHWITHINBLOCK(�, I) with various predefined choices for I
3: until no improvement
4:
5: procedure SEARCHWITHINBLOCK(�, I) � I, Ic - an index set and its complement
6: repeat

7: Obtain n samples {�i � N (0, �I)}i�{1,...,n}
8: Evaluate policies defined by parameters {{�Ic , �I + �i}}i�{1,...,n} (in parallel)
9: if Ê(R{�Ic ,�I+�i}) > Ê(R�) + Threshold then

10: Find �� = arg max� Ê(R{�Ic ,�I+��i}) using a line search
11: � � {�Ic , �I + ���i}
12: until no improvement for N consecutive iterations
13: return �

Empirical Evaluation
Comparison with current industry solution (DP)

Quantitative

comparison

Mean-prod R1 v.% R1 43-

45 v.%

R1 43-45

v. mean

R2 v.%

DP 8,251GW 0% 22% 11 0%
PS no pred 8,286GW 0% 28% 2.6 1.8%
PS with pred 8,290GW 0% 3.7% 0.5 1.8%

Conclusion
� Easy to incorporate domain knowledge into policy search
� Predictive State Representations provide useful features
� Interpretable solutions
� Easy to implement the search algorithm
� Scalable using parallel computing resources

[1] Ong, S., Grinberg, Y., Pineau, J. (2013). Mixed Observability Predictive State Representations. In Proc. of 27th AAAI Conference on
Artificial Intelligence.
* We thank Grégory Emiel and Laura Fagherazzi of Hydro-Québec for many helpful discussions and for providing access to the
simulator and their DP results, and Kamran Nagiyev for porting an initial version of the simulator to Java. This research was supported
by the NSERC/Hydro-Québec Industrial Research Chair on the Stochastic Optimization of Electricity Generation, and by the NSERC
Discovery Program.

• Because of the policy form, trajectories produced are much smoother,
which helps human operators trust the system

• Performance during the critical fish spawning weeks is strikingly better

UBC, June 2015 21

Recent Successes: Complex Control Tasks

Bellemare et al, Nature, 2020 Degrave et al, Nature, 2022

Recent Successes: Chat Bots, RLHF

their preferences by pairwise comparisons which is more reliable than asking for direct rankings.
Based on this input, a reward model is trained.

In 3. Fine-Tuning with RL, the original model is fine-tuned using the reward function.
An overview can be found in the graphic below.

2.6 Human Feedback Interfaces
There are multiple ways to collect human feedback even after the model is deployed (e.g. Chat-
GPT). One option is to allow users to upvote/downvote the machine generated response. Another
option is to give users multiple alternative reponses and let them choose the best one. Humans
could also edit the output text in the interface and the model could learn what part of the output
should be modified.

2.7 Limitations of RLHF
RLHF is a very powerful method, yet it has a few limitations. First, collecting human feedback
at scale is extremely expensive since humans need to be paid. If humans are included, one must
consider that the quality of the human feedback that can highly influence the model performance.
Experts may judge information very differently than novices. Further, running such models (like
OpenAI’s ChatGPT) are computationally expensive and thus cost a lot of money. Finally, RLHF
has another serious limitation: human preferences are unreliable and as such, "reward hacking" is
a common problem. Models are rewarded responses that seem authoritative and helpful, regardless
of truth. This can lead to models making up facts and hallucinations.

Citations. To cite papers, add the associated BibTeX entries to scribe.bib. To insert a
citation, use the command \citep, such as “there has been some recent work looking at dialect

5

find drugs that bind to protein(s)
>1016~20 space (simplified + for one protein)

most molecules are bad:
- not chemically feasible
- not binders
- toxic

Needles in a haystack!

Protein

Drug

Recent/Future Successes: Exa-Scale Search for
Molecules

“empty molecule”

Build molecules block by
block

Episodes end with terminal
positive reward
(no intermediate rewards)

Molecule Search as Reinforcement Learning

Bengio et al, NeurIPS’2021

Recap: What is Reinforcement Learning?

Agent-oriented learning—learning by interacting with an
environment to achieve a goal

• more realistic and ambitious than other kinds of machine
learning

Learning by trial and error, with only delayed evaluative feedback
(reward)

• the kind of machine learning most like natural learning

• learning that can tell for itself when it is right or wrong

The beginnings of a science of mind

How to think about RL more systematically?Sequential decision making

• At time t, agent receives an observation from set X and can choose an
action from set A (think finite for now)

• Goal of the agent is to maximize long-term return

£8
It
cieat assignment

ft
H v.Exploration
D ⑤
^
O O

-

- - - -
-

CLIFAR LMB 2022 7

More details

Circles represent random variables

Squares represent decision variables

Rewards are numbers received as part of the observation

More on decision making

• For simplicity, we are assuming a discrete time scale t=0, 1, …

• If the tree has no structure at all, nothing can be learned!

• Different flavours of RL algorithms make different assumptions
about the structure of the tree

• Assumptions allow past experience to inform future decisions

• Next time: bandits - tree is a single node!

