Sequential decision making
Control:

SARSA & Q-learning

You are the Predictor

Suppose you observe the following 8 episodes:

A,0,B,0
B, 1

, A

vviivvilivvilvvilive

, A

B,0

V(B)?
V(A)?

Assume Markov states, no discounting (y = 1)

You are the Predictor

V(A)?

You are the Predictor

@ The prediction that best matches the training data is V(A)=0
@ This minimizes the mean-square-error on the training set
@ This 1s what a batch Monte Carlo method gets

@ If we consider the sequentiality of the problem, then we
would set V(A)=.75

@ This 1s correct for the maximum likelihood estimate of a
Markov model generating the data

@ 1i.e,1f we do a best fit Markov model, and assume it is
exactly correct, and then compute what it predicts (how?)

@ This is called the certainty-equivalence estimate
@ This 1s what TD gets

Application of TD
Dopamine neuron activity modelling

Empirical Data Complete Serial Compound
TD Model
1
Unpredicted A
Reward 0
-1 _
0 1 2
1
—
Predicted [-.%.; i\ TETRS R I g A
Reward [+, =%%] : w o
o
—
-1 _
0 1 2
1
Omitted . A
Reward

-1 -
0 1 2

Time

Cf. Shultz, Dayan et al, 1996; and lots of follow-up work including MNI, Psych.

Summary so far

> Introduced one-step tabular model-free TD methods

» These methods bootstrap and sample, combining aspects of

DP and MC methods

> TD methods are computationally congenial

» If the world is truly Markov, then TD methods will learn
faster than MC methods

» MC methods have lower error on past data, but higher error

on future data

Unified View

width
of backup i
Temporal- Dynamic |
difference programming
learning

Exhaustive

Monte .. search

Carlo

n-step TD Prediction

1-step TD co-step TD
and TD(0) 2-stepTD 3-step TD n-step TD and Monte Carlo

I 7 7T 17 7
1] I
[[
! !
!

O—eo+—D—eo+—)—o
v @+ —eo+——eo+—)—e

Idea: Look farther into the
future when you do TD — I
backup (1, 2, 3, ...,nsteps)l O

e

O -

Mathematics of n-step TD Returns/Targets

@ Monte Carlo: Gy = Ryy1 +yRiyo + v Res+ -+~ 1Ry

@ I'D: Gﬁl) = Riy1 +vVi(Se+1)

@ Use V; to estimate remaining return

@ n-step TD:
@ 2 step return: G\ = Ry1 +YRis2 +7*Vi(Siy2)

@ n-step return: G\ = Ry 1 +YRiyo + 42 + - + 9" Risn + 7" Vi(Sitn)

with G =G, ift+n>T

Forward View

@ Look forward from each state to determine update from
future states and rewards:

o

10

n-step TD

@ Recall the n-step return:

G,gn) = Rip1+7Riqpo+-- -+7"_1Rt+n+7”‘/§5+n_1(St+n), n>1,0<t<T—n

@ Of course, this 1s not available until time 7+n

@ The natural algorithm is thus to wait until then:

W—I—n(st) = V;ﬁ—l—n—l(st) + « G§n) — V;H—n—l(st) 3 0<t<T

@ This 1s called n-step TD

11

n-step TD for estimating V =~ v,

Initialize V (s) arbitrarily, s € §
Parameters: step size a € (0, 1], a positive integer n
All store and access operations (for S; and R;) can take their index mod n

Repeat (for each episode):
Initialize and store Sy # terminal
T < oo
Fort=0,1,2,...:
| Ift < T, then:
| Take an action according to m(+|.S¢)
| Observe and store the next reward as R;1; and the next state as Sy
| If S¢yq is terminal, then T < ¢t + 1
| 7+ t—n+1 (7 is the time whose state’s estimate is being updated)
|
|
|
|

If > 0:
G «— Z;m:-l—:l—i_n 1) i_T_lR@'
If 7+n<T,then: G+ G+ "V (Srin) (ng))

V(S7) < V(S:) + a|G -V (S:)]
Until t=717 -1

Random Walk Examples

0 0 0 0 0 1
B—®—E—00=—0-——C—0

start

@ How does 2-step TD work here?
@ How about 3-step TD?

13

A Larger Example — 19-state Random Walk

0.55 ¢~ .
0.5+ W/
n-step TD
Average 0.45 -
RMS error results
over 19 states 04
and first 10
episodes %[

03 F

0'25 - 1 1 1 1 1)
0 0.2 04 06 0.8 1

@ An intermediate « 1s best
@ An intermediate n 1S best

@ Do you think there 1s an optimal n? for every task?
14

Conclusions Regarding n-step Methods (so far)

@ Generalize Temporal-Difference and Monte Carlo learning
methods, sliding from one to the other as n increases

en=11sTD(0) n=o1s MC
@ an intermediate 7 1s often much better than either extreme
@ applicable to both continuing and episodic problems
@ There 1s some cost in computation
@ need to remember the last n states
@ learning is delayed by n steps

@ per-step computation 1s small and uniform, like TD

15

CONTROL

How to do control? GPI!

Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement,
independent of their granularity.

evaluation

m

U V

7~ greedy (V)

improvement

i)

Monte Carlo Estimation of Action Values

Estimate gr for the current policy

| RN\ R/ Re
(Sf} s, O S, 050 (5) S
Q(Sta Ar) <« Q(Sp Az) + G(Gt — Q(Sp Ar))

T—t
where G, =) yY*"'R,,,
k=1

and T is the time of entering terminal state

Monte Carlo Estimation of Action Values (Q)

1 gx(s,a) - average return starting from state s and action a
following m

1 Converges asymptotically if every state-action pair is
visited

1 Exploring starts: Every state-action pair has a non-zero
probability of being the starting pair

On-policy Monte Carlo Control

O On-policy: learn about policy currently executing
1 How do we get rid of exploring starts?
= The policy must be eternally soft:
—m(als) > 0 for all s and a

= ¢.g. e-soft policy:
AL O T AR
non-max max (greedy)

— probability of an action =

1 Similar to GPI: move policy fowards greedy policy
(e.g., e-greedy)
1 Converges to best g-soft policy

On-policy MC Control

Initialize, for all s € §, a € A(s):
Q(s,a) < arbitrary
Returns(s,a) < empty list
m(a|s) <= an arbitrary e-soft policy

Repeat forever:
(a) Generate an episode using 7
(b) For each pair s, a appearing in the episode:
(G < return following the first occurrence of s, a
Append G to Returns(s,a)
Q(s,a) < average(Returns(s,a))
(c) For each s in the episode:
A* + argmax, Q(s,a)
For all a € A(s):
l—e+¢/|A(s)] ifa=A"
m(als) <_{ e/|A(s)] [if a4 A"

15

TD-Style Learning for Action-Values

Estimate gr for the current policy

Rt+1 m Rt+2 m Rt+3
- — S, —o St ® A\ ° (Sis p—o— - - -
t St,At " St+1’At+l w Sl‘+2;At+2 " St+3,At+3

After every transition from a nonterminal state, S, , do this:

0(S,.A) < 0O(S,,A)+a| R, +70(S,,.A4,)-0(,.A)]
If S,,, 1s terminal, then define Q(S,,,A,,,) =0

+1°

Sarsa: On-Policy TD Control

Turn this into a control method by always updating the
policy to be greedy with respect to the current estimate:

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize .S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
Q(S,4) < Q(S, 4) + a[R+7Q(5", 4") — Q(S, A)]
S« S A A

until S is terminal

Windy Gridworld

s G +

standard
moves

Wind: O O O 1 1 1 2 2 1 0

undiscounted, episodic, reward = —1 until goal

Results of Sarsa on the Windy Gridworld

170 -
150 -
S G
| .
100 -
Episodes 0 001 1 12210
50
04

0 1000 2000 3000 4000 5000 6000 7000 8000

Time steps

Q-Learning: Off-Policy TD Control

One-step Q-learning:

Q(St, At) + Q(St, Ar) + {Rtﬂ + 7y max Q(Si+1,a) — Q(Sy, At)} /%\

Initialize Q(s,a),Vs € §,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S, A) + a[R + ymax, QS a) — Q(S, A)]
S« S

until S is terminal

Cliffwalking

R=-1|) > safe path
> optimal path
S The Cliff G
R PW)W
e—greedy, € =0.1
Sarsa
=25-
Reward _so- _
per Q-learning
epsiode
~751
-100 T T T T 1
0 100 200 300 400 500

Episodes

Expected Sarsa

@ Instead of the sample value-of-next-state, use the expectation!

Q(St, A) + Q(St, Ay) + :Rt—l—l + YE[Q(St+1, At+1) | St+1] — Q(Sy, At)}

— QS Ar) + o :Rt+1 +7>_ m(a|S11)Q(Sk41,a) - Q(St,At)}

! !
A\ /N

Q-learning Expected Sarsa

@ Expected Sarsa’s performs better than Sarsa (but costs more)

van Seijen, van Hasselt, Whiteson, & Wiering 2009

Performance on the Cliff-walking Task

40 F
O = e S R S SUUNE CRRLP- Sh N~ S
Q-learning
Reward R O G anante o
per 80) e .V"'V‘,.g--‘D“"E'""D . Q-learning
episode x ¥V gt
= _;“_v‘ ‘_IZI‘
x .~ @ Interim Performance
100l -7 (after 100 episodes)
g
v
m

01 02 03 04 05 06 07
@

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

0.8

0.9

20

Off-policy Expected Sarsa

@ Expected Sarsa generalizes to arbitrary behaviour policies u
@ 1n which case it includes Q-learning as the special case in
which m 1s the greedy policy
Q(St, Ar) <= Q(St, Ar) + o :Rt+1 + YE[Q(St+1, Aty1) | St1] — Q(Sk, At)}

Nothing — QS Ae) + | Reyr +7 > 7(alSi1)Q(Ser1,a) — QS At)}
changes a

here I
A /N

——

Q-learning Expected Sarsa

@ This idea seems to be new

Maximization Bias Example

100% ¢

~ N(=0.1,1)
[\ 0 0
‘,r" AN . < ° KD *+—>
75% | \. . A/ wrong N/ right
." \ START
[\
% ;' AN
’v \
Wrong 50% .
actions \Q\-Iearnlng
25% | ™
N .
B%f-—-————————— o —————— optimal
OL. . . .
1 100 200 300
Episodes

Tabular Q-learning: Q(St, Ay) + Q(St, Ar) + « [Rtﬂ + 7 max Q(St11,a) — Q(St, Ay)

Hado van Hasselt 2010
Double Q-Learning
Train 2 action-value functions, Q1 and Q>
Do Q-learning on both, but
® never on the same time steps (1 and (> are indep.)
® pick Q1 or (> at random to be updated on each step

If updating Q1, use Q> for the value of the next state:

Q1(St, Ar) < Q1(St, Ar) —I—Oé(RtH + Q2 (St+1, argmax Q1(S¢11, Cl)) —Q1(S;, At))

Action selections are (say) ¢-greedy with respect to the sum
of O1 and O»

Hado van Hasselt 2010

Double Q-Learning

Initialize Q1(s,a) and Q2(s,a),Vs € 8,a € A(s), arbitrarily
Initialize Q1 (terminal-state,-) = Qs (terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @1 and Qs (e.g., e-greedy in Q1 + Q2)
Take action A, observe R, S’
With 0.5 probabilility:

Q1(8,4) « Qu(S, 4) + a(R+7Qs (8", argmax, Q1 (5", a)) — Qu(S, 4))
else:

Q2(S, A) < Q2(S, A) + Oé(R + Q1 (9, argmax, Q2(S',a)) — Q2(S, A))
S« 5’

until S is terminal

Example of Maximization Bias

100% ¢

. N(—0.1,1)
[\ 0 0
‘," \\\ : < ® KD -—>
75% | \. oA wrong _/ right
|.' \ START
| N\
% !' AN
r' N\
Wrong 50% " .
actions “Q-learning
\ Double AN
25% \Q-learning g
50/8 ___________ V __ e et e ann opt|ma|
1 100 200 300
Episodes

Double Q-learning;
Q1(St, Ar) < Q1(St, Ar) +a [Rt+1 +7Q2(St11, argmax Q1 (Si11,a)) — Q1(St, Ay)

Summary

> Introduced one-step tabular model-free TD methods

» These methods bootstrap and sample, combining aspects of

DP and MC methods

» TD methods are computationally congenial
o If the world 1s truly Markov, then TD methods will learn

faster than MC methods

» MC methods have lower error on past data, but higher error

on future data

> Extend prediction to control by employing some form of GPI

@ On-policy control: Sarsa, Expected Sarsa

@ Off-policy control: Q-learning, Expected Sarsa

» Avoiding maximization bias with Double Q-learning

Summary

@ Extend prediction to control by employing some form of GPI
@ On-policy control: Sarsa, Expected Sarsa
@ Off-policy control: Q-learning, Expected Sarsa

@ Avoiding maximization bias with Double Q-learning

Recall: Value function approximation (VFA) replaces
the table with a general parameterized form

P

S, ey %) (S;,)
/

T'arget,

Target depends on the agent’s behavior, and in TD, also on its
current estimates!

Recall: Stochastic Gradient Descent
(SGD)

General SGD: 0+ 6 —aVs Error}
For VFA: — 0 — aVy [Target; — (S, 9)]2
Chain rule: — 0 —2a[Target; — v(St, 0)] Vo [Target; — v(St, 0)]
Semi-gradient: + 6+ «a[Target, — (5S¢, 0)] Vot (S, 0)
Linear case: « 0+ a[Target, — 0(S, 0)] $(St)

Different RL algorithms provide ditferent targets!
But share the "semi-gradient™ aspect

Recall: Different Targets

@ Monte Carlo: G, = Rit1 +vRip2 + V*Resa + - +77 'Ry

e TD: Ggl) = Rip1 +7Vi(Si41)

@ Use V; to estimate remaining return

@ n-step TD:

@2 step return: G = Ry + YRz +7?Vi(Sit2)

G(n)iR +~vR + 2_|_..._|_ n—1p AV (Shn
e n-step return: ¢ T ReETY V" Ren + 7" Va(Stan)
ng)iGtift+n2T .

Eligibility traces are

@ Another way of interpolating between MC
and TD methods

@ A way of implementing compound A-return
targets

@ A basic mechanistic idea — a short-term,
fading memory

@ Anew style of algorithm development/
analysis

Recall n-step targets

@ For example, in the episodic case,
with linear function approximation:

@ 2-step target:

G?) = Rypr + YRupo + V20, 1 Piso

@ n-step target:G\™ = Ry + -+ 7" " Rign + 770, 1, 1Grin

with ¢ =G ift+n>T

Any set of update targets can be

@ For example, half a 2-step plus half a 4-
step

A compound backup

1 (o | R

@ Called a compound backup
@ Draw each component

@ Label with the weights for that

The A-return is a compound update target

@ The A-return a target that

averages all n-step targets (If
O
1-A

@ each weighted by
An-1

G} =(1=2)) A" 'Grtin

n=1

Grgn = Rep1+vRej2+-- '+’)'"_1Rt+n +4"0(St4n,Wegn-1), 0<t<T—n,

TD())

T 7
1
T 7
-
(1-XA)A T
O

d =1

Relation to TD(0) and MC

@ The A-return can be rewritten as:

T—t—1

G = (1-0Y G+ AT,
n=1

~ %{_J

Until termination After termination

e If A =1, you get the MC target:
G = (1- 1)T§:—11n—1G§“) + 177t7lq, = @

n=1

e If A =0, you get the TD(0) target:

T—t—1 44
G = (1-0)) oG + o7l = Gy

n=1

The off-line A-return “algorithm”

@ Wait until the end of the episode (offline)

0,01 = 0, + a[GQ _ @(St,et)]w(st,et), t=0,....T—1

The A-return alg performs similarly to

n-step TD methods

Off-line A-return algorithm (from Chapter 7)

0.55

05k /AN

RMS error
at the end
of the episode o4t
over the first
10 episodes o035t

045

03}

025 C 'l ')\=.8 ' A J ' ' '} A '} J
0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

Intermediate A is best (just like intermediate n is best)
A-return slightly better than n-step

The forward view looks forward from the state
being updated to future states and rewards

il

The backward view looks back
to the recently visited states (marked by eligibility
traces)

@ Shout the TD error backwards

@ The traces fade with temporal distance
by YA

Eligibility traces (mechanism)

@ The forward view was for theory

@ The backward view is for mechanism same shape as 0

/

€ © R™ > 0
@ New memory vector called eligibility trace

@ On each step, decay each component by
yA and increment the trace for the
current state by 1

® Accumulating trace

€0 = 0,
e; = V0(S5:,0;) +vAei—1 49

The Semi-gradient TD(A) algorithm

9t—|—1 = 975 + ozétet
0t = Riy1 +y0(St4+1,0¢) — 0(S:,0:)

€0 = 07
e = V0(5:,0:) + e

50

TD(2) performs similarly to offline A-

Tabular 19-state random walk task

TD()) Off-line A-return algorithm

(from the previous section)

055+,
AN
05k i "

RMS error = sk
at the end
of the episode o4}
over the first
10 episodes ©935[

03}

025 Ly 1 1 ' I] I 1 1 ' I]
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1

Can we do better? Can we update online?

51

Conclusions

» Value-function approximation by stochastic gradient descent
enables RL to be applied to arbitrarily large state spaces

« Most algorithms just carry over the targets from the tabular case
« With bootstrapping (TD), we don'’t get true gradient descent methods

* this complicates the analysis

e but the linear, on-policy case is still guaranteed convergent

e and learning is still much faster

Value function approximation (VFA) for
control

Sy = %) G(S:, A, 0)

(Semi-)gradient methods carry over to control
in the usual on-policy GPI way

* Always learn the action-value function of the current policy

« Always act near-greedily wrt the current action-value estimates

e The learning rule is:

0;11 =06+ a|U — ¢S, Ay, 91&)] Vq(St, At, 6)

(Semi-)gradient methods carry over to control

011 =0+« [Ut — q(St, Ay, Ht)] Va(Si, At, 04)

Episodic Semi-gradient Sarsa for Estimating § ~ ¢.

Input: a differentiable function §: 8 x A x R” — R

Initialize value-function weights 8 € R™ arbitrarily (e.g., 8 = 0)
Repeat (for each episode):
S, A + initial state and action of episode (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
If S" is terminal:
0+« 6+alR—q(S,A,0)]Vi(S, A,b)
Go to next episode
Choose A’ as a function of §(5',-,80) (e.g., e-greedy)
0« 0+alR+vq(S,A',0) — (S, A,0)]Vi(S, A,0)
S« 5
A+ A

n-step semi-gradient Sarsa is better for
n>1

Orin = Orin-1+a |G = (St, Ar, Orrn1)| Va(Sy, At Orin-1), 0t <T

300

280

1000 [Mountain Car

Steps per episode 260

averaged over
first 50 episodes
and 100 runs 240 |

Mountain Car “°r

Steps per episode
log scale

¢ x number of tilings (8
averaged over 100 runs 200 - gs (8)

100 -

0 500
Episode

Conclusions

e Control is straightforward in the on-policy case

e Formal results (bounds) exist for the linear, on-

policy case (eg. Gordon, 2000, Perkins & Precup,
2003 and follow-up work)

e we get chattering near a good solution, not
convergence

DQN

(Mnih, Kavukcuoglu, Silver, et al,, Nature 2015)

e |earns to play video games from raw pixels, simply by playing
e Can learn Q function by Q-learning

Aw =« (Rt+1 + ymax Q(St+1,a; w) — Q(St, As; 'w)) VwQ(St, As; w)

32 4xA4 filters 256 hidden units Fully-connected linear
output layer

16 8x8 filters

4x84x84

1

, Fully-connected layer
Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Stack of 4 previous
frames

DQN

(Mnih, Kavukcuoglu, Silver, et al., Nature 2015)

e Learnsto play video games from raw pixels, simply by playing
e Can learn Q function by Q-learning

Aw =« (Rt+1 S ')’mf'XQ(St+1a a;w) — Q(S¢, As; w)) VwQ(St, Ag; w)

e Core components of DQN include:
o Target networks (Mnih et al. 2015)

Aw = o (Rt+1 + ngXQ(StH,a;w—) = Q(St,At;’w)) VwQ(St, Ay; w)

O Experience replay (Lin 1992): replay previous tuples (s, a, r, s)

Target Network Intuition

: _ (Slide credit: Vlad Mnih)
e Changing the value of one action

will change the value of other
Li(0;))=Esasrp| T+ max Q(s',ad’;0;) — Q(s,a;6;)

- o~
"

actions and similar states.

target

e The network can end up chasing its

own tail because of bootstrapping.
e Somewhat surprising fact - bigger
networks are less prone to this
because they alias less. % *

DQN

(Mnih, Kavukcuoglu, Silver, et al., Nature 2015)

e Many later improvements to DQN

Double Q-learning (van Hasselt 2010, van Hasselt et al. 2015)
Prioritized replay (Schaul et al. 2016)

Dueling networks (Wang et al. 2016)

Asynchronous learning (Mnih et al. 2016)

Adaptive normalization of values (van Hasselt et al. 2016)

Better exploration (Bellemare et al. 2016, Ostrovski et al,, 2017, Fortunato, Azar,
Piot et al. 2017)

Distributional losses (Bellemare et al. 2017)
Multi-step returns (Mnih et al. 2016, Hessel et al. 2017)
o ..Mmany more..

O O ORBOIEORIE)

050

Prioritized Experience Replay

“Prioritized Experience Replay”, Schaul et al. (2016)

e |dea: Replay transitions in proportion to TD error:

normalized max score

I+ ymax Q(s',a'07) — Q(5,0:0)|

140% - ' 140% 4
120%4 - 120% 4
o
100% S 100%
w
c
809% S 80%
£
©
60% - Y 60%
®
40% - g 40% 4
=
20% 4 20% 4
0% . - -— 0% -
0 50 100 150 200 0 50 100 150 200
training step (1e6) training step (1e6)

== uniform == rank-based == proportional - uniform DQN

Recall: Double DOQN

100%
—~ N(-0.1,1)
."/ \\ 0 o
| \\‘\ .
75%t | \\ D wrong right |:|
"‘ \ START
% | \
Wrong 50%! \\
actions \ “\Q-learning
\ Double N\
25% Q-learning \\%
5°/°-_____________————————————;——'—';_'_';';';Optimal
0 . . .
100 200 300

Double Q-learning:

Episodes

Q1(St, Ar) = Q1(St, Ar) + [Rt+1 +7Q2(St11, argmax Q1 (St 41, a)) —Q1(St, Ar)

Value estimates

Double DON

Wizard of Wor
~ 100
)
—
8 10
w
a0 DQN
o 1
2
= Double DQN
0 50 100 150 200
Wizard of Wor
4000 Double DQN
0 3000
S 2000
wn
1000
DQN
0
0 50 100 150 200

Training steps (in millions)

cf. van Hasselt et al, 2015)

Asterix
80
40 DQN
20
Double DQN
0 50 100 150 200
Asterix

Double DQN

DQN

0 50 100 150 200
Training steps (in millions)

Which DQN improvements

joritized DDQN

|
o
(=
o
=]
Q
5 B
E &
S

il
o
S

Millions of frames

Rainbow model, Hessel et al, 2017)

