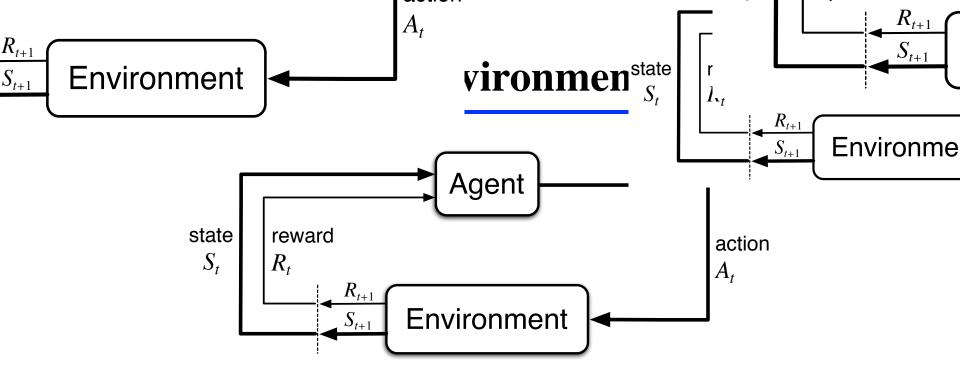
Evaluating Value Fcts: Dynamic Programming, Monte-Carlo, Temporal Difference Learning



Agent and environment interact at discrete time steps: t = 0, 1, 2, 3, ...Agent observes state at step t: $S_t \in S$ produces action at step t: $A_t \in \mathcal{A}(S_t)$ gets resulting reward: $R_{t+1} \in \mathcal{R} \subset \mathbb{R}$ and resulting next state: $S_{t+1} \in S^+$

Recall: Markov Decision Processes

- ☐ If a reinforcement learning task has the Markov Property, it is basically a Markov Decision Process (MDP).
- □ If state and action sets are finite, it is a **finite MDP**.
- **T** To define a finite MDP, you need to give:
 - state and action sets
 - one-step "dynamics"

$$p(s', r | s, a) = \mathbf{Pr}\{S_{t+1} = s', R_{t+1} = r \mid S_t = s, A_t = a\}$$

$$p(s'|s,a) \doteq \Pr\{S_{t+1} = s' \mid S_t = s, A_t = a\} = \sum_{r \in \mathcal{R}} p(s',r|s,a)$$
$$r(s,a) \doteq \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s',r|s,a)$$

Recall: Return

Agent wants to maximize it's return:

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + L = \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1},$$

. . .

where $\gamma, 0 \le \gamma \le 1$, is the **discount rate**.

shortsighted $0 \leftarrow \gamma \rightarrow 1$ farsighted

4 value functions

	state values	action values
prediction	v_{π}	q_{π}
control	v_*	q_*

- All theoretical objects, expected values
- Distinct from their estimates: $V_t(s) = Q_t(s,a)$

Today: Algorithms to Estimate v, q

- **DP:** Dynamic Programming
- **MC**: Monte-Carlo
- **TD**: Temporal Difference Learning

Values are *expected* returns

• The value of a state, given a policy:

 $v_{\pi}(s) = \mathbb{E}\{G_t \mid S_t = s, A_{t:\infty} \sim \pi\} \qquad v_{\pi} : S \to \Re$

- The value of a state-action pair, given a policy: $q_{\pi}(s, a) = \mathbb{E}\{G_t \mid S_t = s, A_t = a, A_{t+1:\infty} \sim \pi\}$ $q_{\pi}: S \times \mathcal{A} \to \Re$
- The optimal value of a state:

$$v_*(s) = \max_{\pi} v_{\pi}(s) \qquad v_* : \mathcal{S} \to \Re$$

• The optimal value of a state-action pair:

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a) \qquad q_* : \mathcal{S} \times \mathcal{A} \to \Re$$

- Optimal policy: π_* is an optimal policy if and only if $\pi_*(a|s) > 0$ only where $q_*(s, a) = \max_b q_*(s, b) \quad \forall s \in S$
 - in other words, π_* is optimal iff it is *greedy* wrt q_*

Value Functions

☐ The value of a state is the expected return starting from that state; depends on the agent's policy:

State - value function for policy
$$\pi$$
:
 $v_{\pi}(s) = E_{\pi} \left\{ G_t \mid S_t = s \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right\}$

The value of an action (in a state) is the expected return starting after taking that action from that state; depends on the agent's policy:

Action - value function for policy
$$\pi$$
:
 $q_{\pi}(s,a) = E_{\pi} \left\{ G_t \mid S_t = s, A_t = a \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a \right\}$

Policy Evaluation

Policy Evaluation: for a given policy π , compute the state-value function v_{π}

Recall: State-value function for policy π

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s\right]$$

Bellman Equation for a Policy $\boldsymbol{\pi}$

The basic idea:

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

= $R_{t+1} + \gamma \left(R_{t+2} + \gamma R_{t+3} + \gamma^{2} R_{t+4} + \cdots \right)$
= $R_{t+1} + \gamma G_{t+1}$

So:

$$v_{\pi}(s) = E_{\pi} \{ G_t | S_t = s \}$$

$$= E_{\pi} \{ R_{t+1} + \gamma v_{\pi} (S_{t+1}) | S_t = s \}$$

Or, without the expectation operator:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]$$

More on the Bellman Equation

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]$$

This is a set of equations (in fact, linear), one for each state. The value function for π is its unique solution^{*}.

* In the usual case where the system of equations is invertible, but in the current context you would really need to work hard to make it non-invertible.

Q-Function

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = a] \\ = \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_{\pi}(s') \Big].$$

Iterative Methods

$$v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_k \rightarrow v_{k+1} \rightarrow \cdots \rightarrow v_{\pi}$$

a "sweep"

A sweep consists of applying a **backup operation** to each state.

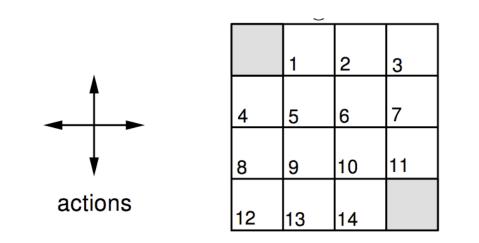
A full policy-evaluation backup:

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s') \right] \qquad \forall s \in S$$

Input π , the policy to be evaluated Initialize an array V(s) = 0, for all $s \in S^+$ Repeat

$$\begin{array}{l} \Delta \leftarrow 0\\ \text{For each } s \in \mathbb{S}:\\ v \leftarrow V(s)\\ V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma V(s')\right]\\ \Delta \leftarrow \max(\Delta, |v - V(s)|)\\ \text{until } \Delta < \theta \text{ (a small positive number)}\\ \text{Output } V \approx v_{\pi} \end{array}$$

A Small Gridworld

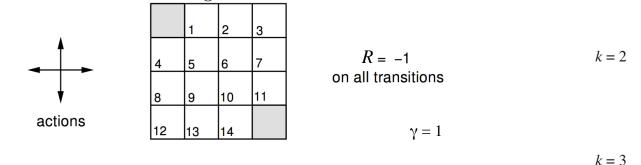




 $\gamma = 1$

- □ An undiscounted episodic task
- \square Nonterminal states: 1, 2, . . ., 14;
- One terminal state (shown twice as shaded squares)
- Actions that would take agent off the grid leave state unchanged
- □ Reward is −1 until the terminal state is reached

 π = equiprobable random action choices



□ An undiscounted episodic task

- \square Nonterminal states: 1, 2, . . ., 14;
- $\Box \text{ One terminal state (shown twice as shaded squares)} \qquad k = 10$
- Actions that would take agent off the grid leave state unchanged
- \Box Reward is -1 until the terminal state is reached

$V_{k} \,$ for the Random Policy

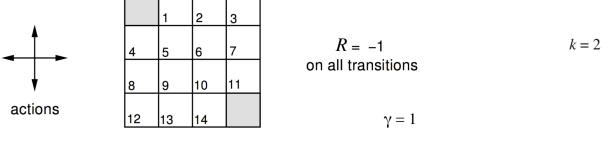
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

k = 1

 $k = \infty$

k = 0

π = equiprobable random action choices



k = 3

k = 0

k = 1

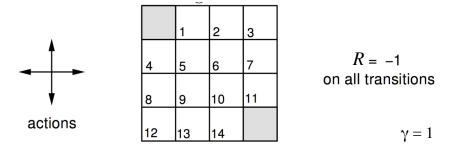
- □ An undiscounted episodic task
- \square Nonterminal states: 1, 2, . . ., 14;
- $\Box \text{ One terminal state (shown twice as shaded squares)} \qquad k = 10$
- Actions that would take agent off the grid leave state unchanged
- \square Reward is -1 until the terminal state is reached

V_k for the Random Policy

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

 π = equiprobable random action choices



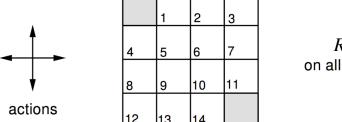
	V_k for the Random Policy		
<i>k</i> = 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
k = 1	0.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0		
<i>k</i> = 2	0.0 -1.7 -2.0 -2.0 -1.7 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.7 -2.0 -2.0 -1.7 0.0		

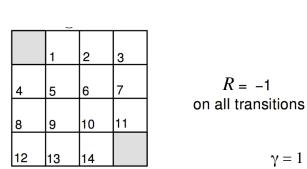
k = 3

- □ An undiscounted episodic task
- \square Nonterminal states: 1, 2, . . ., 14;
- One terminal state (shown twice as shaded squares)
- Actions that would take agent off the grid leave state unchanged
- \Box Reward is -1 until the terminal state is reached

k = 10

 π = equiprobable random action choices





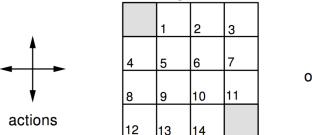
	V_k for the Random Policy
<i>k</i> = 0	0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0
<i>k</i> = 1	0.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0
<i>k</i> = 2	0.0 -1.7 -2.0 -2.0 -1.7 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.7 -2.0 -2.0 -1.7 0.0
<i>k</i> = 3	0.0 -2.4 -2.9 -3.0 -2.4 -2.9 -3.0 -2.9 -2.9 -3.0 -2.9 -2.4 -3.0 -2.9 -2.4 0.0

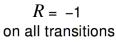
 V_{t} for the

- □ An undiscounted episodic task
- \square Nonterminal states: 1, 2, ..., 14;
- One terminal state (shown twice as shaded squares)
- Actions that would take agent off the grid leave state unchanged
- **Reward** is –1 until the terminal state is reached

k = 10

 π = equiprobable random action choices



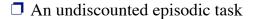


 $\gamma = 1$

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0



- \square Nonterminal states: 1, 2, . . ., 14;
- One terminal state (shown twice as shaded squares)
- Actions that would take agent off the grid leave state unchanged
- \Box Reward is -1 until the terminal state is reached

 V_k for the Random Policy

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

k = 0

k = 1

k = 2

k = 3

k = 10

 $k = \infty$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \underbrace{\sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]}_{s',r}$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \underbrace{\sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]}_{s',r}$$

$$v_*(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a)$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \underbrace{\sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]}_{s',r}$$

$$v_*(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a)$$
$$= \max_a \mathbb{E}_{\pi_*}[G_t \mid S_t = s, A_t = a]$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \underbrace{\sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]}_{s',r}$$

$$v_{*}(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_{*}}(s,a)$$

$$= \max_{a} \mathbb{E}_{\pi_{*}}[G_{t} \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \mathbb{E}_{\pi_{*}}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s, A_{t} = a]$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \underbrace{\sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]}_{s',r}$$

$$v_{*}(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_{*}}(s,a)$$

$$= \max_{a} \mathbb{E}_{\pi_{*}}[G_{t} \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \mathbb{E}_{\pi_{*}}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{*}(S_{t+1}) \mid S_{t} = s, A_{t} = a]$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

$$v_{*}(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_{*}}(s,a)$$

$$= \max_{a} \mathbb{E}_{\pi_{*}}[G_{t} \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \mathbb{E}_{\pi_{*}}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{*}(S_{t+1}) \mid S_{t} = s, A_{t} = a]$$

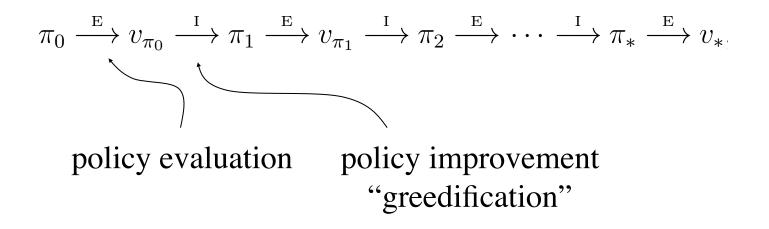
$$= \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma v_{*}(s')].$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]$$

$$v_*(s) = \max_a \sum_{s',r} p(s',r|s,a) [r + \gamma v_*(s')]$$

Also as many equations as unknowns (non-linear, this time though).

Policy Iteration



Policy Improvement

Suppose we have computed v_{π} for a deterministic policy π .

For a given state s, would it be better to do an action $a \neq \pi(s)$?

It is better to switch to action *a* for state *s* if $q_{\pi}(s,a) > v_{\pi}(s)$ Do this for all states to get a new policy $\pi' \ge \pi$ that is **greedy** with respect to v_{π} :

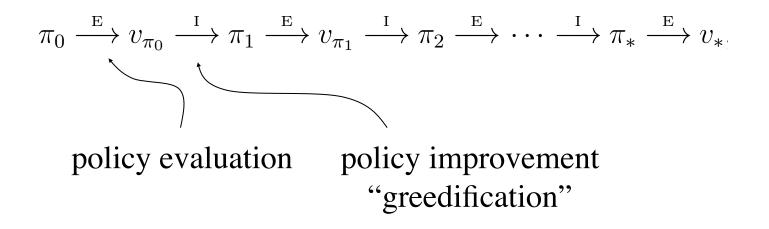
$$\pi'(s) = \arg \max_{a} q_{\pi}(s, a)$$

=
$$\arg \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = a]$$

=
$$\arg \max_{a} \sum_{s', r} p(s', r \mid s, a) \Big[r + \gamma v_{\pi}(s') \Big],$$

What if the policy is unchanged by this? Then the policy must be optimal!

Policy Iteration



	eedy Poli					
for	• the Sma	ll Gridworld		V_k for the Random Policy	Greedy Policy w.r.t. V_k	
π = equir	probable random	action choices	<i>k</i> = 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $	_ random policy
π = equiprobable random action choices			<i>k</i> = 1	0.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0		
	1 2 3 4 5 6 7 8 9 10 11	R = -1 on all transitions	<i>k</i> = 2	0.0 -1.7 -2.0 -2.0 -1.7 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.7 -2.0 -2.0 -1.7 0.0		
actions	12 13 14	$\gamma = 1$	<i>k</i> = 3	0.0 -2.4 -2.9 -3.0 -2.4 -2.9 -3.0 -2.9 -2.9 -3.0 -2.9 -2.4		
A n undisco	ounted episodic task			-3.0 -2.9 -2.4 0.0		
One termin	al states: 1, 2,, 14; al state (shown twice as at would take agent off t	s shaded squares) he grid leave state unchanged	<i>k</i> = 10	0.0 -6.1 -8.4 -9.0 -6.1 -7.7 -8.4 -8.4 -8.4 -8.4 -7.7 -6.1 -9.0 -8.4 -6.1 0.0		
□ Reward is –1 until the terminal state is reached			$k = \infty$	0.0 -14. -20. -22. -14. -18. -20. -20. -20. -20. -18. -14. -22. -20. -14. 0.0		

Greedy Policies for the Small Gridworld V_k for the **Greedy Policy** w.r.t. V_k Random Policy 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0random k = 0↤ो∢Ҭ policy 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 π = equiprobable random action choices 0.0-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 k = 1-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0 2 3 -1.7 -2.0 -2.0 0.0-1.7 -2.0 -2.0 -2.0 R = -1k = 26 7 5 4 -2.0 -2.0 -2.0 -1.7 \rightarrow on all transitions -2.0 -1.7 0.0 10 8 9 11 actions 12 14 $\gamma = 1$ 13 -2.4 -2.9 -3.0 0.0-2.9 -3.0 -2.9 -2.4 k = 3-3.0 -2.9 -2.4 -2.9 -2.9 -2.4 -3.0 0.0 An undiscounted episodic task \square Nonterminal states: 1, 2, ..., 14; 0.0 -6.1 -8.4 -9.0 optimal -6.1 -7.7 -8.4 -8.4 • One terminal state (shown twice as shaded squares) k = 10policy -8.4 -8.4 -7.7 -6.1 ₽ Actions that would take agent off the grid leave state unchanged -8.4 -6.1 -9.0 0.0**Reward** is -1 until the terminal state is reached

 $k = \infty$

-20. -14.

-18. -20. -20.

-20. -14.

0.0

14.

-20. -20. -18.

-22.

-22.

-14

0.0

 \rightarrow

Policy Iteration – One array version (+ policy)

1. Initialization $V(s) \in \mathbb{R} \text{ and } \pi(s) \in \mathcal{A}(s) \text{ arbitrarily for all } s \in S$

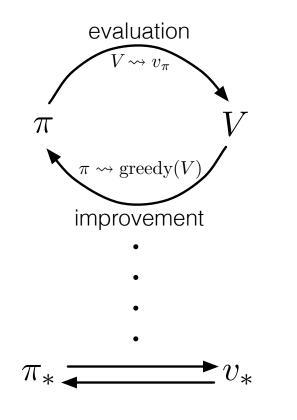
2. Policy Evaluation

Repeat $\Delta \leftarrow 0$ For each $s \in S$: $v \leftarrow V(s)$ $V(s) \leftarrow \sum_{s',r} p(s', r|s, \pi(s)) [r + \gamma V(s')]$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$ (a small positive number)

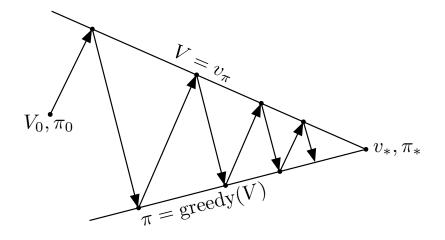
3. Policy Improvement policy-stable \leftarrow true For each $s \in S$: $a \leftarrow \pi(s)$ $\pi(s) \leftarrow \arg \max_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$ If $a \neq \pi(s)$, then policy-stable \leftarrow false If policy-stable, then stop and return V and π ; else go to 2

Generalized Policy Iteration

Generalized Policy Iteration (GPI): any interaction of policy evaluation and policy improvement, independent of their granularity.



A geometric metaphor for convergence of GPI:



Value Iteration

Recall the **full policy-evaluation backup**:

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s')\right] \qquad \forall s \in \mathcal{S}$$

Here is the **full value-iteration backup**:

$$v_{k+1}(s) = \max_{a} \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s') \right] \qquad \forall s \in \mathcal{S}$$

Initialize array V arbitrarily (e.g., V(s) = 0 for all $s \in S^+$)

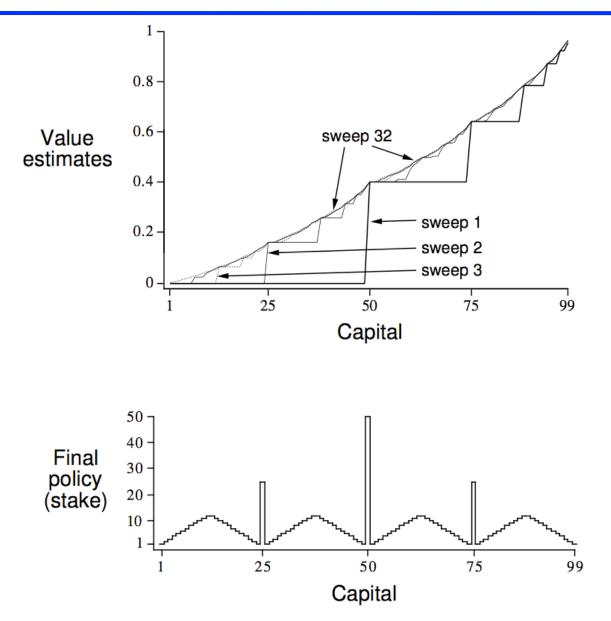
Repeat $\Delta \leftarrow 0$ For each $s \in S$: $v \leftarrow V(s)$ $V(s) \leftarrow \max_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$ (a small positive number)

Output a deterministic policy, π , such that $\pi(s) = \arg \max_a \sum_{s',r} p(s', r|s, a) [r + \gamma V(s')]$

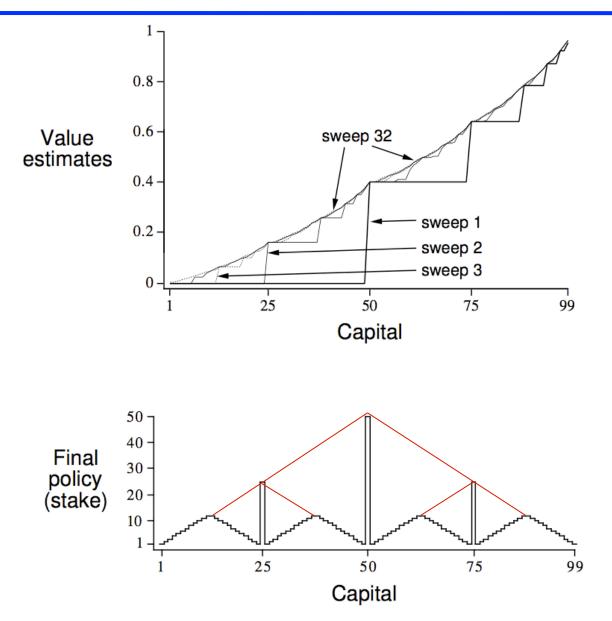
Gambler's Problem

- □ Gambler can repeatedly bet \$ on a coin flip
- Heads he wins his stake, tails he loses it
- □ Initial capital $\in \{\$1, \$2, \dots \$99\}$
- Gambler wins if his capital becomes \$100 loses if it becomes \$0
- **Coin** is unfair
 - Heads (gambler wins) with probability p = .4
- **I** States, Actions, Rewards? Discounting?

Gambler's Problem Solution



Gambler's Problem Solution



Asynchronous DP

- All the DP methods described so far require exhaustive sweeps of the entire state set.
- Asynchronous DP does not use sweeps. Instead it works like this:
 - Repeat until convergence criterion is met:
 - Pick a state at random and apply the appropriate backup
- Still need lots of computation, but does not get locked into hopelessly long sweeps
- Can you select states to backup intelligently? YES: an agent's experience can act as a guide.

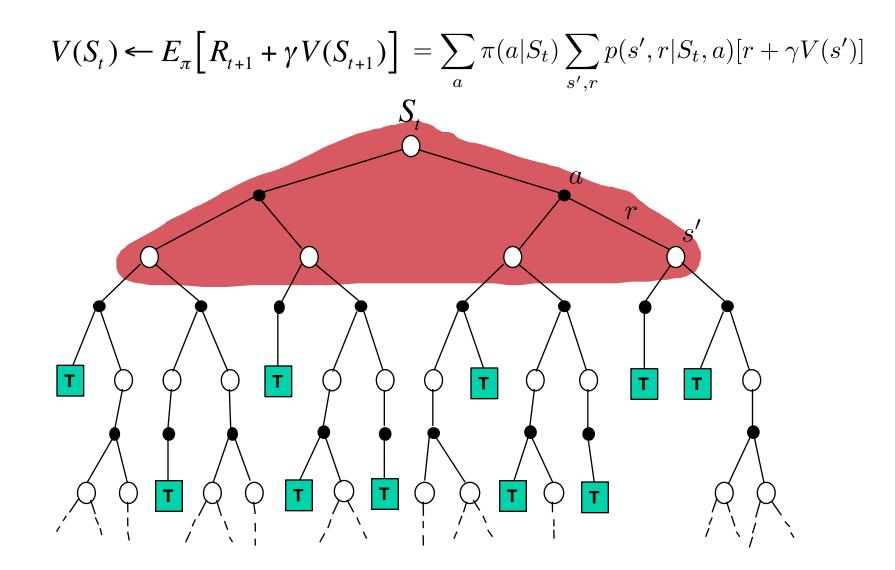
Efficiency of DP

- ☐ To find an optimal policy is polynomial in the number of states...
- BUT, the number of states is often astronomical, e.g., often growing exponentially with the number of state variables (what Bellman called "the curse of dimensionality").
- □ In practice, classical DP can be applied to problems with a few millions of states.
- Asynchronous DP can be applied to larger problems, and is appropriate for parallel computation.
- □ It is surprisingly easy to come up with MDPs for which DP methods are not practical.

Summary

- Policy evaluation: backups without a max
- Policy improvement: form a greedy policy, if only locally
- Policy iteration: alternate the above two processes
- □ Value iteration: backups with a max
- □ Full backups (to be contrasted later with sample backups)
- Generalized Policy Iteration (GPI)
- □ Asynchronous DP: a way to avoid exhaustive sweeps
- **Bootstrapping**: updating estimates based on other estimates
- Biggest limitation of DP is that it requires a *probability model* (as opposed to a generative or simulation model)

Dynamic Programming Policy Evaluation

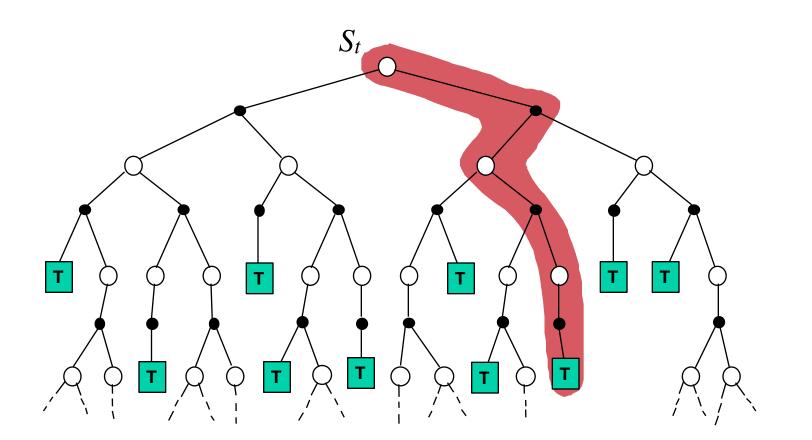


From Planning to Learning

- DP requires a *probability model* (as opposed to a generative or simulation model)
- We can interact with the world, learning a model (rewards and transitions) and then do DP
- □ This approach is called model-based RL
- **T** Full probability model may hard to learn though
- **Direct** learning of the value function from interaction
- □ Still focusing on evaluating a fixed policy

Simple Monte Carlo

$$V(S_t) \leftarrow V(S_t) + \alpha \Big[G_t - V(S_t) \Big]$$



Monte Carlo Methods

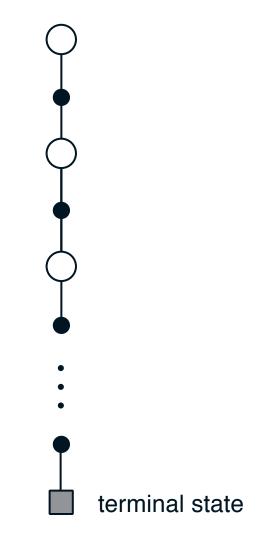
Image: Object of the second secon

Monte Carlo methods can be used in two ways:

- *model-free:* No model necessary and still attains optimality
- *simulated:* Needs only a simulation, not a *full* model
- □ Monte Carlo methods learn from *complete* sample returns
 - Defined for episodic tasks (in the book)
- Like an associative version of a bandit method

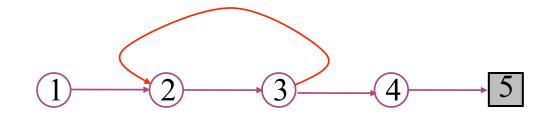
Backup diagram for Monte Carlo

- **D** Entire rest of episode included
- Only one choice considered at each state (unlike DP)
 - thus, there will be an explore/exploit dilemma
- Does not bootstrap from successor states's values (unlike DP)
- Time required to estimate one state does not depend on the total number of states



Monte Carlo Policy Evaluation

- **Goal:** learn $v_{\pi}(s)$
- **Given:** some number of episodes under π which contain *s*
- **Idea:** Average returns observed after visits to s



- Every-Visit MC: average returns for every time s is visited in an episode
- □ *First-visit MC:* average returns only for *first* time *s* is visited in an episode
- **D** Both converge asymptotically

First-visit Monte Carlo policy evaluation

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in S$

Repeat forever:

Generate an episode using π For each state *s* appearing in the episode: $G \leftarrow$ return following the first occurrence of *s* Append *G* to Returns(s) $V(s) \leftarrow$ average(Returns(s))

MC vs supervised regression

- Target returns can be viewed as a supervised label (true value we want to fit)
- **I** State is the input
- ☐ We can use any function approximator to fit a function from states to returns! Neural nets, linear, nonparametric...
- Unlike supervised learning: there is strong correlation between inputs and between outputs!
- Due to the lack of iid assumptions, theoretical results from supervised learning cannot be directly applied

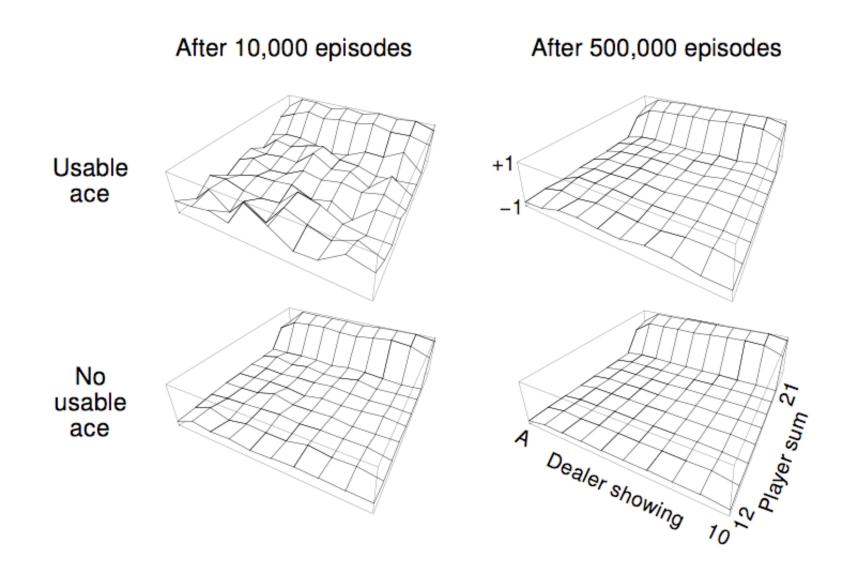
Blackjack example

Object: Have your card sum be greater than the dealer's without exceeding 21.

- States (200 of them):
 - current sum (12-21)
 - dealer's showing card (ace-10)
 - do I have a useable ace?

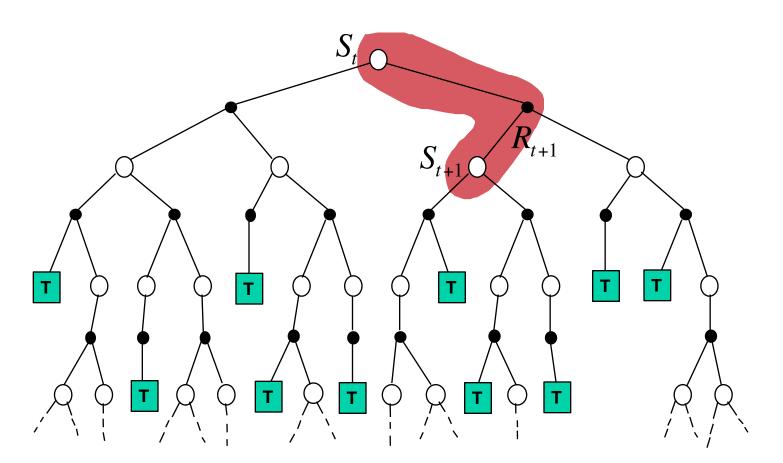
- **Reward:** +1 for winning, 0 for a draw, -1 for losing
- Actions: stick (stop receiving cards), hit (receive another card)
- **Policy:** Stick if my sum is 20 or 21, else hit
- **\Box** No discounting ($\gamma = 1$)

Learned blackjack state-value functions



Simplest TD Method

$$V(S_t) \leftarrow V(S_t) + \alpha \Big[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \Big]$$



TD methods bootstrap and sample

Bootstrapping: update involves an *estimate*

- MC does not bootstrap
- DP bootstraps
- TD bootstraps
- Sampling: update does not involve an expected value
 - MC samples
 - DP does not sample
 - TD samples

TD Prediction

Policy Evaluation (the prediction problem): for a given policy π , compute the state-value function v_{π}

Recall: Simple every-visit Monte Carlo method:

$$V(S_t) \leftarrow V(S_t) + \alpha \Big[G_t - V(S_t) \Big]$$

target: the actual return after time t

The simplest temporal-difference method TD(0):

$$V(S_t) \leftarrow V(S_t) + \alpha \Big[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \Big]$$

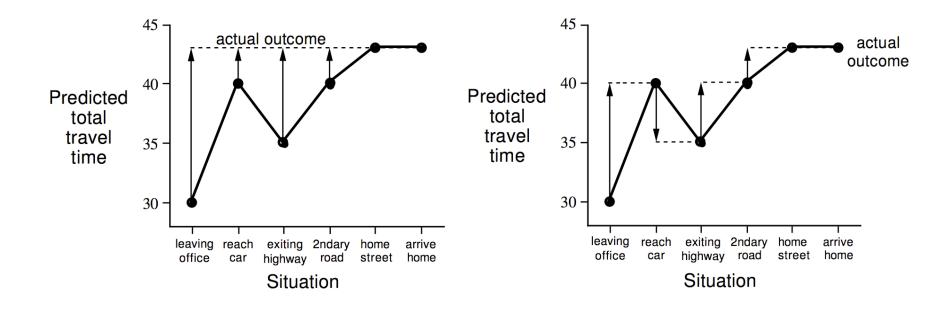
target: an estimate of the return

Example: Driving Home

	Elapsed Time	Predicted	Predicted
State	(minutes)	Time to Go	Total Time
leaving office, friday at 6	0	30	30
reach car, raining	5	35	40
exiting highway	20	15	35
2ndary road, behind truck	30	10	40
entering home street	40	3	43
arrive home	43	0	43

Driving Home

Changes recommended by Monte Carlo methods (α =1) Changes recommended by TD methods (α =1)



Advantages of TD Learning

- TD methods do not require a model of the environment, only experience
- TD, but not MC, methods can be fully incremental
 - You can learn before knowing the final outcome
 - Less memory
 - Less peak computation
 - You can learn without the final outcome

From incomplete sequences

Both MC and TD converge (under certain assumptions to be detailed later), but which is faster? - Answer next time!