Evaluating Value Fcts:
Dynamic Programming,
Monte-Carlo,
Temporal Difference Learning



Recall: Agent-Environment Interface

'_l Agent J
state reward action

St Rt At
Rt+1 [
S.. | Environment J<

\.

Agent and environment interact at discrete time steps: #=10,1,2,3,...

Agent observes state at stept: S, €8
produces action at step 7 : A, € A(S,)
gets resulting reward: R, € R C R

and resulting next state: §,,, € §*

r+1



Recall: Markov Decision Processes

1 If a reinforcement learning task has the Markov Property, it is
basically a Markov Decision Process (MDP).

1 If state and action sets are finite, it is a finite MDP.
1 To define a finite MDP, you need to give:
= state and action sets

" one-step “dynamics”

p(s',rls,a) =Pr{S;1=5,Ri1=7r|Si=s, Ai=a}

p(s'|s,a) = Pr{Sip1=5"| Si=s,4y=a} = Zp(s',r|s,a)

reR

T(S,CL) = ]E’[Rt—l—l ‘ StzsaAt:a] — y:ry:p(slaﬂsaa)

rcR s'ES§




Recall: Return

Agent wants to maximize it’s return:

Gt = Rt+1 + )/Rt+2 + yth+3 +L = EykRHkH’
k=0

where y,0 <y =<1, is the discount rate.

shortsighted 0 <y — 1 farsighted



4 value functions

state action

______________________ values i values
prediction U dr
control Uy g«

» All theoretical objects, expected values

« Distinct from their estimates: %(3) Qt(57 a)



Today: Algorithms to Estimate v, g

1 DP: Dynamic Programming

1 MC: Monte-Carlo

1 TD: Temporal Difference Learning



Values are expected returns

e The value of a state, given a policy:
Vre(s) =E{G: | St = s, Ap.oo ~ 1} Ve S = R

The value of a state-action pair, given a policy:
g=(s,a) =E{G; | St =5, A =a,Ait1.00~T}  ¢r: 8 X AR

The optimal value of a state:

V. (8) = max v, (s) Ve 1S — R

The optimal value of a state-action pair:

g« (S,a) = max qr(s,a) g« : S XA —> R

Optimal policy: m, is an optimal policy if and only if
7« (a|s) > 0 only where ¢.(s,a) = max q«(s,b) VseS

e in other words, 7 is optimal iff it is greedy wrt g,



Value Functions

1 The value of a state is the expected return starting from
that state; depends on the agent’s policy:
S, = s}

1 The value of an action (in a state) is the expected return
starting after taking that action from that state; depends on
the agent’s policy:

State - value function for policy 7 :

Vn(S) = Eyr {Gt | St = S} = En {iykRHkH
k=0

Action - value function for policy 7 :

QJ'[(S’a) = En {Gt | St = S’At = CZ} = En {iykRHkH

k=0

S =5,A = a}




Policy Evaluation

Policy Evaluation: for a given policy 7, compute the
state-value function vy

Recall: State-value function for policy

o
k
Z Y Rt+k—|—1
k=0

ve(s) = EfGy | Se=s] = E;

St_S]



Bellman Equation for a Policy n

The basic 1dea:

Gt = Rt+1 + )/Rt+2 + yth+3 tY 3I€t+4+
= Rt+1 + )/ ( Rt+2 + y Rt+3 + )/ 2I€t+4+”.)
= Rt+1 + y Gt+1

So: v,(5)=E,{G,|S, = s}

St=s}

Or, without the expectation operator:

v (8) = Z (als) Zp(s’, rls,a) [7“ + fyvﬁ(s’)}

= En {Rt+1 + }/vn (St+1)




More on the Bellman Equation

U (s) = Z m(als) Zp(s’, r|s,a) {7“ + vvﬁ(s’)}

This 1s a set of equations (in fact, linear), one for each state.
The value function for m 1s its unique solution™.

*

In the usual case where the system of equations is invertible,
but in the current context you would really need to work
hard to make it non-invertible.



Q-Function

Gr (s, a)

Eqx|Rer1 + 702 (Se41) | St=s, Ar=al
Zp(s’,r|s,a) [T‘ —|—7?J7T(5’)]

s'r

12



Iterative Methods

Vo —V1 —2 =2V —2 Vgt —2 " —2 Ugp

a “sweep” )

A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:

VEa1(s) = Zﬂ(a\s) Zp(s’, r|s,a) [7“ + ’yvk(sl)} Vs e d



Iterative Policy Evaluation — One array version

Input 7, the policy to be evaluated
Initialize an array V(s) = 0, for all s € 8
Repeat
A 0
For each s € &:
v <+ V(s)
V(s) = 3, mwlals) X, p(s's7ls, @)1 + 7V ()]
A < max(A, v — V(s)|)
until A < @ (a small positive number)
Output V =~ v,



A Small Gridworld

1

—‘— 4 S
8 9

10

11

actions

12 13

14

1 An undiscounted episodic task

1 Nonterminal states: 1,2, ..., 14;
1 One terminal state (shown twice as shaded squares)
1 Actions that would take agent off the grid leave state unchanged

1 Reward is —1 until the terminal state is reached

R = -1

on all transitions

V=1



Iterative Policy Eval
for the Small Gridworld Vi forhe

Random Policy

0.0[0.0(0.0] 0.0
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0.0/ 0.0{0.0] 0.0
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7t = equiprobable random action choices
k=1
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3 An undiscounted episodic task
(3 Nonterminal states: 1,2, ..., 14;
7 One terminal state (shown twice as shaded squares) k=10

[ Actions that would take agent off the grid leave state unchanged

(1 Reward is —1 until the terminal state is reached



Iterative Policy Eval
for the Small Gridworld

Vj, for the
Random Policy

7t = equiprobable random action choices

actions

12 113 |14

3 An undiscounted episodic task

(3 Nonterminal states: 1,2, ..., 14;

R= -1
on all transitions

v=1

7 One terminal state (shown twice as shaded squares)

[ Actions that would take agent off the grid leave state unchanged

(1 Reward is —1 until the terminal state is reached
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Iterative Policy Eval

for the Small Gridworld

Vj, for the
Random Policy
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Iterative Policy Eval
for the Small Gridworld Vi forhe

Random Policy
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Iterative Policy Eval
for the Small Gridworld

Vj, for the

Random Policy

7t = equiprobable random action choices
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Bellman Optimality Eqn

q,(s,a)

Vr(Ss) = Z m(als) Zp(s’, r|s, a) {r + ’7?}77(8/)]

21



Bellman Optimality Eqn

q,(s,a)

Vr(Ss) = Zﬂ(a|s) Zp(s’, r|s, a) {r + ’7?}77(8/)]

VU« (S) = arenf?()g) qr., (S, a)

M



Bellman Optimality Eqn

q,.(s,a)

Vr(Ss) = Zﬂ(a|s) Zp(s’, r|s, a) {r + ’}/UW(S/)]

Vx (8) — arenf?()g) qr., (8, a)

=maxE, [G; | Si=s,Ar=a]

a

23



Bellman Optimality Eqn

q,.(s,a)

Vr(Ss) = Z’ZT(CL|S) Zp(s’, r|s, a) {r + ’}/UW(S/)]

Vx (8) — arenlel()g) qr., (8, a)

=maxE, [G; | Si=s,Ar=a]

a

= maxIEm:RHl + ’)’Gt+1 | St:S, At:a]

a

24



Bellman Optimality Eqn

q,.(s,a)

Vr(Ss) = Z’ZT(CL|S) Zp(s’, r|s, a) {r + ’}/UW(S/)]

Vx (8) — arenf?()g) qr., (8, a)

=maxE, [G; | Si=s,Ar=a]

a

= maxIEm :Rt_|_1 + ’)’Gt+1 | StZS, At:a]

a

= m(?XE[RtH + Y0« (St41) | Si=s, As=a]

75



Bellman Optimality Eqn

q,.(s,a)

Vr(Ss) = Z’ZT(CL|S) Zp(s’, r|s, a) {r + ’}/UW(S/)]

Vx (8) — arenf?()g) qr., (8, a)

=maxE, [G; | Si=s,Ar=a]

a

= maxIEm :Rt_|_1 + ’)’Gt+1 | StZS, At:a]

a

= m(?XE[RtH + Y0« (St41) | Si=s, As=a]

— mngp(s’,ﬂs,a) 7+ Y. (s')].

s',r

276



Bellman Optimality Eqn

Vr(Ss) = Z’ZT(CL|S) Zp(s’, r|s, a) {r + ’7?}77(8/)]

V4 (8) = max Zp(s', r|s,a)|r + yv.(s')]

Also as many equations as unknowns (non-linear, this time though).

27



Policy Iteration

E I E 1 E 1 E
Ty — Upg —> M —> Uy —> Mg —> =+ + —> My —> Uy

i

policy evaluation  policy improvement
“greedification”



Policy Improvement

Suppose we have computed v_ for a deterministic policy .

For a given state s,
would it be better to do an action a = (s)?

It 1s better to switch to action a for state s if

q. (s,a)>v_(s)




Policy Improvement Cont.

Do this for all states to get a new policy &t" = 7 that is

greedy with respectto v_:

n'(s) = argmaxgq,(s,a)

= arg mng[RtH + YU (Sia1) | Si=s, Ay=a]

— arg max Zp(s’, T!S, CL) [7” + WUW(3/>] 3

What if the policy 1s unchanged by this?
Then the policy must be optimal!



Policy Iteration

E I E 1 E 1 E
Ty — Upg —> M —> Uy —> Mg —> =+ + —> My —> Uy

i

policy evaluation  policy improvement
“greedification”



Greedy Policies
for the Small Gridworld

Vy for the

Random Policy

Greedy Policy

7t = equiprobable random action choices

on all transitions

actions

12 [13 |14 y=1

(3 An undiscounted episodic task

[ Nonterminal states: 1,2, .. ., 14;

7 One terminal state (shown twice as shaded squares) k=10
[ Actions that would take agent off the grid leave state unchanged

[ Reward is —1 until the terminal state is reached
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Greedy Policies

[ J
for the Small Gridworld Vi for e oy Poly
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Policy Iteration — One array version (+ policy)

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation
Repeat
A<+ 0
For each s € §:
v V(s)
V(5) = Sy, Dl 5, 7() [r + 4V ()]
A < max(A, |v —V(s)])

until A < 6 (a small positive number)

3. Policy Improvement
policy-stable <— true
For each s € S:
a < 7(s)
7(s) < argmax, ZS,’Tp(s’, s, a) [7“ + ny(s’)]
If a # 7(s), then policy-stable < false
If policy-stable, then stop and return V' and 7; else go to 2



Generalized Policy Iteration

Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement,
independent of their granularity.

evaluation
m
A geometric metaphor for
T V
convergence of GPI:
7~ greedy (V)

improvement




Value Iteration

Recall the full policy-evaluation backup:
Vpt1(8) = Zw(a|s) Zp(s’, rls,a) [7‘ + ka(s’)] Vs € 8
Here is the full value-iteration backup:

V41(8) = m;xep(s', rls,a) [?“ + va(s’)] Vs € 8

s’,r



Value Iteration — One array version

Initialize array V' arbitrarily (e.g., V(s) =0 for all s € 8%)

Repeat
A0
For each s € §:
v <+ V(s)
V(s) +max, »_, .p(s',r|s,a) i+ V()]
A <+ max(A, |lv —V(s)|)
until A < @ (a small positive number)

Output a deterministic policy, m, such that
m(s) = arg max, ZS,’T p(s',rls,a) [7“ + ny(s’)}



Gambler’s Problem

1 Gambler can repeatedly bet $ on a coin flip
1 Heads he wins his stake, tails he loses it
1 Initial capital € {$1, $2, ... $99}

1 Gambler wins if his capital becomes $100
loses if it becomes $0

1 Coin is unfair

= Heads (gambler wins) with probability p = 4

1 States, Actions, Rewards? Discounting?



Gambler’s Problem Solution
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Gambler’s Problem Solution

1 -
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0.4 -
0.2 7 |=— sweep 1
P sweep 2
0 /;/ 5' sweep 3
I 25 50 75 99
Capital
50+
_ 40
Final ,_
policy
(stake) 207
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1 R I I 1 I |
1 25 50 75 99

Capital



Asynchronous DP

1 All the DP methods described so far require exhaustive
sweeps of the entire state set.

1 Asynchronous DP does not use sweeps. Instead it works like
this:

= Repeat until convergence criterion 1s met:

— Pick a state at random and apply the appropriate
backup

1 Still need lots of computation, but does not get locked into
hopelessly long sweeps

1 Can you select states to backup intelligently? YES: an agent’s
experience can act as a guide.



Efficiency of DP

1 To find an optimal policy is polynomial in the number of
states...

1 BUT, the number of states is often astronomical, e.g., often
growing exponentially with the number of state variables
(what Bellman called “the curse of dimensionality™).

1 In practice, classical DP can be applied to problems with a
few millions of states.

1 Asynchronous DP can be applied to larger problems, and is
appropriate for parallel computation.

1 It is surprisingly easy to come up with MDPs for which DP
methods are not practical.



Summary

1 Policy evaluation: backups without a max

1 Policy improvement: form a greedy policy, if only locally
1 Policy iteration: alternate the above two processes

1 Value iteration: backups with a max

1 Full backups (to be contrasted later with sample backups)
1 Generalized Policy Iteration (GPI)

1 Asynchronous DP: a way to avoid exhaustive sweeps

1 Bootstrapping: updating estimates based on other
estimates

1 Biggest limitation of DP is that it requires a probability
model (as opposed to a generative or simulation model)



Dynamic Programming Policy Evaluation

V(S) < E,[R,, +7V(S,)] =D m@l$) > p(s', 1S, a)lr + 4V ()]

/

o o o
O O O .i O
ROERK O LQ};\Q olie

\ / /7 \
\ / \ / \

/
/

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 44



From Planning to Learning

1 DP requires a probability model (as opposed to a
generative or simulation model)

1 We can interact with the world, learning a model (rewards
and transitions) and then do DP

1 This approach is called model-based RL
1 Full probability model may hard to learn though
1 Direct learning of the value function from interaction

1 Still focusing on evaluating a fixed policy

24



Simple Monte Carlo

V(S,) < V(S)+a|G, - V(S,))]

St
()

\ | / \
\ \ /

/
/

@ O ©
LI

S

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

N

\
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Monte Carlo Methods

1 Monte Carlo methods are learning methods
Experience — values, policy

1 Monte Carlo methods can be used in two ways:
" model-free: No model necessary and still attains optimality
» simulated: Needs only a simulation, not a full model

1 Monte Carlo methods learn from complete sample returns
= Defined for episodic tasks (in the book)

1 Like an associative version of a bandit method



Backup diagram for Monte Carlo

1 Entire rest of episode included O

1 Only one choice considered at O
each state (unlike DP) C

= thus, there will be an ®
explore/exploit dilemma C

/

/

™ Does not bootstrap from

) [
successor states’s values
(unlike DP)
1 Time required to estimate one ®

state does not depend on the
total number of states

terminal state




Monte Carlo Policy Evaluation

1 Goal: learn v, (s)
1 Given: some number of episodes under st which contain s

1 Idea: Average returns observed after visits to s

A Every-Visit MC: average returns for every time s is visited
In an episode

A First-visit MC: average returns only for first time s 1s
visited 1n an episode

1 Both converge asymptotically



First-visit Monte Carlo policy evaluation

Initialize:
m <— policy to be evaluated
V < an arbitrary state-value function
Returns(s) < an empty list, for all s € §

Repeat forever:
Generate an episode using 7
For each state s appearing in the episode:
G < return following the first occurrence of s
Append G to Returns(s)
V(s) <+ average(Returns(s))




MC vs supervised regression

1 Target returns can be viewed as a supervised label (true
value we want to fit)

1 State is the input

1 We can use any function approximator to fit a function
from states to returns! Neural nets, linear, nonparametric...

A Unlike supervised learning: there is strong correlation
between inputs and between outputs!

1 Due to the lack of iid assumptions, theoretical results from
supervised learning cannot be directly applied

51



Blackjack example

1 Object: Have your card sum be greater than the dealer’s
without exceeding 21.

[ States (200 of them):
= current sum (12-21) i
= dealer’s showing card (ace-10) ET‘\
= do I have a useable ace? =

1 Reward: +1 for winning, O for a draw, -1 for losing

1 Actions: stick (stop receiving cards), hit (receive another
card)

1 Policy: Stick if my sum is 20 or 21, else hit
1 No discounting (y = 1)



Learned blackjack state-value functions

After 10,000 episodes After 500,000 episodes

T ——

ace 76

No
usable
ace



Simplest TD Method

V(S,) < V(S)+a|R

r+1

+yV(S,,)-V(S)]

SO

r+1

L

LN

e
l/
oo
// \\//
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TD methods bootstrap and sample

@ Bootstrapping: update involves an estimate
@ MC does not bootstrap
@ DP bootstraps
@ TD bootstraps
@ Sampling: update does not involve an
expected value
@ MC samples
@ DP does not sample
@ TD samples
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TD Prediction

Policy Evaluation (the prediction problem):
for a given policy m, compute the state-value function vy

Recall: Simple every-visit Monte Carlo method:

V(S1) « V(S) + |G = V(Sy)]

target: the actual return after time ¢

The simplest temporal-difference method TD(0):

V(Sy) 4 V(S:) | Rt +7V (Seva) = V(S)
|

target: an estimate of the return
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Example: Driving Home

FElapsed Time  Predicted Predicted

State (minutes) Time to Go  Total Time
leaving office, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43

arrive home 43 0 43
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Driving Home

Changes recommended by
Monte Carlo methods (a=1)

45 -
___actual outcome
\
_ 40 -
Predicted
total
travel 35 -
time
30

T T T T T T
leaving reach exiting 2ndary home arrive
office car highway road street home

Situation
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_ 4
Predicted

total
travel
time

Changes recommended
by TD methods (a=1)

actual
outcome

leaving reach exiting 2ndary home arrive
office  car highway road street home

Situation

§5R



Advantages of TD Learning

@ TD methods do not require a model of the environment,
only experience

@ TD, but not MC, methods can be fully incremental
@ You can learn before knowing the final outcome
@ Less memory
@ Less peak computation
@ You can learn without the final outcome
@ From incomplete sequences

@ Both MC and TD converge (under certain assumptions to
be detailed later), but which 1s faster? - Answer next time!
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