Sequential Decision Making
Markov Decision Processes
Dynamic Programming



Recall: Agent-Environment Interface

'_l Agent J
state reward action

St Rt At
Rt+1 [
S.. | Environment J<

\.

Agent and environment interact at discrete time steps: #=10,1,2,3,...

Agent observes state at stept: S, €8
produces action at step 7 : A, € A(S,)
gets resulting reward: R, € R C R

and resulting next state: §,,, € §*

r+1



Recall: Markov Decision Processes

1 If a reinforcement learning task has the Markov Property, it is
basically a Markov Decision Process (MDP).

1 If state and action sets are finite, it is a finite MDP.
1 To define a finite MDP, you need to give:
= state and action sets

" one-step “dynamics”

p(s',rls,a) =Pr{S;1=5,Ri1=7r|Si=s, Ai=a}

p(s'|s,a) = Pr{Sip1=5"| Si=s,4y=a} = Zp(s',r|s,a)

reR

T(S,CL) = ]E’[Rt—l—l ‘ StzsaAt:a] — y:ry:p(slaﬂsaa)

rcR s'ES§




Recall: The Agent Learns a Policy

Policy atstept = 7, =

t

a mapping from states to action probabilities

7, (als)= probability that A =a when §, = s

Special case - deterministic policies:
77 (s) = the action taken with prob=1 when §;=s

1 Reinforcement learning methods specify how the agent
changes its policy as a result of experience.

1 Roughly, the agent’s goal is to get as much reward as it can
over the long run.



What We Will See Today

1 What is the Goal of the Agent?
((Discounted) Return G)

1 How do we evaluate which state/actions are good?
(Dynamic Programming, Value Fct V(s), Action-Value

Q(a.s))

1 How can we improve our policy 7t?
(Bellman Eqn)



What is the Goal of the Agent?

1 Reward sequence A: 1, 0, 0, O
1 Reward sequence B: 0, 1, 0, O
1 Reward sequence C: 0, 0, 1.16, O

1 Reward sequence D: 0, 0, 0, 1.17



How good are each states?




The reward hypothesis

1 That all of what we mean by goals and purposes can be well
thought of as the maximization of the cumulative sum of a
received scalar signal (reward).

1 A sort of null hypothesis.

= Possibly wrong, but very simple, and so far very
successful.



How can we convert the future sequence of
rewards to a single number?

1 Reward sequence A: 1, 0, 0, O

1 Reward sequence B: 0, 1, 0, O

1 Reward sequence C: 0, 0, 1.16, O

1 Reward sequence D: 0, 0, 0, 1.17



Return

Suppose the sequence of rewards after step ¢ 1s:
R ,R._.R

t+1° T 420 T 4390 0

What do we want to maximize?

At least three cases, but in all of them,

we seek to maximize the expected return, £ {Gt } on each step .

e Total reward, G; = sum of all future reward in the episode

e Discounted reward, G; = sum of all future discounted reward

e Average reward, G; = average reward per time step




Discounted Return

Continuing tasks: interaction does not have natural episodes, but
just goes on and on...

In this class, for continuing tasks we will always use discounted
return:

0

Rt+1 + )/R +2 + y Rt+3 = E)/kRHkH’

k=0
where y,0 <y <1, is the discount rate.

G, =

shortsighted 0 <y — 1 farsighted

Typically, ¥ =0.9



Which one is the best?

1 Reward sequence A: 1, O,

1 Reward sequence B: 0, 1,

1 Reward sequence C: 0, O,

1 Reward sequence D: 0, O,

0, O

0, O

1.16, O

1.17

12



What policy is optimal starting
from A?

left right

i) Going left.
i) Going right.
iif)Something else.

ok 0 0 0 ¥-0¢

) If ¢=.99

+2 Tt I= 41



Episodic Tasks: Total Reward

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze

In episodic tasks, we often simply use fotal reward.

G =R

r+1

+Rt+2 -+ R,

where 7 1s a final time step at which a terminal state is reached,
ending an episode.



A Trick to Unify Notation for Returns

1 In episodic tasks, we number the time steps of each episode
starting from zero.

1 Think of each episode as ending in an absorbing state that
always produces reward of zero:

. () () Rs5=0

(3 We can cover all cases by writing G, = Ey" R
k=0

t+k+1°

where y can be 1 only if a zero reward absorbing state is always reached.



Episodic and Continuing Tasks: Average Reward

In episodic tasks, we can also use average reward:

Gy = (ZT:Rt)/T

=0

where T 1s a final time step at which a terminal state is reached,
ending an episode.

In continuing tasks, we can also define average reward:

6= ( ZR»”)

More on this later!



An Example: Pole Balancing

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of

track
_— U —

As an episodic task where episode ends upon failure:



An Example: Pole Balancing

a critical angle or the cart hitting end of

/ Avoid failure: the pole falling beyond
track

—] - * I._

As an episodic task where episode ends upon failure:
reward = +1 for each step before failure

=> return = number of steps before failure



An Example: Pole Balancing

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of

track
_— U —

As a continuing task with discounted return:



An Example: Pole Balancing

a critical angle or the cart hitting end of

/ Avoid failure: the pole falling beyond
track

—] - * I._

As a continuing task with discounted return:

reward = -1 upon failure; O otherwise

= return = -y, for k steps before failure



An Example: Pole Balancing

Avoid failure: the pole falling beyond
| a critical angle or the cart hitting end of

/ track
— od —

As an episodic task where episode ends upon failure:
reward = +1 for each step before failure

=> return = number of steps before failure

As a continuing task with discounted return:
reward = -1 upon failure; O otherwise

= return = -y, for k steps before failure

In either case, return is maximized by
avolding failure for as long as possible.



Another Example: Mountain Car

Get to the top of the hill
as quickly as possible.

/

78

Return 1s maximized by minimizing
number of steps to reach the top of the hill.



Mountain Car: Discounted

Get to the top of the hill
as quickly as possible.

/

78

Reward: 1 at the top of the hill, O otherwise
Return: if discount <1, k=number of time steps, so return is }/

Return 1s maximized by minimizing
number of steps to reach the top of the hill.



Mountain Car: Episodic

Get to the top of the hill
as quickly as possible.

o
/|
reward = -1 for each step where not at top of hill

= return = - number of steps before reaching top of hill

Return 1s maximized by minimizing
number of steps to reach the top of the hill.



4 value functions

state action

______________________ values i values
prediction U dr
control Uy g«

» All theoretical objects, expected values

« Distinct from their estimates: %(3) Qt(57 a)



Values are expected returns

e The value of a state, given a policy:
Vre(s) =E{G: | St = s, Ap.oo ~ 1} Ve S = R

The value of a state-action pair, given a policy:
g=(s,a) =E{G; | St =5, A =a,Ait1.00~T}  ¢r: 8 X AR

The optimal value of a state:

V. (8) = max v, (s) Ve 1S — R

The optimal value of a state-action pair:

g« (S,a) = max qr(s,a) g« : S XA —> R

Optimal policy: m, is an optimal policy if and only if
7« (a|s) > 0 only where ¢.(s,a) = max q«(s,b) VseS

e in other words, 7 is optimal iff it is greedy wrt g,



Value Functions

1 The value of a state is the expected return starting from
that state; depends on the agent’s policy:
S, = s}

1 The value of an action (in a state) is the expected return
starting after taking that action from that state; depends on
the agent’s policy:

State - value function for policy 7 :

Vn(S) = Eyr {Gt | St = S} = En {iykRHkH
k=0

Action - value function for policy 7 :

QJ'[(S’a) = En {Gt | St = S’At = CZ} = En {iykRHkH

k=0

S =5,A = a}




How good are each states?

28



Gridworld

1 Actions: north, south, east, west; deterministic.
1 If would take agent off the grid: no move but reward = —1

1 Other actions produce reward = 0, except actions that move
agent out of special states A and B as shown.

NN 3.3/ 8.8/ 4.4/5.3/1.5
\
\ +5 1.5/3.0/ 2.3/1.9/0.5|  State-value function
+10) B’ 0.10.7/0.7(0.4|-04/  for equiprobable
| -1.0-0.4/-0.4/-0.6-1.2]  random policy;
) Actions
A;r 1.9-1.3-12-1.4-200 y=0.9

(@) (b)



Policy Evaluation

Policy Evaluation: for a given policy 7, compute the
state-value function vy

Recall: State-value function for policy

o
k
Z Y Rt+k—|—1
k=0

ve(s) = EfGy | Se=s] = E;

St_S]



Bellman Equation for a Policy n

The basic 1dea:

Gt = Rt+1 + )/Rt+2 + yth+3 tY 3I€t+4+
= Rt+1 + )/ ( Rt+2 + y Rt+3 + )/ 2I€t+4+”.)
= Rt+1 + y Gt+1

So: v,(5)=E,{G,|S, = s}

St=s}

Or, without the expectation operator:

v (8) = Z (als) Zp(s’, rls,a) [7“ + fyvﬁ(s’)}

= En {Rt+1 + }/vn (St+1)




More on the Bellman Equation

U (s) = Z m(als) Zp(s’, r|s,a) {7“ + vvﬁ(s’)}

This 1s a set of equations (in fact, linear), one for each state.
The value function for m 1s its unique solution™.

*

In the usual case where the system of equations is invertible,
but in the current context you would really need to work
hard to make it non-invertible.



Q-Function

Gr (s, a)

Eqx|Rer1 + 702 (Se41) | St=s, Ar=al
Zp(s’,r|s,a) [T‘ —|—7?J7T(5’)]

s'r

33



Policy Evaluation

Policy Evaluation: for a given policy 7, compute the
state-value function vy

Recall: State-value function for policy

o
k
E Y Rt+k—|—1
k=0

ve(s) = EfGy | Se=s] = E;

St_S]

Recall: Bellman equation for v,
vr(s) = D mlals) 3 p(s',7ls, 0) |7+ y0e(s)]

—a system of ISl simultaneous equations



Iterative Methods

Vo —V1 —2 =2V —2 Vgt —2 " —2 Ugp

a “sweep” )

A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:

VEa1(s) = Zﬂ(a\s) Zp(s’, r|s,a) [7“ + ’yvk(sl)} Vs e d



Iterative Policy Evaluation — One array version

Input 7, the policy to be evaluated
Initialize an array V(s) = 0, for all s € 8
Repeat
A 0
For each s € &:
v <+ V(s)
V(s) = 3, mwlals) X, p(s's7ls, @)1 + 7V ()]
A < max(A, v — V(s)|)
until A < @ (a small positive number)
Output V =~ v,



A Small Gridworld

1

—‘— 4 S
8 9

10

11

actions

12 13

14

1 An undiscounted episodic task

1 Nonterminal states: 1,2, ..., 14;
1 One terminal state (shown twice as shaded squares)
1 Actions that would take agent off the grid leave state unchanged

1 Reward is —1 until the terminal state is reached

R = -1

on all transitions

V=1



Iterative Policy Eval
for the Small Gridworld Vi forhe

Random Policy

0.0[0.0(0.0] 0.0

0.0[0.0(0.0] 0.0

k=0
0.0/ 0.0{0.0] 0.0
0.0/ 0.0/ 0.0] 0.0
7t = equiprobable random action choices
k=1
1 2 3
4 |5 l6 |7 R= -1 k=2
on all transitions
8 9 10 (11
actions 1213 |14 y=1
k=3
3 An undiscounted episodic task
(3 Nonterminal states: 1,2, ..., 14;
7 One terminal state (shown twice as shaded squares) k=10

[ Actions that would take agent off the grid leave state unchanged

(1 Reward is —1 until the terminal state is reached



Iterative Policy Eval
for the Small Gridworld

Vj, for the
Random Policy

7t = equiprobable random action choices

actions

12 113 |14

3 An undiscounted episodic task

(3 Nonterminal states: 1,2, ..., 14;

R= -1
on all transitions

v=1

7 One terminal state (shown twice as shaded squares)

[ Actions that would take agent off the grid leave state unchanged

(1 Reward is —1 until the terminal state is reached

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

0.0




Iterative Policy Eval

for the Small Gridworld

Vj, for the
Random Policy

7t = equiprobable random action choices

actions

12 113 |14

3 An undiscounted episodic task

(3 Nonterminal states: 1,2, ..., 14;

R= -1
on all transitions

v=1

7 One terminal state (shown twice as shaded squares)

[ Actions that would take agent off the grid leave state unchanged

(1 Reward is —1 until the terminal state is reached

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

0.0

0.0

-1.7

-2.0

-2.0

-1.7

-2.0

-2.0

-2.0

-2.0

-2.0

-2.0

-1.7

-2.0

-2.0

-1.7

0.0




Iterative Policy Eval
for the Small Gridworld Vi forhe

Random Policy

0.0/ 0.0/ 0.0/ 0.0
k=0 0.0/ 0.0/ 0.0/ 0.0
0.0/ 0.0{0.0] 0.0
0.0/ 0.0/ 0.0] 0.0
7t = equiprobable random action choices
0.0]-1.0]-1.0]-1.0
k=1 1.0[-1.0/-1.0]-1.0
-1.0{-1.0]-1.0]-1.0
-1.0]-1.0{-1.0{ 0.0
1 |2 |3 0.0]-1.7]-2.0]-2.0
ls L | R- _1 k=2 -1.7]-2.0[-2.0|-2.0
" 2.0|-2.0[-2.0[-1.7
on all transitions
s lo lo | -2.0[-2.0/-1.7 0.0
actions
12 13 |14 v=1 0.0/-2.4/-2.9[-3.0
k=3 2.4]-2.9]-3.0[-2.9
-2.9|-3.0[-2.9|-2.4
: .. -3.0]-2.9]-2.4{ 0.0
3 An undiscounted episodic task
(3 Nonterminal states: 1,2, ..., 14;
7 One terminal state (shown twice as shaded squares) k=10

[ Actions that would take agent off the grid leave state unchanged

(1 Reward is —1 until the terminal state is reached



Iterative Policy Eval
for the Small Gridworld

Vj, for the

Random Policy

7t = equiprobable random action choices

4 |5 |8 |7 R=-1
on all transitions

actions

12 |13 |14 v=1

3 An undiscounted episodic task

(3 Nonterminal states: 1,2, ..., 14;

7 One terminal state (shown twice as shaded squares)

[ Actions that would take agent off the grid leave state unchanged

(1 Reward is —1 until the terminal state is reached

k=0
k=1
k=2
k=3
k=10
k= o0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

0.0

0.0

-1.7

-2.0

-2.0

-1.7

-2.0

-2.0

-2.0

-2.0

-2.0

-2.0

-1.7

-2.0

-2.0

-1.7

0.0

0.0

-2.4

-2.9

-3.0

-2.4

-2.9

-3.0

-2.9

-2.9

-3.0

-2.9

2.4

-3.0

-2.9

2.4

0.0

0.0

-6.1

-8.4

-9.0

-6.1

-7.7

-8.4

-8.4

-8.4

-8.4

-7.7

-6.1

-9.0

8.4

-6.1

0.0

0.0-

.[-20.

-22.

.[-20.

-20.

20| -

J-18.]-

-22.]-

0.0




Bellman Optimality Eqn

q,(s,a)

Vr(Ss) = Z m(als) Zp(s’, r|s, a) {r + ’7?}77(8/)]

43



Bellman Optimality Eqn

q,(s,a)

Vr(Ss) = Zﬂ(a|s) Zp(s’, r|s, a) {r + ’7?}77(8/)]

VU« (S) = arenf?()g) qr., (S, a)

44



Bellman Optimality Eqn

q,.(s,a)

Vr(Ss) = Zﬂ(a|s) Zp(s’, r|s, a) {r + ’}/UW(S/)]

Vx (8) — arenf?()g) qr., (8, a)

=maxE, [G; | Si=s,Ar=a]

a

45



Bellman Optimality Eqn

q,.(s,a)

Vr(Ss) = Z’ZT(CL|S) Zp(s’, r|s, a) {r + ’}/UW(S/)]

Vx (8) — arenlel()g) qr., (8, a)

=maxE, [G; | Si=s,Ar=a]

a

= maxIEm:RHl + ’)’Gt+1 | St:S, At:a]

a

46



Bellman Optimality Eqn

q,.(s,a)

Vr(Ss) = Z’ZT(CL|S) Zp(s’, r|s, a) {r + ’}/UW(S/)]

Vx (8) — arenf?()g) qr., (8, a)

=maxE, [G; | Si=s,Ar=a]

a

= maxIEm :Rt_|_1 + ’)’Gt+1 | StZS, At:a]

a

= m(?XE[RtH + Y0« (St41) | Si=s, As=a]

47



Bellman Optimality Eqn

q,.(s,a)

Vr(Ss) = Z’ZT(CL|S) Zp(s’, r|s, a) {r + ’}/UW(S/)]

Vx (8) — arenf?()g) qr., (8, a)

=maxE, [G; | Si=s,Ar=a]

a

= maxIEm :Rt_|_1 + ’)’Gt+1 | StZS, At:a]

a

= m(?XE[RtH + Y0« (St41) | Si=s, As=a]

— mngp(s’,ﬂs,a) 7+ Y. (s')].

s',r

48R



Bellman Optimality Eqn

Vr(Ss) = Z’ZT(CL|S) Zp(s’, r|s, a) {r + ’7?}77(8/)]

V4 (8) = max Zp(s', r|s,a)|r + yv.(s')]

Also as many equations as unknowns (non-linear, this time though).

49



Policy Iteration

E I E 1 E 1 E
Ty — Upg —> M —> Uy —> Mg —> =+ + —> My —> Uy

i

policy evaluation  policy improvement
“greedification”



Policy Improvement

Suppose we have computed v_ for a deterministic policy .

For a given state s,
would it be better to do an action a = (s)?

It 1s better to switch to action a for state s if

q. (s,a)>v_(s)




Policy Improvement Cont.

Do this for all states to get a new policy &t" = 7 that is

greedy with respectto v_:

n'(s) = argmaxgq,(s,a)

= arg mng[RtH + YU (Sia1) | Si=s, Ay=a]

— arg max Zp(s’, T!S, CL) [7” + WUW(3/>] 3

What if the policy 1s unchanged by this?
Then the policy must be optimal!



Policy Iteration

E I E 1 E 1 E
Ty — Upg —> M —> Uy —> Mg —> =+ + —> My —> Uy

i

policy evaluation  policy improvement
“greedification”



Greedy Policies
for the Small Gridworld

Vy for the

Random Policy

Greedy Policy

7t = equiprobable random action choices

on all transitions

actions

12 [13 |14 y=1

(3 An undiscounted episodic task

[ Nonterminal states: 1,2, .. ., 14;

7 One terminal state (shown twice as shaded squares) k=10
[ Actions that would take agent off the grid leave state unchanged

[ Reward is —1 until the terminal state is reached

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

T

0.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

0.0

0.0

-1.7

-2.0

-2.0

-1.7

-2.0

-2.0

-2.0

-2.0

-2.0

-2.0

-1.7

-2.0

-2.0

-1.7

0.0

-2.4

-2.9

-3.0

-2.9

-3.0

-2.9

9]-3.0

-2.9

-2.4

-2.9

-24

0.0

0.0

-6.1

8.4

-9.0

-6.1

-7.7

-8.4

-8.4

-8.4

-8.4

-7.7

-6.1

-9.0

-8.4

-6.1

0.0

0.0]-

.[-20.

-22.

-14.|-

.[-20.

-20.

-20.1-

[-18.]-

-22.)-

|-14.

0.0

random
policy



Greedy Policies

[ J
for the Small Gridworld Vi for e oy Poly
Random Policy wrt V.
0.0/ 0.0/ 0.0] 0.0 PR R Y D R
k=0 0.0/ 0.0 0.0/ 0.0 Ll Ll
B 0.0/ 0.0/ 0.0/ 0.0 T lbl
0.0/ 0.0/ 0.0] 0.0 S bl
7T = equiprobable random action choices
0.0]-1.0[-1.0]-1.0 - |[blb
k=1 -1.0/-1.0[-1.0/-1.0 P bbb
-1.0/-1.0[-1.0/-1.0 ERENENE
-1.0/-1.0/-1.0{ 0.0 bl -
1 2 3 0.0]-1.7[-2.0]-2.0 — | <_I_,
1720020 T
_ 1.7-2.0[-2.0]-2.0 .
4 |5 6 |7 R=—1_. k=2 S EETEE RERERS
on all transitions 2.0]-2.0{-2.0|-1.
8 |9 |10 |1 -2.0]-2.0-1.7] 0.0 +| - -
actions
12 13 [14 vy=1 0.0]-2.4/-2.9]-3.0 ~ = |4
k=3 2.4|-2.9|-3.0[-2.9 EN=Er
-2.9]-3.0]-2.9|-2.4 Mol Pl
L 5] =
i isodi 3.0[-2.9]-2.4| 0.0
3 An undiscounted episodic task
[ Nonterminal states: 1,2, .. ., 14; T Taales g
) ) :
[ One terminal state (shown twice as shaded squares) k=10 -6.1|-7.7|-8.4|-8.4 e |
i . -8.4/-8.4|-7.7]-6.1 Y o
[ Actions that would take agent off the grid leave state unchanged volsaeiloo I
[ Reward is —1 until the terminal state is reached
0.0|-14 [-20.|-22. PR M
k= -14.-18.]-20.[-20. ==
@ -20.[-20.]-18 |-14. HEEEr
22.1-20.|-14.{ 0.0 Ll 5 S

random
policy

optimal
policy



Policy Iteration — One array version (+ policy)

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation
Repeat
A<+ 0
For each s € §:
v V(s)
V(5) = Sy, Dl 5, 7() [r + 4V ()]
A < max(A, |v —V(s)])

until A < 6 (a small positive number)

3. Policy Improvement
policy-stable <— true
For each s € S:
a < 7(s)
7(s) < argmax, ZS,’Tp(s’, s, a) [7“ + ny(s’)]
If a # 7(s), then policy-stable < false
If policy-stable, then stop and return V' and 7; else go to 2



Generalized Policy Iteration

Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement,
independent of their granularity.

evaluation
m
A geometric metaphor for
T V
convergence of GPI:
7~ greedy (V)

improvement




Value Iteration

Recall the full policy-evaluation backup:
Vpt1(8) = Zw(a|s) Zp(s’, rls,a) [7‘ + ka(s’)] Vs € 8
Here is the full value-iteration backup:

V41(8) = m;xep(s', rls,a) [?“ + va(s’)] Vs € 8

s’,r



Value Iteration — One array version

Initialize array V' arbitrarily (e.g., V(s) =0 for all s € 8%)

Repeat
A0
For each s € §:
v <+ V(s)
V(s) +max, »_, .p(s',r|s,a) i+ V()]
A <+ max(A, |lv —V(s)|)
until A < @ (a small positive number)

Output a deterministic policy, m, such that
m(s) = arg max, ZS,’T p(s',rls,a) [7“ + ny(s’)}



Gambler’s Problem

1 Gambler can repeatedly bet $ on a coin flip
1 Heads he wins his stake, tails he loses it
1 Initial capital € {$1, $2, ... $99}

1 Gambler wins if his capital becomes $100
loses if it becomes $0

1 Coin is unfair

= Heads (gambler wins) with probability p = 4

1 States, Actions, Rewards? Discounting?



Gambler’s Problem Solution

1 -

0.8
Value %97 sweep 32
estimates
0.4 -
0.2 7 |=— sweep 1
P sweep 2
0 /;/ 5' sweep 3
I 25 50 75 99
Capital
50+
_ 40
Final ,_
policy
(stake) 207
10 -
1 R I I 1 I |
1 25 50 75 99

Capital



Gambler’s Problem Solution

1 -

0.8
Value %97 sweep 32
estimates
0.4 -
0.2 7 |=— sweep 1
P sweep 2
0 /;/ 5' sweep 3
I 25 50 75 99
Capital
50+
_ 40
Final ,_
policy
(stake) 207
10 -
1 R I I 1 I |
1 25 50 75 99

Capital



Asynchronous DP

1 All the DP methods described so far require exhaustive
sweeps of the entire state set.

1 Asynchronous DP does not use sweeps. Instead it works like
this:

= Repeat until convergence criterion 1s met:

— Pick a state at random and apply the appropriate
backup

1 Still need lots of computation, but does not get locked into
hopelessly long sweeps

1 Can you select states to backup intelligently? YES: an agent’s
experience can act as a guide.



Efficiency of DP

1 To find an optimal policy is polynomial in the number of
states...

1 BUT, the number of states is often astronomical, e.g., often
growing exponentially with the number of state variables
(what Bellman called “the curse of dimensionality™).

1 In practice, classical DP can be applied to problems with a
few millions of states.

1 Asynchronous DP can be applied to larger problems, and is
appropriate for parallel computation.

1 It is surprisingly easy to come up with MDPs for which DP
methods are not practical.



Summary

1 Policy evaluation: backups without a max

1 Policy improvement: form a greedy policy, if only locally
1 Policy iteration: alternate the above two processes

1 Value iteration: backups with a max

1 Full backups (to be contrasted later with sample backups)
1 Generalized Policy Iteration (GPI)

1 Asynchronous DP: a way to avoid exhaustive sweeps

1 Bootstrapping: updating estimates based on other
estimates

1 Biggest limitation of DP is that it requires a probability
model (as opposed to a generative or simulation model)



