
Sequential Decision Making
Markov Decision Processes

Dynamic Programming

Agent and environment interact at discrete time steps: t = 0, 1, 2,K
 Agent observes state at step t: St ∈
 produces action at step t : At ∈ (St)
 gets resulting reward: Rt+1 ∈

 and resulting next state: St+1 ∈

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Recall: Agent-Environment InterfaceSUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

R

! = s0, a0, s1, a1, . . .

The other random variables are a function of this sequence. The transitional
target rt+1 is a function of st, at, and st+1. The termination condition �t,
terminal target zt, and prediction yt, are functions of st alone.

R(n)
t = rt+1 + �t+1zt+1 + (1� �t+1)R

(n�1)
t+1

R(0)
t = yt

R�
t = (1� �)

1X

n=1

�n�1R(n)
t

⇢t =
⇡(st, at)

b(st, at)

�wo↵(!) = �won(!)
1Y

i=1

⇢i

�wt = ↵t(CtR
�
t � yt)rwyt

�wt = ↵t(R̄
�
t � yt)rwyt

1

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R, and
finds itself in a new state, St+1.3 Figure 3.1 diagrams the agent–environment
interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R ⇢
R, where R is the set of possible rewards, and finds itself in a new state, St+1.3

Figure 3.1 diagrams the agent–environment interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R ⇢
R, where R is the set of possible rewards, and finds itself in a new state, St+1.3

Figure 3.1 diagrams the agent–environment interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.

Recall: Markov Decision Processes

❐ If a reinforcement learning task has the Markov Property, it is
basically a Markov Decision Process (MDP).

❐ If state and action sets are finite, it is a finite MDP.
❐ To define a finite MDP, you need to give:

 state and action sets
 one-step “dynamics”

 there is also:

58 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

A particular finite MDP is defined by its state and action sets and by the
one-step dynamics of the environment. Given any state and action s and a,
the probability of each possible pair of next state and reward, s

0
, r, is denoted

p(s0
, r|s, a) = Pr{St+1 =s

0
, Rt+1 = r | St =s, At =a}. (3.6)

These quantities completely specify the dynamics of a finite MDP. Most of the
theory we present in the rest of this book implicitly assumes the environment
is a finite MDP.

Given the dynamics as specified by (3.6), one can compute anything else
one might want to know about the environment, such as the expected rewards
for state–action pairs,

r(s, a) = E[Rt+1 | St =s, At =a] =
X

r2R

r

X

s02S

p(s0
, r|s, a), (3.7)

the state-transition probabilities,

p(s0|s, a) = Pr{St+1 =s
0 | St =s, At =a} =

X

r2R

p(s0
, r|s, a), (3.8)

and the expected rewards for state–action–next-state triples,

r(s, a, s
0) = E[Rt+1 | St =s, At =a, St+1 = s

0] =

P
r2R rp(s0

, r|s, a)

p(s0|s, a)
. (3.9)

In the first edition of this book, the dynamics were expressed exclusively in
terms of the latter two quantities, which were denote Pa

ss0 and Ra

ss0 respectively.
One weakness of that notation is that it still did not fully characterize the
dynamics of the rewards, giving only their expectations. Another weakness is
the excess of subscripts and superscripts. In this edition we will predominantly
use the explicit notation of (3.6), while sometimes referring directly to the
transition probabilities (3.8).

Example 3.7: Recycling Robot MDP The recycling robot (Example
3.3) can be turned into a simple example of an MDP by simplifying it and
providing some more details. (Our aim is to produce a simple example, not
a particularly realistic one.) Recall that the agent makes a decision at times
determined by external events (or by other parts of the robot’s control system).
At each such time the robot decides whether it should (1) actively search for
a can, (2) remain stationary and wait for someone to bring it a can, or (3) go
back to home base to recharge its battery. Suppose the environment works
as follows. The best way to find cans is to actively search for them, but this
runs down the robot’s battery, whereas waiting does not. Whenever the robot
is searching, the possibility exists that its battery will become depleted. In

58 CHAPTER 3. FINITE MARKOV DECISION PROCESSES

3.6 Markov Decision Processes

A reinforcement learning task that satisfies the Markov property is called a Markov
decision process, or MDP. If the state and action spaces are finite, then it is called a
finite Markov decision process (finite MDP). Finite MDPs are particularly important
to the theory of reinforcement learning. We treat them extensively throughout this
book; they are all you need to understand 90% of modern reinforcement learning.

A particular finite MDP is defined by its state and action sets and by the one-step
dynamics of the environment. Given any state and action s and a, the probability
of each possible pair of next state and reward, s0, r, is denoted

p(s0, r|s, a)
.
= Pr

�
St+1 =s0, Rt+1 = r | St =s, At =a

. (3.6)

These quantities completely specify the dynamics of a finite MDP. Most of the theory
we present in the rest of this book implicitly assumes the environment is a finite MDP.

Given the dynamics as specified by (3.6), one can compute anything else one might
want to know about the environment, such as the expected rewards for state–action
pairs,

r(s, a)
.
= E[Rt+1 | St =s, At =a] =

X

r2R

r
X

s02S

p(s0, r|s, a), (3.7)

the state-transition probabilities,

p(s0|s, a)
.
= Pr

�
St+1 =s0 | St =s, At =a

=
X

r2R

p(s0, r|s, a), (3.8)

and the expected rewards for state–action–next-state triples,

r(s, a, s0)
.
= E

⇥
Rt+1

�� St =s, At =a, St+1 = s0⇤ =

P
r2R rp(s0, r|s, a)

p(s0|s, a)
. (3.9)

In the first edition of this book, the dynamics were expressed exclusively in terms
of the latter two quantities, which were denoted Pa

ss0 and Ra

ss0 respectively. One
weakness of that notation is that it still did not fully characterize the dynamics
of the rewards, giving only their expectations. Another weakness is the excess of
subscripts and superscripts. In this edition we will predominantly use the explicit
notation of (3.6), while sometimes referring directly to the transition probabilities
(3.8).

Example 3.7: Recycling Robot MDP The recycling robot (Example 3.3) can
be turned into a simple example of an MDP by simplifying it and providing some
more details. (Our aim is to produce a simple example, not a particularly realistic
one.) Recall that the agent makes a decision at times determined by external events
(or by other parts of the robot’s control system). At each such time the robot decides
whether it should (1) actively search for a can, (2) remain stationary and wait for
someone to bring it a can, or (3) go back to home base to recharge its battery.
Suppose the environment works as follows. The best way to find cans is to actively

58 CHAPTER 3. FINITE MARKOV DECISION PROCESSES

3.6 Markov Decision Processes

A reinforcement learning task that satisfies the Markov property is called a Markov
decision process, or MDP. If the state and action spaces are finite, then it is called a
finite Markov decision process (finite MDP). Finite MDPs are particularly important
to the theory of reinforcement learning. We treat them extensively throughout this
book; they are all you need to understand 90% of modern reinforcement learning.

A particular finite MDP is defined by its state and action sets and by the one-step
dynamics of the environment. Given any state and action s and a, the probability
of each possible pair of next state and reward, s0, r, is denoted

p(s0, r|s, a)
.
= Pr

�
St+1 =s0, Rt+1 = r | St =s, At =a

. (3.6)

These quantities completely specify the dynamics of a finite MDP. Most of the theory
we present in the rest of this book implicitly assumes the environment is a finite MDP.

Given the dynamics as specified by (3.6), one can compute anything else one might
want to know about the environment, such as the expected rewards for state–action
pairs,

r(s, a)
.
= E[Rt+1 | St =s, At =a] =

X

r2R

r
X

s02S

p(s0, r|s, a), (3.7)

the state-transition probabilities,

p(s0|s, a)
.
= Pr

�
St+1 =s0 | St =s, At =a

=
X

r2R

p(s0, r|s, a), (3.8)

and the expected rewards for state–action–next-state triples,

r(s, a, s0)
.
= E

⇥
Rt+1

�� St =s, At =a, St+1 = s0⇤ =

P
r2R rp(s0, r|s, a)

p(s0|s, a)
. (3.9)

In the first edition of this book, the dynamics were expressed exclusively in terms
of the latter two quantities, which were denoted Pa

ss0 and Ra

ss0 respectively. One
weakness of that notation is that it still did not fully characterize the dynamics
of the rewards, giving only their expectations. Another weakness is the excess of
subscripts and superscripts. In this edition we will predominantly use the explicit
notation of (3.6), while sometimes referring directly to the transition probabilities
(3.8).

Example 3.7: Recycling Robot MDP The recycling robot (Example 3.3) can
be turned into a simple example of an MDP by simplifying it and providing some
more details. (Our aim is to produce a simple example, not a particularly realistic
one.) Recall that the agent makes a decision at times determined by external events
(or by other parts of the robot’s control system). At each such time the robot decides
whether it should (1) actively search for a can, (2) remain stationary and wait for
someone to bring it a can, or (3) go back to home base to recharge its battery.
Suppose the environment works as follows. The best way to find cans is to actively

Policy at step t = π t =

 a mapping from states to action probabilities
 π t (a | s) = probability that At = a when St = s

Recall: The Agent Learns a Policy

❐ Reinforcement learning methods specify how the agent
changes its policy as a result of experience.

❐ Roughly, the agent’s goal is to get as much reward as it can
over the long run.

Special case - deterministic policies:
 πt (s) = the action taken with prob=1 when St = s

What We Will See Today

❐ What is the Goal of the Agent?
((Discounted) Return G)

❐ How do we evaluate which state/actions are good?
(Dynamic Programming, Value Fct V(s), Action-Value
Q(a,s))

❐ How can we improve our policy π?
(Bellman Eqn)

5

What is the Goal of the Agent?

❐ Reward sequence A: 1, 0, 0, 0

❐ Reward sequence B: 0, 1, 0, 0

❐ Reward sequence C: 0, 0, 1.16, 0

❐ Reward sequence D: 0, 0, 0, 1.17

6

How good are each states?

7

S1 S2 S3 S4 S5

R = 100

R = -1

T

8

The reward hypothesis

❐ That all of what we mean by goals and purposes can be well
thought of as the maximization of the cumulative sum of a
received scalar signal (reward).

❐ A sort of null hypothesis.
 Possibly wrong, but very simple, and so far very

successful.

How can we convert the future sequence of
rewards to a single number?

❐ Reward sequence A: 1, 0, 0, 0

❐ Reward sequence B: 0, 1, 0, 0

❐ Reward sequence C: 0, 0, 1.16, 0

❐ Reward sequence D: 0, 0, 0, 1.17

9

Return

Suppose the sequence of rewards after step t is:
 Rt+1, Rt+2 , Rt+3,K
What do we want to maximize?

At least three cases, but in all of them,
we seek to maximize the expected return, E Gt{ }, on each step t.

• Total reward, Gt = sum of all future reward in the episode

• Discounted reward, Gt = sum of all future discounted reward

• Average reward, Gt = average reward per time step

. . .

Discounted Return

Continuing tasks: interaction does not have natural episodes, but
just goes on and on...

In this class, for continuing tasks we will always use discounted
return:

 Gt = Rt+1 + γ Rt+2 + γ
2Rt+3 +L = γ kRt+k+1,

k=0

∞

∑
where γ , 0 ≤ γ ≤1, is the discount rate.

shortsighted 0 ←γ → 1 farsighted

Typically, γ = 0.9

...

Which one is the best?

❐ Reward sequence A: 1, 0, 0, 0

❐ Reward sequence B: 0, 1, 0, 0

❐ Reward sequence C: 0, 0, 1.16, 0

❐ Reward sequence D: 0, 0, 0, 1.17

12

optimal policy exampleWhat policy is optimal starting
from A?

i) Going left.
ii) Going right.
iii)Something else.

CB

A

0

Episodic Tasks: Total Reward

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze

In episodic tasks, we often simply use total reward:

Gt = Rt+1 + Rt+2 +L + RT ,

where T is a final time step at which a terminal state is reached,
ending an episode.

...

R1 = +1S0 S1
R2 = +1 S2

R3 = +1 R4 = 0
R5 = 0. . .

❐ In episodic tasks, we number the time steps of each episode
starting from zero.

❐ Think of each episode as ending in an absorbing state that
always produces reward of zero:

❐ We can cover all cases by writing

A Trick to Unify Notation for Returns

 Gt = γ kRt+k+1,
k=0

∞

∑
where γ can be 1 only if a zero reward absorbing state is always reached.

Episodic and Continuing Tasks: Average Reward

In episodic tasks, we can also use average reward:

where T is a final time step at which a terminal state is reached,
ending an episode.

G0 = (
T

∑
t=0

Rt)/T

In continuing tasks, we can also define average reward:

G = lim
T→∞ ((

T

∑
t=0

Rt)/T)
More on this later!

An Example: Pole Balancing

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of
track

As an episodic task where episode ends upon failure:

An Example: Pole Balancing

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of
track

reward = +1 for each step before failure
⇒ return = number of steps before failure

As an episodic task where episode ends upon failure:

An Example: Pole Balancing

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of
track

As a continuing task with discounted return:

An Example: Pole Balancing

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of
track

As a continuing task with discounted return:

reward = −1 upon failure; 0 otherwise
⇒ return = −γ k , for k steps before failure

An Example: Pole Balancing

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of
track

reward = +1 for each step before failure
⇒ return = number of steps before failure

As an episodic task where episode ends upon failure:

As a continuing task with discounted return:
reward = −1 upon failure; 0 otherwise
⇒ return = −γ k , for k steps before failure

In either case, return is maximized by
avoiding failure for as long as possible.

Another Example: Mountain Car

Get to the top of the hill
as quickly as possible.

Return is maximized by minimizing
number of steps to reach the top of the hill.

Mountain Car: Discounted

Get to the top of the hill
as quickly as possible.

Return is maximized by minimizing
number of steps to reach the top of the hill.

Reward: 1 at the top of the hill, 0 otherwise
Return: if discount <1, k=number of time steps, so return is γk

Mountain Car: Episodic

Get to the top of the hill
as quickly as possible.

Return is maximized by minimizing
number of steps to reach the top of the hill.

reward = −1 for each step where not at top of hill
⇒ return = − number of steps before reaching top of hill

4 value functions

• All theoretical objects, expected values

• Distinct from their estimates:

state
values

action
values

prediction

control q⇤v⇤

v⇡ q⇡

Vt(s) Qt(s, a)

Values are expected returns
• The value of a state, given a policy:

• The value of a state-action pair, given a policy:

• The optimal value of a state:

• The optimal value of a state-action pair:

• Optimal policy: is an optimal policy if and only if

• in other words, is optimal iff it is greedy wrt

v⇡(s) = E{Gt | St = s,At:1⇠⇡} v⇡ : S ! <

q⇡(s, a) = E{Gt | St = s,At = a,At+1:1⇠⇡} q⇡ : S⇥A ! <

v⇤(s) = max
⇡

v⇡(s) v⇤ : S ! <

⇡⇤(a|s) > 0 only where q⇤(s, a) = max
b

q⇤(s, b)

⇡⇤

⇡⇤ q⇤

8s 2 S

q⇤(s, a) = max
⇡

q⇡(s, a) q⇤ : S⇥A ! <

Value Functions

State - value function for policy π :

vπ (s) = Eπ Gt St = s{ } = Eπ γ kRt+k+1 St = s
k=0

∞

∑
%
&
'

(
)
*

Action - value function for policy π :

qπ (s,a) = Eπ Gt St = s,At = a{ } = Eπ γ kRt+k+1 St = s,At = a
k=0

∞

∑
%
&
'

(
)
*

❐ The value of a state is the expected return starting from
that state; depends on the agent’s policy:

❐ The value of an action (in a state) is the expected return
starting after taking that action from that state; depends on
the agent’s policy:

How good are each states?

28

S1 S2 S3 S4 S5

R = 100

R = -1

If γ=1, V* = ?

T

Gridworld

❐ Actions: north, south, east, west; deterministic.
❐ If would take agent off the grid: no move but reward = –1
❐ Other actions produce reward = 0, except actions that move

agent out of special states A and B as shown.

State-value function
for equiprobable
random policy;
γ = 0.9

Policy Evaluation: for a given policy π, compute the
 state-value function vπ

Policy Evaluation

Recall: State-value function for policy π

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

.

Bellman Equation for a Policy π

Gt = Rt+1 + γ Rt+2 + γ
2Rt+3 + γ

3Rt+4L
= Rt+1 + γ Rt+2 + γ Rt+3 + γ

2Rt+4L()
= Rt+1 + γGt+1

The basic idea:

So: vπ (s) = Eπ Gt St = s{ }
= Eπ Rt+1 + γ vπ St+1() St = s{ }

Or, without the expectation operator:

...+

...+

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

i

More on the Bellman Equation

This is a set of equations (in fact, linear), one for each state.
The value function for π is its unique solution*.

* In the usual case where the system of equations is invertible,
but in the current context you would really need to work
hard to make it non-invertible.

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

i

Q-Function

33

88 CHAPTER 4. DYNAMIC PROGRAMMING

termination.

Exercise 4.1 If ⇡ is the equiprobable random policy, what is q⇡(11, down)?
What is q⇡(7, down)?

Exercise 4.2 Suppose a new state 15 is added to the gridworld just below
state 13, and its actions, left, up, right, and down, take the agent to states
12, 13, 14, and 15, respectively. Assume that the transitions from the original
states are unchanged. What, then, is v⇡(15) for the equiprobable random
policy? Now suppose the dynamics of state 13 are also changed, such that
action down from state 13 takes the agent to the new state 15. What is v⇡(15)
for the equiprobable random policy in this case?

Exercise 4.3 What are the equations analogous to (4.3), (4.4), and (4.5) for
the action-value function q⇡ and its successive approximation by a sequence of
functions q0, q1, q2, . . . ?

Exercise 4.4 In some undiscounted episodic tasks there may be policies
for which eventual termination is not guaranteed. For example, in the grid
problem above it is possible to go back and forth between two states forever.
In a task that is otherwise perfectly sensible, v⇡(s) may be negative infinity
for some policies and states, in which case the algorithm for iterative policy
evaluation given in Figure 4.1 will not terminate. As a purely practical matter,
how might we amend this algorithm to assure termination even in this case?
Assume that eventual termination is guaranteed under the optimal policy.

4.2 Policy Improvement

Our reason for computing the value function for a policy is to help find better
policies. Suppose we have determined the value function v⇡ for an arbitrary
deterministic policy ⇡. For some state s we would like to know whether or not
we should change the policy to deterministically choose an action a 6= ⇡(s).
We know how good it is to follow the current policy from s—that is v⇡(s)—but
would it be better or worse to change to the new policy? One way to answer
this question is to consider selecting a in s and thereafter following the existing
policy, ⇡. The value of this way of behaving is

q⇡(s, a) = E⇡[Rt+1 + �v⇡(St+1) | St =s, At =a] (4.6)

=
X

s0,r

p(s0
, r|s, a)

h
r + �v⇡(s0)

i
.

The key criterion is whether this is greater than or less than v⇡(s). If it is
greater—that is, if it is better to select a once in s and thereafter follow ⇡

Policy Evaluation: for a given policy π, compute the
 state-value function vπ

Policy Evaluation

Recall: State-value function for policy π

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

Recall: Bellman equation for vπ

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

—a system of | | simultaneous equations

.

Iterative Methods

a “sweep”

A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:

v0 ! v1 ! · · · ! vk ! vk+1 ! · · · ! v⇡

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �vk(s

0)
i

8s 2 S

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

v0 ! v1 ! · · · ! vk ! vk+1 ! · · · ! v⇡

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �vk(s

0)
i

8s 2 S

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

Iterative Policy Evaluation – One array version
86 CHAPTER 4. DYNAMIC PROGRAMMING

Input ⇡, the policy to be evaluated
Initialize an array V (s) = 0, for all s 2 S+

Repeat
� 0
For each s 2 S:

v V (s)
V (s)

P
a
⇡(a|s)

P
s0,r p(s0

, r|s, a)
⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number)
Output V ⇡ v⇡

Figure 4.1: Iterative policy evaluation.

Another implementation point concerns the termination of the algorithm.
Formally, iterative policy evaluation converges only in the limit, but in practice
it must be halted short of this. A typical stopping condition for iterative policy
evaluation is to test the quantity maxs2S |vk+1(s)�vk(s)| after each sweep and
stop when it is su�ciently small. Figure 4.1 gives a complete algorithm for
iterative policy evaluation with this stopping criterion.

Example 4.1 Consider the 4⇥4 gridworld shown below.

actions

r = !1

on all transitions

1 2 3

4 5 6 7

8 9 10 11

12 13 14

R

The nonterminal states are S = {1, 2, . . . , 14}. There are four actions pos-
sible in each state, A = {up, down, right, left}, which deterministically
cause the corresponding state transitions, except that actions that would take
the agent o↵ the grid in fact leave the state unchanged. Thus, for instance,
p(6|5, right) = 1, p(10|5, right) = 0, and p(7|7, right) = 1. This is an undis-
counted, episodic task. The reward is �1 on all transitions until the terminal
state is reached. The terminal state is shaded in the figure (although it is
shown in two places, it is formally one state). The expected reward function is
thus r(s, a, s

0) = �1 for all states s, s
0 and actions a. Suppose the agent follows

the equiprobable random policy (all actions equally likely). The left side of
Figure 4.2 shows the sequence of value functions {vk} computed by iterative
policy evaluation. The final estimate is in fact v⇡, which in this case gives for
each state the negation of the expected number of steps from that state until

A Small Gridworld

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14;
❐ One terminal state (shown twice as shaded squares)
❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached

R

γ = 1

6

Iterative Policy Eval
for the Small Gridworld

€

π = equiprobable random action choices

∞

R

γ = 1

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14;
❐ One terminal state (shown twice as shaded squares)
❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached

6

Iterative Policy Eval
for the Small Gridworld

€

π = equiprobable random action choices

∞

R

γ = 1

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14;
❐ One terminal state (shown twice as shaded squares)
❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached

6

Iterative Policy Eval
for the Small Gridworld

€

π = equiprobable random action choices

∞

R

γ = 1

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14;
❐ One terminal state (shown twice as shaded squares)
❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached

6

Iterative Policy Eval
for the Small Gridworld

€

π = equiprobable random action choices

∞

R

γ = 1

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14;
❐ One terminal state (shown twice as shaded squares)
❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached

6

Iterative Policy Eval
for the Small Gridworld

€

π = equiprobable random action choices

∞

R

γ = 1

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14;
❐ One terminal state (shown twice as shaded squares)
❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached

Bellman Optimality Eqn

43

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

qπ(s, a)

Bellman Optimality Eqn

44

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

qπ(s, a)

Bellman Optimality Eqn

45

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

qπ(s, a)

Bellman Optimality Eqn

46

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

qπ(s, a)

Bellman Optimality Eqn

47

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

qπ(s, a)

Bellman Optimality Eqn

48

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

qπ(s, a)

Bellman Optimality Eqn

49

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

Also as many equations as unknowns (non-linear, this time though).

Policy Iteration

 policy evaluation policy improvement
“greedification”

4.3. POLICY ITERATION 91

selected in the new greedy policy. Any apportioning scheme is allowed as long
as all submaximal actions are given zero probability.

The last row of Figure 4.2 shows an example of policy improvement for
stochastic policies. Here the original policy, ⇡, is the equiprobable random
policy, and the new policy, ⇡

0, is greedy with respect to v⇡. The value function
v⇡ is shown in the bottom-left diagram and the set of possible ⇡

0 is shown in
the bottom-right diagram. The states with multiple arrows in the ⇡

0 diagram
are those in which several actions achieve the maximum in (4.9); any appor-
tionment of probability among these actions is permitted. The value function
of any such policy, v⇡0(s), can be seen by inspection to be either �1, �2, or �3
at all states, s 2 S, whereas v⇡(s) is at most �14. Thus, v⇡0(s) � v⇡(s), for all
s 2 S, illustrating policy improvement. Although in this case the new policy
⇡

0 happens to be optimal, in general only an improvement is guaranteed.

4.3 Policy Iteration

Once a policy, ⇡, has been improved using v⇡ to yield a better policy, ⇡
0, we can

then compute v⇡0 and improve it again to yield an even better ⇡
00. We can thus

obtain a sequence of monotonically improving policies and value functions:

⇡0
E�! v⇡0

I�! ⇡1
E�! v⇡1

I�! ⇡2
E�! · · · I�! ⇡⇤

E�! v⇤,

where
E�! denotes a policy evaluation and

I�! denotes a policy improvement .
Each policy is guaranteed to be a strict improvement over the previous one
(unless it is already optimal). Because a finite MDP has only a finite number
of policies, this process must converge to an optimal policy and optimal value
function in a finite number of iterations.

This way of finding an optimal policy is called policy iteration. A complete
algorithm is given in Figure 4.3. Note that each policy evaluation, itself an
iterative computation, is started with the value function for the previous policy.
This typically results in a great increase in the speed of convergence of policy
evaluation (presumably because the value function changes little from one
policy to the next).

Policy iteration often converges in surprisingly few iterations. This is illus-
trated by the example in Figure 4.2. The bottom-left diagram shows the value
function for the equiprobable random policy, and the bottom-right diagram
shows a greedy policy for this value function. The policy improvement theo-
rem assures us that these policies are better than the original random policy.
In this case, however, these policies are not just better, but optimal, proceed-
ing to the terminal states in the minimum number of steps. In this example,
policy iteration would find the optimal policy after just one iteration.

Policy Improvement

Suppose we have computed for a deterministic policy π.vπ

For a given state s,
would it be better to do an action ? a ≠ π (s)

It is better to switch to action a for state s if and only if
 qπ (s,a) > vπ (s)

Policy Improvement Cont.

Do this for all states to get a new policy !π ≥ π that is
greedy with respect to vπ :

90 CHAPTER 4. DYNAMIC PROGRAMMING

other words, to consider the new greedy policy, ⇡
0, given by

⇡
0(s) = arg max

a

q⇡(s, a)

= arg max
a

E[Rt+1 + �v⇡(St+1) | St =s, At =a] (4.9)

= arg max
a

X

s0,r

p(s0
, r|s, a)

h
r + �v⇡(s0)

i
,

where arg maxa denotes the value of a at which the expression that follows is
maximized (with ties broken arbitrarily). The greedy policy takes the action
that looks best in the short term—after one step of lookahead—according to
v⇡. By construction, the greedy policy meets the conditions of the policy
improvement theorem (4.7), so we know that it is as good as, or better than,
the original policy. The process of making a new policy that improves on an
original policy, by making it greedy with respect to the value function of the
original policy, is called policy improvement.

Suppose the new greedy policy, ⇡
0, is as good as, but not better than, the

old policy ⇡. Then v⇡ = v⇡0 , and from (4.9) it follows that for all s 2 S:

v⇡0(s) = max
a

E[Rt+1 + �v⇡0(St+1) | St =s, At =a]

= max
a

X

s0,r

p(s0
, r|s, a)

h
r + �v⇡0(s0)

i
.

But this is the same as the Bellman optimality equation (4.1), and therefore,
v⇡0 must be v⇤, and both ⇡ and ⇡

0 must be optimal policies. Policy improve-
ment thus must give us a strictly better policy except when the original policy
is already optimal.

So far in this section we have considered the special case of deterministic
policies. In the general case, a stochastic policy ⇡ specifies probabilities, ⇡(a|s),
for taking each action, a, in each state, s. We will not go through the details,
but in fact all the ideas of this section extend easily to stochastic policies. In
particular, the policy improvement theorem carries through as stated for the
stochastic case, under the natural definition:

q⇡(s, ⇡0(s)) =
X

a

⇡
0(a|s)q⇡(s, a).

In addition, if there are ties in policy improvement steps such as (4.9)—that
is, if there are several actions at which the maximum is achieved—then in the
stochastic case we need not select a single action from among them. Instead,
each maximizing action can be given a portion of the probability of being

What if the policy is unchanged by this?
Then the policy must be optimal!

Policy Iteration

 policy evaluation policy improvement
“greedification”

4.3. POLICY ITERATION 91

selected in the new greedy policy. Any apportioning scheme is allowed as long
as all submaximal actions are given zero probability.

The last row of Figure 4.2 shows an example of policy improvement for
stochastic policies. Here the original policy, ⇡, is the equiprobable random
policy, and the new policy, ⇡

0, is greedy with respect to v⇡. The value function
v⇡ is shown in the bottom-left diagram and the set of possible ⇡

0 is shown in
the bottom-right diagram. The states with multiple arrows in the ⇡

0 diagram
are those in which several actions achieve the maximum in (4.9); any appor-
tionment of probability among these actions is permitted. The value function
of any such policy, v⇡0(s), can be seen by inspection to be either �1, �2, or �3
at all states, s 2 S, whereas v⇡(s) is at most �14. Thus, v⇡0(s) � v⇡(s), for all
s 2 S, illustrating policy improvement. Although in this case the new policy
⇡

0 happens to be optimal, in general only an improvement is guaranteed.

4.3 Policy Iteration

Once a policy, ⇡, has been improved using v⇡ to yield a better policy, ⇡
0, we can

then compute v⇡0 and improve it again to yield an even better ⇡
00. We can thus

obtain a sequence of monotonically improving policies and value functions:

⇡0
E�! v⇡0

I�! ⇡1
E�! v⇡1

I�! ⇡2
E�! · · · I�! ⇡⇤

E�! v⇤,

where
E�! denotes a policy evaluation and

I�! denotes a policy improvement .
Each policy is guaranteed to be a strict improvement over the previous one
(unless it is already optimal). Because a finite MDP has only a finite number
of policies, this process must converge to an optimal policy and optimal value
function in a finite number of iterations.

This way of finding an optimal policy is called policy iteration. A complete
algorithm is given in Figure 4.3. Note that each policy evaluation, itself an
iterative computation, is started with the value function for the previous policy.
This typically results in a great increase in the speed of convergence of policy
evaluation (presumably because the value function changes little from one
policy to the next).

Policy iteration often converges in surprisingly few iterations. This is illus-
trated by the example in Figure 4.2. The bottom-left diagram shows the value
function for the equiprobable random policy, and the bottom-right diagram
shows a greedy policy for this value function. The policy improvement theo-
rem assures us that these policies are better than the original random policy.
In this case, however, these policies are not just better, but optimal, proceed-
ing to the terminal states in the minimum number of steps. In this example,
policy iteration would find the optimal policy after just one iteration.

6

Greedy Policies
for the Small Gridworld

∞

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14;
❐ One terminal state (shown twice as shaded squares)
❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached

€

π = equiprobable random action choices

R

γ = 1

Greedy Policies
for the Small Gridworld

∞

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14;
❐ One terminal state (shown twice as shaded squares)
❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached

€

π = equiprobable random action choices

R

γ = 1

Policy Iteration – One array version (+ policy)

92 CHAPTER 4. DYNAMIC PROGRAMMING

1. Initialization
V (s) 2 R and ⇡(s) 2 A(s) arbitrarily for all s 2 S

2. Policy Evaluation
Repeat

� 0
For each s 2 S:

v V (s)
V (s)

P
s0,r p(s0

, r|s, ⇡(s))
⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number)

3. Policy Improvement
policy-stable true

For each s 2 S:
a ⇡(s)
⇡(s) arg maxa

P
s0,r p(s0

, r|s, a)
⇥
r + �V (s0)

⇤

If a 6= ⇡(s), then policy-stable false

If policy-stable, then stop and return V and ⇡; else go to 2

Figure 4.3: Policy iteration (using iterative policy evaluation) for v⇤. This
algorithm has a subtle bug, in that it may never terminate if the policy con-
tinually switches between two or more policies that are equally good. The bug
can be fixed by adding additional flags, but it makes the pseudocode so ugly
that it is not worth it. :-)

Generalized Policy Iteration

Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement,
independent of their granularity.

A geometric metaphor for
convergence of GPI:

evaluation

improvement

⇡ greedy(V)

V⇡

V v⇡

v⇤⇡⇤

v⇤,⇡⇤

V0,⇡0

V = v⇡

⇡ = greed
y(V)

Value Iteration

Recall the full policy-evaluation backup:

Here is the full value-iteration backup:

v0 ! v1 ! · · · ! vk ! vk+1 ! · · · ! v⇡

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �vk(s

0)
i

8s 2 S

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

v0 ! v1 ! · · · ! vk ! vk+1 ! · · · ! v⇡

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �vk(s

0)
i

8s 2 S

vk+1(s) = max
a

X

s0,r

p(s0, r|s, a)
h
r + �vk(s

0)
i

8s 2 S

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max
a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (4)

i

Value Iteration – One array version
96 CHAPTER 4. DYNAMIC PROGRAMMING

Initialize array V arbitrarily (e.g., V (s) = 0 for all s 2 S+)

Repeat
� 0
For each s 2 S:

v V (s)
V (s) maxa

P
s0,r p(s0

, r|s, a)
⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number)

Output a deterministic policy, ⇡, such that
⇡(s) = arg maxa

P
s0,r p(s0

, r|s, a)
⇥
r + �V (s0)

⇤

Figure 4.5: Value iteration.

by only a small amount in a sweep. Figure 4.5 gives a complete value iteration
algorithm with this kind of termination condition.

Value iteration e↵ectively combines, in each of its sweeps, one sweep of
policy evaluation and one sweep of policy improvement. Faster convergence is
often achieved by interposing multiple policy evaluation sweeps between each
policy improvement sweep. In general, the entire class of truncated policy
iteration algorithms can be thought of as sequences of sweeps, some of which
use policy evaluation backups and some of which use value iteration backups.
Since the max operation in (4.10) is the only di↵erence between these backups,
this just means that the max operation is added to some sweeps of policy
evaluation. All of these algorithms converge to an optimal policy for discounted
finite MDPs.

Example 4.3: Gambler’s Problem A gambler has the opportunity to
make bets on the outcomes of a sequence of coin flips. If the coin comes up
heads, he wins as many dollars as he has staked on that flip; if it is tails, he
loses his stake. The game ends when the gambler wins by reaching his goal
of $100, or loses by running out of money. On each flip, the gambler must
decide what portion of his capital to stake, in integer numbers of dollars. This
problem can be formulated as an undiscounted, episodic, finite MDP. The
state is the gambler’s capital, s 2 {1, 2, . . . , 99} and the actions are stakes,
a 2 {0, 1, . . . , min(s, 100 � s)}. The reward is zero on all transitions except
those on which the gambler reaches his goal, when it is +1. The state-value
function then gives the probability of winning from each state. A policy is a
mapping from levels of capital to stakes. The optimal policy maximizes the
probability of reaching the goal. Let ph denote the probability of the coin

Gambler’s Problem

❐ Gambler can repeatedly bet $ on a coin flip
❐ Heads he wins his stake, tails he loses it
❐ Initial capital ∈ {$1, $2, … $99}
❐ Gambler wins if his capital becomes $100

loses if it becomes $0
❐ Coin is unfair

 Heads (gambler wins) with probability p = .4

❐ States, Actions, Rewards? Discounting?

Gambler’s Problem Solution

Gambler’s Problem Solution

Asynchronous DP

❐ All the DP methods described so far require exhaustive
sweeps of the entire state set.

❐ Asynchronous DP does not use sweeps. Instead it works like
this:
 Repeat until convergence criterion is met:

– Pick a state at random and apply the appropriate
backup

❐ Still need lots of computation, but does not get locked into
hopelessly long sweeps

❐ Can you select states to backup intelligently? YES: an agent’s
experience can act as a guide.

Efficiency of DP

❐ To find an optimal policy is polynomial in the number of
states…

❐ BUT, the number of states is often astronomical, e.g., often
growing exponentially with the number of state variables
(what Bellman called “the curse of dimensionality”).

❐ In practice, classical DP can be applied to problems with a
few millions of states.

❐ Asynchronous DP can be applied to larger problems, and is
appropriate for parallel computation.

❐ It is surprisingly easy to come up with MDPs for which DP
methods are not practical.

Summary

❐ Policy evaluation: backups without a max
❐ Policy improvement: form a greedy policy, if only locally
❐ Policy iteration: alternate the above two processes
❐ Value iteration: backups with a max
❐ Full backups (to be contrasted later with sample backups)
❐ Generalized Policy Iteration (GPI)
❐ Asynchronous DP: a way to avoid exhaustive sweeps
❐ Bootstrapping: updating estimates based on other

estimates
❐ Biggest limitation of DP is that it requires a probability

model (as opposed to a generative or simulation model)

