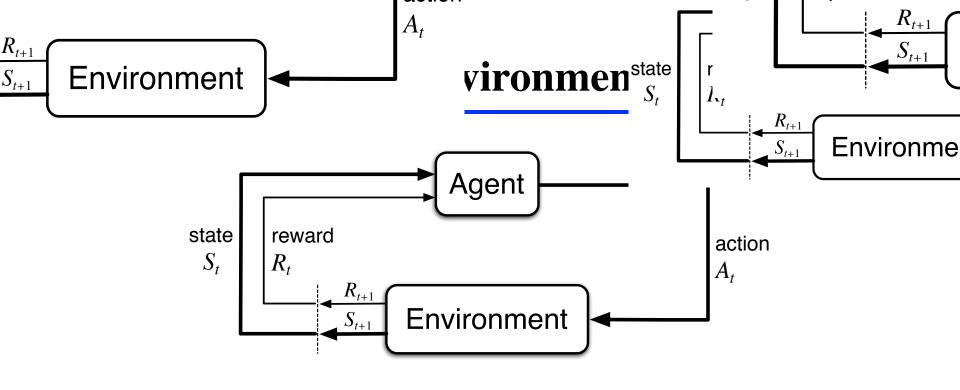
Sequential Decision Making Markov Decision Processes Dynamic Programming



Agent and environment interact at discrete time steps: t = 0, 1, 2, 3, ...

Agent observes state at step t: $S_t \in S$

produces action at step t: $A_t \in \mathcal{A}(S_t)$

gets resulting reward: $R_{t+1} \in \mathcal{R} \subset \mathbb{R}$

and resulting next state: $S_{t+1} \in S^+$

Recall: Markov Decision Processes

- ☐ If a reinforcement learning task has the Markov Property, it is basically a **Markov Decision Process (MDP)**.
- ☐ If state and action sets are finite, it is a **finite MDP**.
- ☐ To define a finite MDP, you need to give:
 - state and action sets
 - one-step "dynamics"

$$p(s', r|s, a) = \mathbf{Pr}\{S_{t+1} = s', R_{t+1} = r \mid S_t = s, A_t = a\}$$

$$p(s'|s, a) \doteq \Pr\{S_{t+1} = s' \mid S_t = s, A_t = a\} = \sum_{r \in \mathcal{R}} p(s', r|s, a)$$
$$r(s, a) \doteq \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s', r|s, a)$$

Recall: The Agent Learns a Policy

Policy at step $t = \pi_t =$ a mapping from states to action probabilities $\pi_t(a \mid s) = \text{probability that } A_t = a \text{ when } S_t = s$

Special case - deterministic policies:

 $\pi_t(s)$ = the action taken with prob=1 when $S_t = s$

- ☐ Reinforcement learning methods specify how the agent changes its policy as a result of experience.
- □ Roughly, the agent's goal is to get as much reward as it can over the long run.

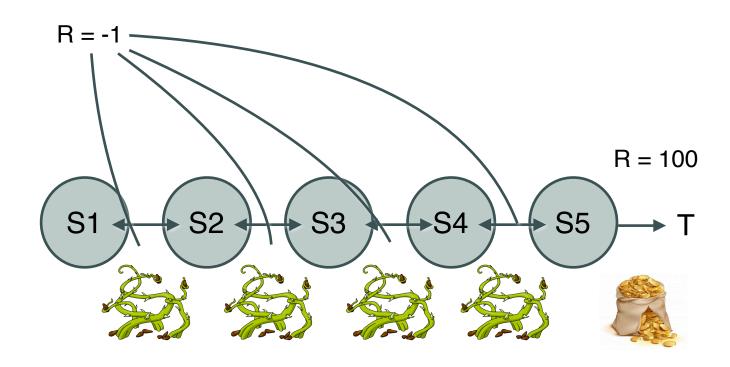
What We Will See Today

- What is the Goal of the Agent? ((Discounted) Return G)
- ☐ How do we evaluate which state/actions are good?
 (Dynamic Programming, Value Fct V(s), Action-Value Q(a,s))
- \square How can we improve our policy π? (Bellman Eqn)

What is the Goal of the Agent?

- Reward sequence A: 1, 0, 0, 0
- Reward sequence B: 0, 1, 0, 0
- ☐ Reward sequence C: 0, 0, 1.16, 0
- ☐ Reward sequence D: 0, 0, 0, 1.17

How good are each states?



The reward hypothesis

- ☐ That all of what we mean by goals and purposes can be well thought of as the maximization of the cumulative sum of a received scalar signal (reward).
- \square A sort of *null hypothesis*.
 - Possibly wrong, but very simple, and so far very successful.

How can we convert the future sequence of rewards to a single number?

- Reward sequence A: 1, 0, 0, 0
- □ Reward sequence B: 0, 1, 0, 0
- ☐ Reward sequence C: 0, 0, 1.16, 0
- ☐ Reward sequence D: 0, 0, 0, 1.17

Return

Suppose the sequence of rewards after step *t* is:

$$R_{t+1}, R_{t+2}, R_{t+3}, \dots$$

What do we want to maximize?

At least three cases, but in all of them, we seek to maximize the **expected return**, $E\{G_t\}$, on each step t.

- Total reward, G_t = sum of all future reward in the episode
- Discounted reward, G_t = sum of all future discounted reward
- Average reward, G_t = average reward per time step

Discounted Return

Continuing tasks: interaction does not have natural episodes, but just goes on and on...

In this class, for continuing tasks we will always use *discounted* return:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1},$$

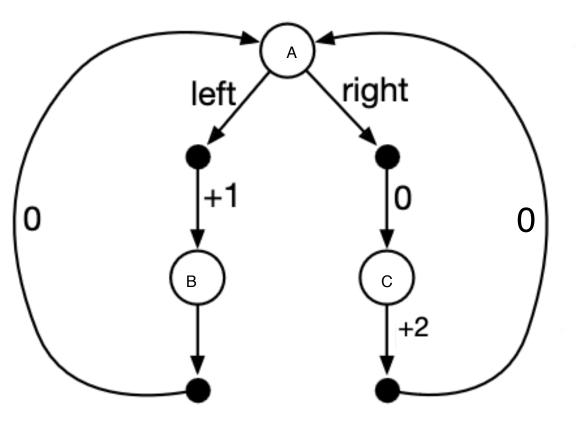
where γ , $0 \le \gamma \le 1$, is the **discount rate**.

shortsighted $0 \leftarrow \gamma \rightarrow 1$ farsighted

Typically, $\gamma = 0.9$

Which one is the best?

- Reward sequence A: 1, 0, 0, 0
- Reward sequence B: 0, 1, 0, 0
- ☐ Reward sequence C: 0, 0, 1.16, 0
- \square Reward sequence D: 0, 0, 0, 1.17



What policy is optimal starting from A?

i) Going left.

ii) Going right.

iii)Something else.

Episodic Tasks: Total Reward

Episodic tasks: interaction breaks naturally into episodes, e.g., plays of a game, trips through a maze

In episodic tasks, we often simply use total reward:

$$G_t = R_{t+1} + R_{t+2} + \dots + R_T,$$

where *T* is a final time step at which a **terminal state** is reached, ending an episode.

A Trick to Unify Notation for Returns

☐ In episodic tasks, we number the time steps of each episode starting from zero.

☐ Think of each episode as ending in an absorbing state that always produces reward of zero:

where γ can be 1 only if a zero reward absorbing state is always reached.

Episodic and Continuing Tasks: Average Reward

In episodic tasks, we can also use average reward:

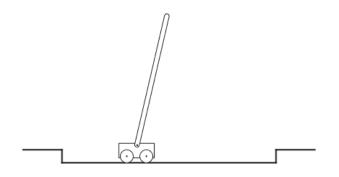
$$G_0 = (\sum_{t=0}^{T} R_t) / T$$

where *T* is a final time step at which a **terminal state** is reached, ending an episode.

In continuing tasks, we can also define average reward:

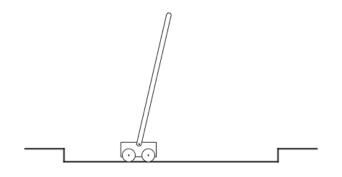
$$G = \lim_{T \to \infty} \left(\left(\sum_{t=0}^{T} R_t \right) / T \right)$$

More on this later!



Avoid **failure:** the pole falling beyond a critical angle or the cart hitting end of track

As an **episodic task** where episode ends upon failure:

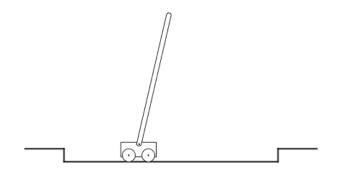


Avoid **failure:** the pole falling beyond a critical angle or the cart hitting end of track

As an episodic task where episode ends upon failure:

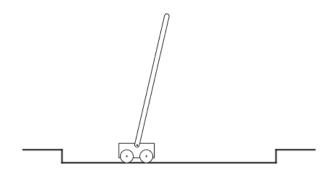
reward = +1 for each step before failure

⇒ return = number of steps before failure



Avoid **failure:** the pole falling beyond a critical angle or the cart hitting end of track

As a **continuing task** with discounted return:

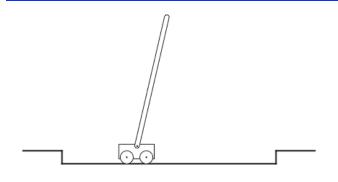


Avoid **failure:** the pole falling beyond a critical angle or the cart hitting end of track

As a **continuing task** with discounted return:

reward = -1 upon failure; 0 otherwise

 \Rightarrow return = $-\gamma^k$, for k steps before failure



Avoid **failure:** the pole falling beyond a critical angle or the cart hitting end of track

As an episodic task where episode ends upon failure:

reward = +1 for each step before failure

⇒ return = number of steps before failure

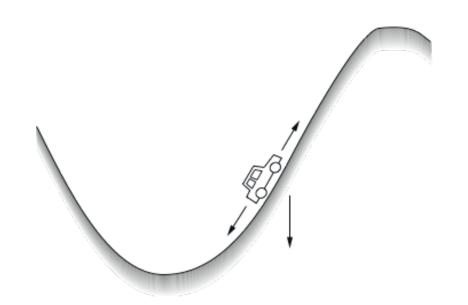
As a **continuing task** with discounted return:

reward = -1 upon failure; 0 otherwise

 \Rightarrow return = $-\gamma^k$, for k steps before failure

In either case, return is maximized by avoiding failure for as long as possible.

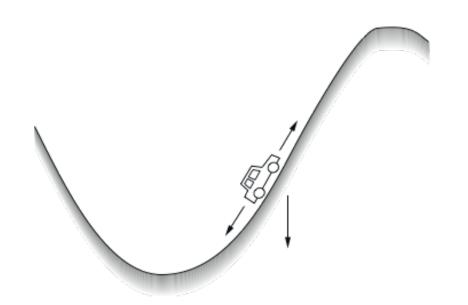
Another Example: Mountain Car



Get to the top of the hill as quickly as possible.

Return is maximized by minimizing number of steps to reach the top of the hill.

Mountain Car: Discounted



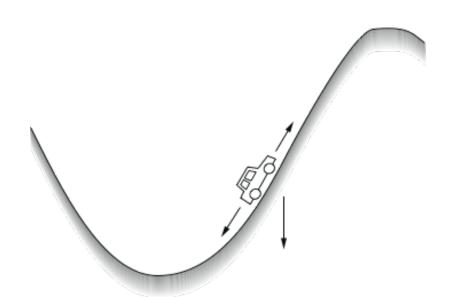
Get to the top of the hill as quickly as possible.

Reward: 1 at the top of the hill, 0 otherwise

Return: if discount <1, k=number of time steps, so return is γ^k

Return is maximized by minimizing number of steps to reach the top of the hill.

Mountain Car: Episodic



Get to the top of the hill as quickly as possible.

reward = -1 for each step where **not** at top of hill

⇒ return = - number of steps before reaching top of hill

Return is maximized by minimizing number of steps to reach the top of the hill.

4 value functions

	state values	action values	
prediction	v_{π}	q_{π}	
control	v_*	q_*	

- All theoretical objects, expected values
- Distinct from their estimates: $V_t(s)$ $Q_t(s,a)$

Values are expected returns

The value of a state, given a policy:

$$v_{\pi}(s) = \mathbb{E}\{G_t \mid S_t = s, A_{t:\infty} \sim \pi\} \qquad v_{\pi} : S \to \Re$$

The value of a state-action pair, given a policy:

$$q_{\pi}(s, a) = \mathbb{E}\{G_t \mid S_t = s, A_t = a, A_{t+1:\infty} \sim \pi\} \qquad q_{\pi} : S \times \mathcal{A} \to \Re$$

The optimal value of a state:

$$v_*(s) = \max_{\pi} v_{\pi}(s) \qquad v_* : S \to \Re$$

• The optimal value of a state-action pair:

$$q_*(s, a) = \max_{\pi} q_{\pi}(s, a) \qquad q_* : S \times A \to \Re$$

• Optimal policy: π_* is an optimal policy if and only if

$$\pi_*(a|s) > 0$$
 only where $q_*(s,a) = \max_b q_*(s,b)$ $\forall s \in S$

• in other words, π_* is optimal iff it is *greedy* wrt q_*

Value Functions

☐ The **value of a state** is the expected return starting from that state; depends on the agent's policy:

State - value function for policy π :

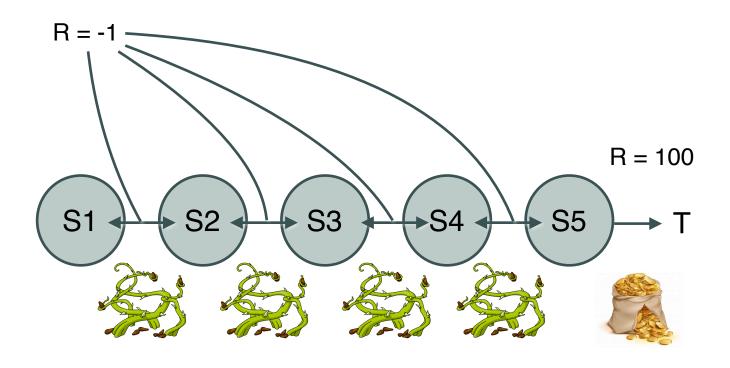
$$v_{\pi}(s) = E_{\pi} \left\{ G_t \mid S_t = s \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right\}$$

☐ The value of an action (in a state) is the expected return starting after taking that action from that state; depends on the agent's policy:

Action - value function for policy π :

$$q_{\pi}(s,a) = E_{\pi} \left\{ G_{t} \mid S_{t} = s, A_{t} = a \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s, A_{t} = a \right\}$$

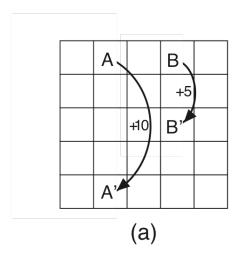
How good are each states?



If
$$\gamma = 1$$
, $V^* = ?$

Gridworld

- Actions: north, south, east, west; deterministic.
- \square If would take agent off the grid: no move but reward = -1
- \Box Other actions produce reward = 0, except actions that move agent out of special states A and B as shown.



3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

(b)

State-value function for equiprobable random policy; $\gamma = 0.9$

Policy Evaluation

Policy Evaluation: for a given policy π , compute the state-value function v_{π}

Recall: State-value function for policy π

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s\right]$$

Bellman Equation for a Policy π

The basic idea:

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma \left(R_{t+2} + \gamma R_{t+3} + \gamma^{2} R_{t+4} + \cdots \right)$$

$$= R_{t+1} + \gamma G_{t+1}$$

So:
$$v_{\pi}(s) = E_{\pi} \left\{ G_{t} | S_{t} = s \right\}$$
$$= E_{\pi} \left\{ R_{t+1} + \gamma v_{\pi} \left(S_{t+1} \right) | S_{t} = s \right\}$$

Or, without the expectation operator:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_{\pi}(s') \Big]$$

More on the Bellman Equation

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_{\pi}(s') \Big]$$

This is a set of equations (in fact, linear), one for each state. The value function for π is its unique solution*.

* In the usual case where the system of equations is invertible, but in the current context you would really need to work hard to make it non-invertible.

Q-Function

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s, A_{t} = a]$$

$$= \sum_{s', r} p(s', r \mid s, a) \Big[r + \gamma v_{\pi}(s') \Big].$$

Policy Evaluation

Policy Evaluation: for a given policy π , compute the state-value function v_{π}

Recall: State-value function for policy π

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s\right]$$

Recall: **Bellman equation for** v_{π}

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

—a system of |S| simultaneous equations

Iterative Methods

$$v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_k \rightarrow v_{k+1} \rightarrow \cdots \rightarrow v_{\pi}$$
a "sweep",

A sweep consists of applying a backup operation to each state.

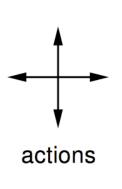
A full policy-evaluation backup:

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s') \right] \qquad \forall s \in \mathcal{S}$$

Iterative Policy Evaluation - One array version

```
Input \pi, the policy to be evaluated
Initialize an array V(s) = 0, for all s \in S^+
Repeat
   \Delta \leftarrow 0
   For each s \in S:
         v \leftarrow V(s)
         V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
         \Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (a small positive number)
Output V \approx v_{\pi}
```

A Small Gridworld



	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

$$R = -1$$
 on all transitions

$$\gamma = 1$$

- ☐ An undiscounted episodic task
- \square Nonterminal states: 1, 2, ..., 14;
- One terminal state (shown twice as shaded squares)
- Actions that would take agent off the grid leave state unchanged
- □ Reward is −1 until the terminal state is reached

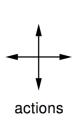
 V_{k} for the Random Policy

k = 0

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

 π = equiprobable random action choices

k = 1



	1	2	3	
4	5	6	7	
8	9	10	11	
12	13	14		

$$R = -1$$
 on all transitions

$$\gamma = 1$$

$$k = 2$$

k = 3

- ☐ An undiscounted episodic task
- \square Nonterminal states: 1, 2, . . ., 14;
- One terminal state (shown twice as shaded squares)
- ☐ Actions that would take agent off the grid leave state unchanged
- □ Reward is –1 until the terminal state is reached

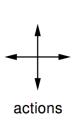
 V_{k} for the Random Policy

k = 0

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

 π = equiprobable random action choices

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0



	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

$$R = -1$$
 on all transitions

$$\gamma = 1$$

$$k = 2$$

k = 3

- ☐ An undiscounted episodic task
- \square Nonterminal states: 1, 2, . . ., 14;
- One terminal state (shown twice as shaded squares)
- ☐ Actions that would take agent off the grid leave state unchanged
- □ Reward is –1 until the terminal state is reached

 V_{k} for the Random Policy

k = 0

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

 π = equiprobable random action choices

$$k = 1$$

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

_				
		1	2	3
	4	5	6	7
	8	9	10	11
	12	13	14	

$$R = -1$$
 on all transitions

$$\gamma = 1$$

$$k = 2$$

$$\begin{array}{c} 0.0 & -1.7 & -2.0 & -2.0 \\ -1.7 & -2.0 & -2.0 & -2.0 \\ -2.0 & -2.0 & -2.0 & -1.7 \\ 2.0 & 2.0 & 1.7 & 0.0 \end{array}$$

$$k = 3$$

- ☐ An undiscounted episodic task
- \square Nonterminal states: 1, 2, . . ., 14;
- One terminal state (shown twice as shaded squares)
- ☐ Actions that would take agent off the grid leave state unchanged
- ☐ Reward is −1 until the terminal state is reached

 V_{k} for the Random Policy

k = 0

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

 π = equiprobable random action choices

$$k = 1$$

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

$$R = -1$$
 on all transitions

$$\gamma = 1$$

$$k = 3$$

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

- ☐ An undiscounted episodic task
- \square Nonterminal states: 1, 2, . . ., 14;
- One terminal state (shown twice as shaded squares)
- ☐ Actions that would take agent off the grid leave state unchanged
- □ Reward is –1 until the terminal state is reached

 V_{k} for the Random Policy

k	=	0

 π = equiprobable random action choices

$$k = 1$$

0.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0

	1	2	3	
4	5	6	7	
8	9	10	11	
12	13	14		

$$R = -1$$
 on all transitions

k = 3

0.0 -1.7 -2.0 -2.0 -1.7 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.7 -2.0 -2.0 -1.7 0.0

$$\gamma = 1$$

0.0 -2.4 -2.9 -3.0 -2.9 -2.9 -3.0 -2.9 -3.0 -2.9 -2.4 -2.9 -3.0 -2.9 -2.4

- ☐ An undiscounted episodic task
- \square Nonterminal states: 1, 2, . . ., 14;
- ☐ One terminal state (shown twice as shaded squares)
- ☐ Actions that would take agent off the grid leave state unchanged
- ☐ Reward is −1 until the terminal state is reached

$$k = 10$$

0.0 | -6.1 | -8.4 | -9.0 | -6.1 | -7.7 | -8.4 | -8.4 | -8.4 | -7.7 | -6.1 | -9.0 | -8.4 | -6.1 | 0.0

0.0 -14. -20. -22. -14. -18. -20. -20. -20. -20. -18. -14. -22. -20. -14. 0.0

$$k = \infty$$

$$q_{\pi}(s, a)$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s', r} p(s', r|s, a) \left[r + \gamma v_{\pi}(s')\right]$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \underbrace{\sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_{\pi}(s')\Big]}_{s',r}$$

$$v_*(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a)$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \underbrace{\sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_{\pi}(s')\Big]}$$
 $v_{*}(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_{*}}(s,a)$
 $= \max \mathbb{E}_{\pi_{*}}[G_{t} \mid S_{t} = s, A_{t} = a]$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_{\pi}(s') \Big]$$
 $v_{*}(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_{*}}(s,a)$
 $= \max_{a} \mathbb{E}_{\pi_{*}} [G_{t} \mid S_{t} = s, A_{t} = a]$
 $= \max \mathbb{E}_{\pi_{*}} [R_{t+1} + \gamma G_{t+1} \mid S_{t} = s, A_{t} = a]$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_{\pi}(s') \Big]$$
 $v_{*}(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_{*}}(s,a)$
 $= \max_{a} \mathbb{E}_{\pi_{*}} [G_{t} \mid S_{t} = s, A_{t} = a]$
 $= \max_{a} \mathbb{E}_{\pi_{*}} [R_{t+1} + \gamma G_{t+1} \mid S_{t} = s, A_{t} = a]$
 $= \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{*}(S_{t+1}) \mid S_{t} = s, A_{t} = a]$

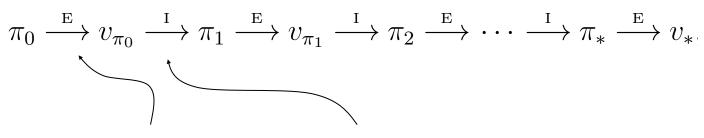
$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_{\pi}(s') \Big]$$
 $v_{*}(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_{*}}(s,a)$
 $= \max_{a} \mathbb{E}_{\pi_{*}} [G_{t} \mid S_{t} = s, A_{t} = a]$
 $= \max_{a} \mathbb{E}_{\pi_{*}} [R_{t+1} + \gamma G_{t+1} \mid S_{t} = s, A_{t} = a]$
 $= \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{*}(S_{t+1}) \mid S_{t} = s, A_{t} = a]$
 $= \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma v_{*}(s')].$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s') \right]$$

$$v_*(s) = \max_a \sum_{s',r} p(s',r|s,a) [r + \gamma v_*(s')]$$

Also as many equations as unknowns (non-linear, this time though).

Policy Iteration



policy evaluation policy improvement "greedification"

Policy Improvement

Suppose we have computed v_{π} for a deterministic policy π .

For a given state s, would it be better to do an action $a \neq \pi(s)$?

It is better to switch to action a for state s if

$$q_{\pi}(s,a) > v_{\pi}(s)$$

Policy Improvement Cont.

Do this for all states to get a new policy $\pi' \ge \pi$ that is **greedy** with respect to v_{π} :

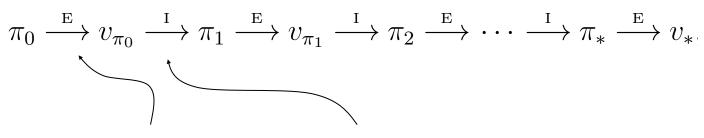
$$\pi'(s) = \arg \max_{a} q_{\pi}(s, a)$$

$$= \arg \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s, A_{t} = a]$$

$$= \arg \max_{a} \sum_{s', r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s')\right],$$

What if the policy is unchanged by this? Then the policy must be optimal!

Policy Iteration

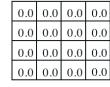


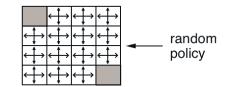
policy evaluation policy improvement "greedification"

Greedy Policies for the Small Gridworld

 V_{k} for the Random Policy

 $\begin{array}{c} \text{Greedy Policy} \\ \text{w.r.t.} \ V_{k} \end{array}$





 π = equiprobable random action choices

$$k = 1$$

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

	1	2	3	
4	5	6	7	
8	9	10	11	
12	13	14		

$$R = -1$$
 on all transitions

$$k = 2$$

k = 3

$$\gamma = 1$$

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

- ☐ An undiscounted episodic task
- \square Nonterminal states: 1, 2, ..., 14;
- One terminal state (shown twice as shaded squares)
- ☐ Actions that would take agent off the grid leave state unchanged
- ☐ Reward is –1 until the terminal state is reached

$$k = 10$$

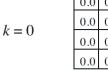
$$k = \infty$$

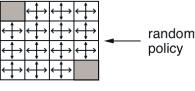
Greedy Policies

for the Small Gridworld

 V_k for the Random Policy

Greedy Policy w.r.t. V_k





 π = equiprobable random action choices

$$k = 1$$

$$0.0 - 1.0 - 1.0 - 1.0$$

 $0.0 - 1.0 - 1.0 - 1.0$
 $0.0 - 1.0 - 1.0 - 1.0$
 $0.0 - 1.0 - 1.0$

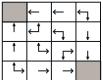
	1	2	3		
4	5	6	7		
8	9	10	11		
12	13	14			

$$R = -1$$
 on all transitions

			\Leftrightarrow
†	J	\Rightarrow	→
†	\bigoplus	Ĺ	→
\longleftrightarrow	\rightarrow	\rightarrow	

	$\gamma = 1$
-	•

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

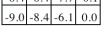


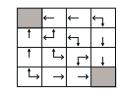
- ☐ An undiscounted episodic task
- \square Nonterminal states: 1, 2, . . . , 14;
- One terminal state (shown twice as shaded squares)
- ☐ Actions that would take agent off the grid leave state unchanged
- □ Reward is –1 until the terminal state is reached

$$k = 10$$

0.0	0.1	٠.
-6.1	-7.7	-8.4
-8.4	-8.4	-7.

0.0 -6.1 -8.4 -9.0

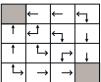




optimal

policy

= ∞	0.0	-14.	-20.	
	-14.	-18.	-20.	
	-20.	-20.	-18.	
	22	20	1.4	l



$$k = \infty$$

Policy Iteration – One array version (+ policy)

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Repeat

$$\Delta \leftarrow 0$$

For each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s', r|s, \pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number)

3. Policy Improvement

$$policy$$
- $stable \leftarrow true$

For each $s \in S$:

$$a \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \arg\max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If
$$a \neq \pi(s)$$
, then policy-stable $\leftarrow false$

If policy-stable, then stop and return V and π ; else go to 2

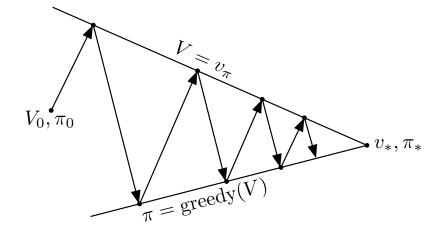
Generalized Policy Iteration

Generalized Policy Iteration (GPI):

any interaction of policy evaluation and policy improvement, independent of their granularity.



A geometric metaphor for convergence of GPI:



Value Iteration

Recall the **full policy-evaluation backup**:

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s') \right] \qquad \forall s \in \mathcal{S}$$

Here is the **full value-iteration backup**:

$$v_{k+1}(s) = \max_{a} \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s')\right] \quad \forall s \in \mathcal{S}$$

Value Iteration – One array version

Initialize array V arbitrarily (e.g., V(s) = 0 for all $s \in S^+$)

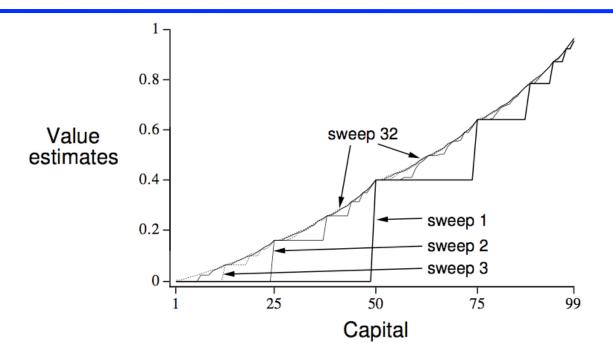
```
Repeat  \Delta \leftarrow 0  For each s \in \mathcal{S}:  v \leftarrow V(s)   V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) \big[ r + \gamma V(s') \big]   \Delta \leftarrow \max(\Delta,|v-V(s)|)  until \Delta < \theta (a small positive number)
```

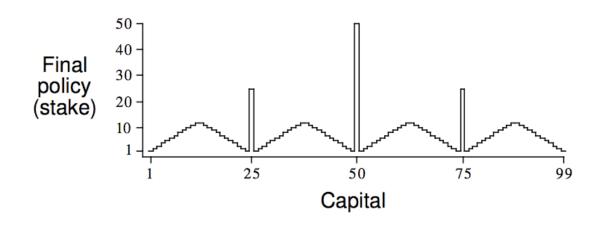
Output a deterministic policy,
$$\pi$$
, such that $\pi(s) = \arg\max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

Gambler's Problem

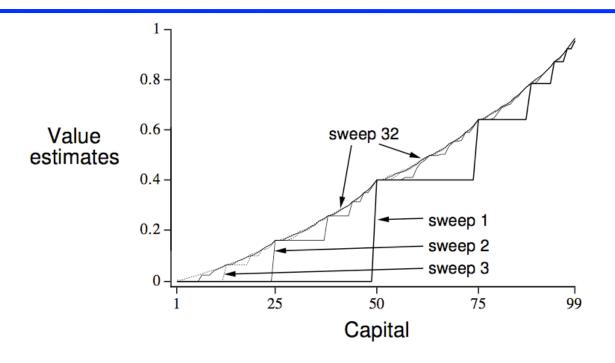
- ☐ Gambler can repeatedly bet \$ on a coin flip
- Heads he wins his stake, tails he loses it
- □ Initial capital $\in \{\$1, \$2, ... \$99\}$
- ☐ Gambler wins if his capital becomes \$100 loses if it becomes \$0
- Coin is unfair
 - Heads (gambler wins) with probability p = .4
- States, Actions, Rewards? Discounting?

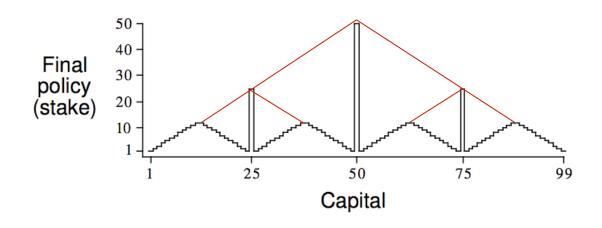
Gambler's Problem Solution





Gambler's Problem Solution





Asynchronous DP

- ☐ All the DP methods described so far require exhaustive sweeps of the entire state set.
- ☐ Asynchronous DP does not use sweeps. Instead it works like this:
 - Repeat until convergence criterion is met:
 - Pick a state at random and apply the appropriate backup
- ☐ Still need lots of computation, but does not get locked into hopelessly long sweeps
- ☐ Can you select states to backup intelligently? YES: an agent's experience can act as a guide.

Efficiency of DP

- ☐ To find an optimal policy is polynomial in the number of states...
- BUT, the number of states is often astronomical, e.g., often growing exponentially with the number of state variables (what Bellman called "the curse of dimensionality").
- ☐ In practice, classical DP can be applied to problems with a few millions of states.
- ☐ Asynchronous DP can be applied to larger problems, and is appropriate for parallel computation.
- ☐ It is surprisingly easy to come up with MDPs for which DP methods are not practical.

Summary

- ☐ Policy evaluation: backups without a max
- □ Policy improvement: form a greedy policy, if only locally
- ☐ Policy iteration: alternate the above two processes
- ☐ Value iteration: backups with a max
- ☐ Full backups (to be contrasted later with sample backups)
- ☐ Generalized Policy Iteration (GPI)
- ☐ Asynchronous DP: a way to avoid exhaustive sweeps
- **Bootstrapping**: updating estimates based on other estimates
- ☐ Biggest limitation of DP is that it requires a *probability model* (as opposed to a generative or simulation model)