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A Mystery: Learning Efficiently from Interaction

• People in their lifetime experience: 100 years x 365 days x 24 hours
x 3600 seconds x 640 muscle activations/second = 20 trillion motor
actions

• How can we learn from only this amount of data? In a very big world
that is partially observable, complex, has other agents in it?

• And while consuming around 2000 calories/day?

Very good representation and very efficient learning algorithms
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Today’s Perspective
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Aperture principle

The world is much 
bigger than the agent  

It contains many  
other agents!

Intelligence is:
The computational part of an agent’s ability to predict and control a stream of sensations,  
particularly a designated numerical sensation (called reward),  
while interacting with a vastly more complex world 

                                                                                        

The narrow aperture
of experience

The Big-World perspective:
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High-Level View of Agent

• Agent has one stream of experience (observations, actions, rewards) to
support all learning processes

• Agent is “smaller” than the entire environment

– Only has time to travel on a specific trajectory
– Cannot compute arbitrarily fast or remember all the relevant experience

in a replay buffer

• Asynchronous, online learning

– The world moves at its own speed
– Agent has a time scale at which it can perceive, act and learn
– Agent can also choose the time scale at which it updates its

representation
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Should We Think This Way?

• Yes!

– Naturalistic perspective: the conditions in which intelligence has
developed in the natural world

– Realistic perspective: the onus is on the agent to do well given its
current circumstances

– Natural for general intelligence, but also consistent with real
applications like robotics, health care, energy management...

• No!

– Are we handicapping ourselves too much?
– Does this perspective go against the Bitter Lesson?

• Next: explore the implications of this view on algorithmic solutions and
theoretical framing
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Recall: Cartoon of sequential decision making

• At time t, agent receives an observation from set X and can choose an
action from set A (think finite for now)

• Goal of the agent is to maximize long-term return
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Some observations

• We usually think of the infinite tree of all possible observations and
actions

• Instead, consider focusing on one specific path through the tree

• If there is no structure (ie every node is completely different), there is
nothing interesting to learn!

• Markovian assumption: trajectories through the tree cluster into
equivalence classes, which we call states

• This allows many ways of doing credit assignment: TD(0), TD(λ),
Monte Carlo

• Because we cluster an infinite tree into a finite number of clusters, it
makes sense to make recurrence assumptions: states will be revisited
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An example of non-Markovian structure

• Linear predictive state representations (Littman et al, 2001, Singh et al,
2004)

• Make a systems dynamics matrix, with histories as rows and future
sequences as columns

• Assume systems dynamics matrix has finite rank

• One can show that POMDPs, k-order Markov models are equivalent to
linear PSRs
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“Small Agent” Perspective

• Agent’s trajectory will cover a minuscule fraction of all possible
trajectories

• Notions of recurrence like in MDPs no longer make sense (the agent is
really transient)

• Yet the agent still needs to do as well as possible along its current
trajectory

• So it needs to construct a knowledge representation that allows it to
generalize quickly

• Agent state: the internal representation used by the agent to predict and
act

• Agent state will have to be learned

• The representation will inherently be lossy/imperfect
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An Evolution of Ideas

• Dynamic programming: agent needs to find an optimal policy at all
states (allowed by Markovian structure)

• Reinforcement learning: agent focuses on states that are actually
encountered during its experience

This is what allows tackling large environments like Go!

• One step further: agent’s learning should enable it to do well in the
future on the trajectory that will be encountered!
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Desirable Algorithmic Properties

• Stability and plasticity: useful knowledge should be retained but the
agent should remain able to learn

• Scalability (a la bitter lesson): the more data and compute are available,
the better performance should be

• Graceful degradation: future performance should be really good if the
agent is in similar situations to what it has seen, and is allowed to
degrade as the situations are increasingly different

• More debatable: Self-reliance: the agent should be able to learn and
understand the world from its own experience
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Sequential Decision Making beyond MDPs

• At decision point t, the agent receives an observation xt ∈ X and chooses
an action at ∈ A
• Let t′ be the next decision point (as a special case, t′ = t+ 1)

• The agent also receives a reward for this period, with value rt,t′, which
depends on the agent’s action

• There is a designated terminal observation, ⊥, which ends the agent’s
trajectory

• Let t⊥ designate the time at which this observation is received

• Assume t⊥ is finite on all trajectories

• The goal of the agent is to maximize the cumulative return received over
its life time, expressed as a sum of rewards:

∑
rt,t′ where the first t = 0

and the last t′ = t⊥
• A learning algorithm will be evaluated in expectation over instantiations

of environment-agent pairs
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Computational and Information Limitations are
Important

Published as a conference paper at ICLR 2021

LEARNING ROBUST STATE ABSTRACTIONS FOR
HIDDEN-PARAMETER BLOCK MDPS

Amy Zhang⇤123 Shagun Sodhani2 Khimya Khetarpal13 Joelle Pineau123

1McGill University
2Facebook AI Research
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ABSTRACT

Many control tasks exhibit similar dynamics that can be modeled as having com-
mon latent structure. Hidden-Parameter Markov Decision Processes (HiP-MDPs)
explicitly model this structure to improve sample efficiency in multi-task settings.
However, this setting makes strong assumptions on the observability of the state
that limit its application in real-world scenarios with rich observation spaces. In
this work, we leverage ideas of common structure from the HiP-MDP setting, and
extend it to enable robust state abstractions inspired by Block MDPs. We derive
instantiations of this new framework for both multi-task reinforcement learning
(MTRL) and meta-reinforcement learning (Meta-RL) settings. Further, we provide
transfer and generalization bounds based on task and state similarity, along with
sample complexity bounds that depend on the aggregate number of samples across
tasks, rather than the number of tasks, a significant improvement over prior work
that use the same environment assumptions. To further demonstrate the efficacy
of the proposed method, we empirically compare and show improvement over
multi-task and meta-reinforcement learning baselines.

1 INTRODUCTION

Figure 1: Visualizations of the typical
MTRL setting and the HiP-MDP setting.

A key open challenge in AI research that remains is how
to train agents that can learn behaviors that generalize
across tasks and environments. When there is common
structure underlying the tasks, we have seen that multi-task
reinforcement learning (MTRL), where the agent learns
a set of tasks simultaneously, has definite advantages (in
terms of robustness and sample efficiency) over the single-
task setting, where the agent independently learns each
task. There are two ways in which learning multiple tasks
can accelerate learning: the agent can learn a common
representation of observations, and the agent can learn a
common way to behave. Prior work in MTRL has also
leveraged the idea by sharing representations across tasks (D’Eramo et al., 2020) or providing per-
task sample complexity results that show improved sample efficiency from transfer (Brunskill & Li,
2013). However, explicit exploitation of the shared structure across tasks via a unified dynamics has
been lacking. Prior works that make use of shared representations use a naive unification approach
that posits all tasks lie in a shared domain (Figure 1, left). On the other hand, in the single-task
setting, research on state abstractions has a much richer history, with several works on improved
generalization through the aggregation of behaviorally similar states (Ferns et al., 2004; Li et al.,
2006; Luo et al., 2019; Zhang et al., 2020b).

In this work, we propose to leverage rich state abstraction models from the single-task setting, and
explore their potential for the more general multi-task setting. We frame the problem as a structured
super-MDP with a shared state space and universal dynamics model conditioned on a task-specific
hidden parameter (Figure 1, right). This additional structure gives us better sample efficiency, both

⇤Corresponding author: amy.x.zhang@mail.mcgill.ca
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• If the agent sees the identity of the MDP and the state, it’s usual RL

• If the agent sees only the state, we need continual adaptation!

• Cf. Rich Sutton’s aperture principle
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Some interesting special cases

• MDPs and POMDPs: assumptions on how xt′ and rt,t′ are generated by
the environment as a function of xt and at

• Online regression: the label is the action, the reward is the loss function

• Predictive state representations (Littman et al, 2002, Singh et al, 2004)
and related models (eg Jaeger, 2002): low-rank linear structure on x, a
trajectories
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What is useful structure?

• The agent needs to be able to do induction: estimate potential future
return from its past history

• We want to continue leveraging the compositionality of returns: Gt =
rt,t′ +Gt′
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Stability-plasticity dilemma

Reinforcement Learning: A natural fit to study continual learning

• DeepRL agents lose plasticity (cf Nikishin et al, 2022)

• Even deep supervised learning architectures lose plasticity (cf. Dohare et
al, 2022)

• Solutions proposed above mainly focus on resetting weights - retains
plasticity but loses stability
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Complementary Learning Systems

*Correspondence:
dkumaran@google.com (D. Kumaran),
demishassabis@google.com
(D. Hassabis), mcclelland@stanford.edu
(J.L. McClelland).

Summary of the Theory
CLS theory [1] provided a framework within which to characterize the organization of learning in
the brain (Figure 1, Key Figure). Drawing on earlier ideas by David Marr [9], it offered a synthesis
of the computational functions and characteristics of the hippocampus and neocortex that not
only accounted for a wealth of empirical data (Box 1) but resonated with rational perspectives on
the challenges faced by intelligent agents.

Structured Knowledge Representation System in Neocortex
A central tenet of the theory is that the neocortex houses a structured knowledge representation,
stored in the connections among the neurons in the neocortex. This tenet arose from the
observation that multi-layered neural networks (Figure 2) gradually learn to extract structure
when trained by adjusting connection weights to minimize error in the network outputs [10]. Early

Key Figure

Complementary Learning Systems (CLS) and their Interactions.

Bidirec!onal connec!ons (blue)
link neocor!cal representa!ons
to the hippocampus/MTL for
storage, retrieval, and replay

Rapid learning in connec!ons within
hippocampus (red) supports ini!al
learning of arbitrary new informa!on

Connec!ons within and
among neocor!cal areas
(green) support gradual

acquisi!on of structured
knowledge through
interleaved learning

Figure 1. Lateral view of one hemisphere of the brain, where broken lines indicate regions deep inside the brain or on the
medial surface. Primary sensory and motor cortices are shown in darker yellow. Medial temporal lobe (MTL) surrounded by
broken lines, with hippocampus in dark grey and surrounding MTL cortices in light grey (size and location are approximate).
Green arrows represent bidirectional connections within and between integrative neocortical association areas, and
between these areas and modality specific areas (the integrative areas and their connections are more dispersed than
the figure suggests). Blue arrows denote bidirectional connections between neocortical areas and the MTL. Both blue and
green connections are part of the structure-sensitive neocortical learning system in the CLS theory. Red arrows within the
MTL denote connections within the hippocampus, and lighter-red arrows indicate connections between the hippocampus
and surrounding MTL cortices: these connections exhibit rapid synaptic plasticity (red greater than light-red arrows) crucial
for the rapid binding of the elements of an event into an integrated hippocampal representation. Systems-level consolidation
involves hippocampal activity during replay spreading to neocortical association areas via pathways indicated with blue
arrows, thereby supporting learning within intra-neocortical connections (green arrows). Systems-level consolidation is
considered complete when memory retrieval – reactivation of the relevant set of neocortical representations – can occur
without the hippocampus.

Trends in Cognitive Sciences, July 2016, Vol. 20, No. 7 513

Cf. Kumaran, Hassabis and McLelland, 2016
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Simple RL Implementation

• Value function has two components:

V PT (s) = V Pθ (s) + V Tw (s)

• Permanent memory: V P should provide good estimates for any
circumstances

• Transient memory: V T should quickly compute corrections to V P to
adapt the the current distribution

• Both updated in parallel using TD-style updates

• This paper: both functions using the same features

Cf. Anand and Precup, NeurIPS’2023
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Prediction results
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Prediction and Control in Continual Reinforcement Learning

We use the approach described in Example 4.3 from Bert-
sekas & Tsitsiklis (1996) to prove the result. Details are
given in Appendix A.2.5

The next theorem connects the fixed point of the permanent
memory and the jumpstart objective (Taylor & Stone, 2009;
Abel et al., 2018), which is defined as the initial performance
of the agent in the new task before collecting any data. The
latter is used to measure the effectiveness of transfer in a
zero-shot learning setup.

Theorem 6. The fixed point of the perma-
nent memory optimizes the jumpstart objective,
J = arg minu2R|S|

1
2E⌧ [ku� v⌧k22].

The proof is provided in Appendix A.2.6.

We are now ready to establish more interesting results. First,
we show that after enough time, the permanent memory is
a better estimator of the value function of the previous task
than the TD estimate.

Theorem 7. (Stability) Consider a setting with N distinct
tasks and let pj be the probability that the agent gets samples
from task j. Assume that at time step t both V (TD) and
V (PT ) have converged to the true value function of task i

i.e., V
(TD)
t = V

(PT )
t = vi and the agent gets samples from

task ⌧ from time step t + 1 onward. Then, 9k0s.t.8k � k0,

E⌧

���V (TD)
t+k � vi

���
2

2

�
> E⌧

h��V (P ) � vi

��2

2

i
, 8i.

The proof uses the sample complexity bound from Bhan-
dari et al. (2018) (Section 6.3, theorem 1). Details are in
Appendix A.2.7.

In the next theorem, we find an analytical expression for
the mean squared error for both TD and Algorithm 1. Sup-
pose the agent gets N i.i.d samples hs, r, s0i from task ⌧ in
each round, where s is sampled according to the stationary
distribution d⌧ . Suppose the agent accumulates errors from
all the samples and updates its estimates at the end of the
round. Then we have:
Theorem 8. Let Eseeds denote the expectation with respect
to random seeds and let:

m
(TD)
t (s) = Eseeds[V

(TD)
t (s)],

Cov(V
(TD)

t (s), V
(TD)

t (x)) = ⌃
(TD)
t (s, x) � m

(TD)
t (s)m

(TD)
t (x),

where ⌃(TD)
t (s, x) = Eseeds[V

(TD)
t (s)V

(TD)
t (s)]. We have:

m
(TD)
t+1 (s) = m

(TD)
t (s) + ↵Nd⇡(s)�

(TD)
t (s),

⌃
(TD)
t+1 (s, x) = ⌃

(TD)
t (s, x) + ↵⌦

(TD)
t (s, x) + ↵2 

(TD)
t (s, x),

and, the mean squared error ⇠(TD)
t at time step t is

⇠
(TD)
t+1 = ⇠

(TD)
t + ↵

X

s2S
d⇡(s)(�2v⇡(s)�

(TD)
t (s) + ⌦

(TD)
t (s, s))

+ ↵2
X

s2S
d⇡(s) 

(TD)
t (s, s).

The proof is given in Appendix A.2.8.
Theorem 9. Let Eseeds denote the expectation with respect
to seeds. Let

m
(PT )
t (s) = Eseeds[V

(PT )
t (s)],

Cov(V
(PT )

t (s), V
(PT )

t (x)) = ⌃
(PT )
t (s, x) � m

(PT )
t (s)m

(PT )
t (x),

where ⌃(PT )
t (s, x) = Eseeds[V

(PT )
t (s)V

(PT )
t (s)]. Then:

m
(PT )
t+1 (s) = m

(PT )
t (s) + ↵Nd⇡(s)�

(PT )
t (s),

⌃
(PT )
t+1 (s, x) = ⌃

(PT )
t (s, x) + ↵⌦

(PT )
t (s, x) + ↵2 

(PT )
t (s, x),

and, the mean squared error ⇠(PT )
t at time step t is

⇠
(PT )
t+1 = ⇠

(PT )
t + ↵

X

s2S
d⇡(s)(�2v⇡(s)�

(PT )
t (s) + ⌦

(PT )
t (s, s))

+ ↵2
X

s2S
d⇡(s) 

(PT )
t (s, s).

The proof is given in Appendix.

Our analytical MSE expression is similar to that in Singh
& Dayan (1998) for TD. However, their work assumes that
rewards are received only at termination. All observations
resulting from their analytical MSE expression remain true
for ours as well, but we will not analyze this further. The
analysis of a toy example using these results is presented in
Appendix A.3.1.

5. Prediction experiments

(a) Discrete grid. (b) Gym-minigrid.

Figure 1: Environments used for policy evaluation.

We conducted five prediction experiments in the multi-task
setting: one tabular and two linear experiments to under-
stand Algorithm 1, and two minigrid experiments using deep
neural networks to test its generality. In all experiments we
compare usual TD learning, TD where weights are reset at
the end of the task, and PT learning (our approach). All
results are averaged across 30 seeds and the shaded region
indicates a 90% confidence interval. Learning rates are all
tuned (details in Appendix (A.3.2, A.3.3, and A.3.4)).

5.1. Tabular experiment

We use a 5x5 grid environment shown in Fig. 1a, which has
four goal states (one in each corner). The agent starts in
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Figure 2: Prediction performance on various environments. Solid lines represent RMSVE on the current task and dotted
lines represent MSE on other tasks. Black dotted vertical lines indicate task boundaries.

the center. Rewards are 0 for all transitions except those
leading into a goal state. To set up a multi-task problem, we
change the goal rewards as detailed in Table A.2. The value
function also change from task to task as shown in Fig. A.2.
We run the experiment for 500 episodes and change the task
after every 50 episodes. We use root mean squared value
error (RMSVE) as a performance measure on the online task
and the expected mean squared error (MSE) on the other
tasks. The discount is 0.9.

The results are shown in Fig. 2. Solid lines indicate the
performance on the task currently experienced by the agent
(also referred to as online task) and the dotted lines indicate
the performance on the other tasks. The reset variant of
TD performs poorly because all the learning progress is
lost when weights are reset. TD also has high errors at
the beginning of a new task, as its predictions are initially
biased towards the past task. As these estimates are updated,
it forgets the predictions on past tasks, so the error curve
on other tasks rises. Our algorithm works well in both
the performance measures, because the permanent memory
learns common information across all tasks, resulting in
lower errors on the second performance measure. Due to
the good starting point, the transient component requires
little data to make adjustments, resulting in fast adaptation
on the new task. The heatmap of permanent and transient
predictions at various points in time, shown in Fig. A.4,
confirms these observations.

5.2. Linear experiments

Discrete grid: We use the same environment but represent
each state using 10 features: the first 5 encode the row of
the state and the last 5 the column. Both permanent and
transient memory use the same features. All other details
are as above.

Continuous grid: We created a continuous version of the
grid task. The state space is [0, 1] ⇥ [0, 1] and the starting
state is sampled uniformly from [0.45, 0.55]⇥ [0.45, 0.55].
The regions within 0.1 units (in norm-1) from the corners
are goal states. The actions change the state by 0.1 units
along the corresponding direction. To make the transitions
stochastic, we add noise to the new state, sampled uniformly
from [�0.01, 0.01] ⇥ [�0.01, 0.01]. Rewards are positive

only for transitions entering a goal region. The goal reward
for each task is given in Table A.2. The evaluation policy
is uniformly random. We run 2000 episodes and the task
changes every 200 episodes. We convert the agent’s state
into to feature vector using radial basis function as described
in (Sutton & Barto, 2018) and Appendix A.3.3. For evalu-
ation, we sample 225 evenly spaced points in the grid and
compute their true values by averaging Monte Carlo returns
from 500 episodes across 10 seeds for each task. We use
� = 0.99 in this experiment.

The results are presented in Fig. 2. Our approach continues
to have low errors on both performance measures. The
error peaks are relatively small at the beginning of a new
task, due to the good starting point provided by permanent
component.

5.3. DNN experiment

Image grid: We use the 5x5 grid for this experiment and
convert states into 48x48 RGB images. The agent’s location
is indicated by colouring pixels corresponding that state
in red Goal states are green as shown in Fig. 1a. The
agent receives RGB image as an input. Goal rewards are
multiplied by 10 to remove the effect of predictions from
a randomly initialized deep neural network. We run the
experiment for 1000 episodes and tasks are switched every
100 episodes. All other details are as before.

Gym minigrid: We create a version of the four rooms
environment shown in Fig. 1b. Each room contains one
type of item and each item type is has a different reward
and color. The agent starts in the region between cells (3,3)
and (6,6) and can move forward, turn left, or turn right. Its
policy is uniformly random. The episode terminates when
the agent reaches a goal state. The agent receives a one hot,
5x5 view in front of it. We set up a multi-task problem by
changing the rewards for picking items as described in Table
A.5.The discount is 0.9. We run 750 episodes and change
the task every 75 episodes.

We use a convolutional neural network (CNN) as the func-
tion approximator. The CNN architecture is adapted for
each environment based on the observation type. For our
algorithm, we add a separate head convolutional layers to
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Figure 2: Prediction performance on various environments. Solid lines represent RMSVE on the current task and dotted
lines represent MSE on other tasks. Black dotted vertical lines indicate task boundaries.

the center. Rewards are 0 for all transitions except those
leading into a goal state. To set up a multi-task problem, we
change the goal rewards as detailed in Table A.2. The value
function also change from task to task as shown in Fig. A.2.
We run the experiment for 500 episodes and change the task
after every 50 episodes. We use root mean squared value
error (RMSVE) as a performance measure on the online task
and the expected mean squared error (MSE) on the other
tasks. The discount is 0.9.

The results are shown in Fig. 2. Solid lines indicate the
performance on the task currently experienced by the agent
(also referred to as online task) and the dotted lines indicate
the performance on the other tasks. The reset variant of
TD performs poorly because all the learning progress is
lost when weights are reset. TD also has high errors at
the beginning of a new task, as its predictions are initially
biased towards the past task. As these estimates are updated,
it forgets the predictions on past tasks, so the error curve
on other tasks rises. Our algorithm works well in both
the performance measures, because the permanent memory
learns common information across all tasks, resulting in
lower errors on the second performance measure. Due to
the good starting point, the transient component requires
little data to make adjustments, resulting in fast adaptation
on the new task. The heatmap of permanent and transient
predictions at various points in time, shown in Fig. A.4,
confirms these observations.

5.2. Linear experiments

Discrete grid: We use the same environment but represent
each state using 10 features: the first 5 encode the row of
the state and the last 5 the column. Both permanent and
transient memory use the same features. All other details
are as above.

Continuous grid: We created a continuous version of the
grid task. The state space is [0, 1] ⇥ [0, 1] and the starting
state is sampled uniformly from [0.45, 0.55]⇥ [0.45, 0.55].
The regions within 0.1 units (in norm-1) from the corners
are goal states. The actions change the state by 0.1 units
along the corresponding direction. To make the transitions
stochastic, we add noise to the new state, sampled uniformly
from [�0.01, 0.01] ⇥ [�0.01, 0.01]. Rewards are positive

only for transitions entering a goal region. The goal reward
for each task is given in Table A.2. The evaluation policy
is uniformly random. We run 2000 episodes and the task
changes every 200 episodes. We convert the agent’s state
into to feature vector using radial basis function as described
in (Sutton & Barto, 2018) and Appendix A.3.3. For evalu-
ation, we sample 225 evenly spaced points in the grid and
compute their true values by averaging Monte Carlo returns
from 500 episodes across 10 seeds for each task. We use
� = 0.99 in this experiment.

The results are presented in Fig. 2. Our approach continues
to have low errors on both performance measures. The
error peaks are relatively small at the beginning of a new
task, due to the good starting point provided by permanent
component.

5.3. DNN experiment

Image grid: We use the 5x5 grid for this experiment and
convert states into 48x48 RGB images. The agent’s location
is indicated by colouring pixels corresponding that state
in red Goal states are green as shown in Fig. 1a. The
agent receives RGB image as an input. Goal rewards are
multiplied by 10 to remove the effect of predictions from
a randomly initialized deep neural network. We run the
experiment for 1000 episodes and tasks are switched every
100 episodes. All other details are as before.

Gym minigrid: We create a version of the four rooms
environment shown in Fig. 1b. Each room contains one
type of item and each item type is has a different reward
and color. The agent starts in the region between cells (3,3)
and (6,6) and can move forward, turn left, or turn right. Its
policy is uniformly random. The episode terminates when
the agent reaches a goal state. The agent receives a one hot,
5x5 view in front of it. We set up a multi-task problem by
changing the rewards for picking items as described in Table
A.5.The discount is 0.9. We run 750 episodes and change
the task every 75 episodes.

We use a convolutional neural network (CNN) as the func-
tion approximator. The CNN architecture is adapted for
each environment based on the observation type. For our
algorithm, we add a separate head convolutional layers to

The agent retains knowledge while preserving plasticity!
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Control results

• Using JelllyBean World (Mitchell et al, 2020)
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Prediction and Control in Continual Reinforcement Learning

observations, we use experience replay and target network
to remove temporal correlation while training. We attach a
head (3 fully connected layers) to the conv layer to estimate
the permanent memory. We use performance measure on 3
seeds to find the best learning rate for all algorithms. The
shaded region indicate 80% confidence from 30 seeds.

The results are presented in Fig. 4b where we plotted returns
against episodes. Our method outperforms both variants of
q-learning for the reasons mentioned earlier. Our approach
require only a handful of episodes to learn a good policy
when the task is switched once permanent component learns
common behaviour across tasks (at the end of round 2).
The reset variant of q-learning requires a large number of
episodes when solving the second task as the learning is
from scratch. Although q-learning transfers knowledge
from the first task, it still uses more episodes to adapt the
behaviour on new task.

7. Continual Reinforcement Learning

(a) JellyBeanWorld. (b) k and � analysis.

Figure 5: (a) 128x128 view of the infinite JellyBeanWorld
showing spatial non-stationarity. (b) Results for several �
and k choices. Black horizontal line represent the perfor-
mance of the q-learning algorithm.

So far, we assumed that the agent observes task bound-
aries. Such an assumption can be useful in the multi-task
setting, but in continual RL problem, the agent has to in-
fer task boundaries through observations. There are a few
approaches to detect task boundaries through observations
in supervised learning and RL (Gama et al., 2014; Kessler
et al., 2022). However, these methods assume that there is
a clear separation between tasks and those methods don’t
work on other kinds of non-stationarities in the environment,
for example, gradual wear and tear of senors. Our algo-
rithm meets this desiderata with only a couple of changes
the previous algorithm as shown in Algorithm 2.

In the new algorithm, we update the permanent component
periodically every k steps (or episodes) using the samples
stored in buffer B. And, instead of completely resetting
transient estimates, we now decay it by �. � 2 [0, 1] is
a hyperparameter which decides the amount of transient
memory retained after pouring the updates into permanent

Algorithm 2 PT learning for CRL

1: Initialize: Buffer B, ✓, w, k, �
2: for t : 0!1 do
3: Take action At

4: Store St, At in B
5: Observe Rt+1, St+1

6: Update wt using Eq. (8)
7: if mod(t, k) == 0 then
8: Update ✓ using B and Eq. (7)
9: wt+1  �wt+1

10: end if
11: end for

memory. When � = 1, transient memory is fully retained
and when � = 0, it is completely reset. The new algorithm
is a generalization of the earlier version. By setting � = 0
and k to those time steps when the task is switched, we get
back the previous algorithm.

The update frequency parameter, k, controls the frequency
of updates to permanent memory and � controls the decay
rate of transient component. We use the tabular task shown
in Fig. 3a to analyze the impact of � and k on performance.
We hide the task boundary information from the agent in
this experiment. Other experimental details are same as
before. We run a total of 500 episodes where the tasks
are changed after every 50 episodes. The capacity of the
buffer is capped at 1000. We run the experiment for several
combinations of k and � values and plot returns averaged
along episodes and across 30 seeds as shown in Fig. 5b.
We use the best learning rates in each case as detailed in
Appendix A.3.7. We observe that the hyperparameters k
and � are interlinked to a certain degree. For small values
of k, permanent memory is updated more frequently using
transient memory that hasn’t learnt the correct predictions
yet. In this case, we observe a large value of � resulting
in better performance. A large value of � retains major
portion of transient estimates, therefore, it can be updated
towards correct values using more online samples. For large
values of k, permanent estimates are updated using tran-
sient component which has learnt good estimates as it saw
enough data, therefore the updates for permanent memory
are fruitful. So, decaying most of transient predictions frees
it up to learn new estimates, hence a small value of � works
well. We also observe that if the frequency of permanent
updates is significantly higher or significantly lower than the
frequency of task switching, then the overall performance is
marginally affected. But, the performance is still better than
the q-learning algorithm (indicated using black dotted line)
for most k and � values. In fact, there’s at least one � for
which the performance is better than q-learning algorithm
for every k. So, we can fix one of these hyperparameters
beforehand and tune the algorithm only for the second. The

• Both spatial and reward non-stationarity (green objects give small
rewards, blue and red objects flip between great and bad)
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Prediction and Control in Continual Reinforcement Learning

(a) Results on the JellyBeanWorld. (b) Items collected in each task.

Figure 6: (a) Rewards accumulated per time step across 10k step window is plotted against time steps. (b) Number of items
collected within a task for each type (subplots use different scales along y-axis).

results are provided in Fig. A.11.

8. Experiment: JellyBeanWorld
We setup a continual learning problem in the JellyBean-
World testbed and use neural networks as the function ap-
proximator. The environment is a two-dimensional infinite
grid world with three types of items: blue, red, and green.
We induce spatial non-stationarity by setting the parameters
of the environment as described in Appendix . In our config-
uration, three to four similar items (red or blue) form a tiny
group and similar groups appear close to each other to form
a sea of red (or blue) objects as shown in Fig. 5a. At any
point in time, the local observation distribution at various
parts of the environment are different. At each time step,
the agent receives a egocentric 11x11 RGB, 360o view as an
observation. It has four actions to choose from: up, down,
left, and right. Each action transitions it by one square along
the corresponding direction. The rewards for green items,
which are uniformly distributed, are set to 0.1, whereas the
rewards for picking red and blue items alternate between -1
and +2 every 150k time steps, therefore, inducing reward
non-stationarity. We run the experiment for 2.1 million time
steps and train algorithms using a discount factor 0.9.

We compare the our algorithm (describe in 2) with a DQN
agent and a uniformly random agent. The random agent
picks one of the four actions according to uniform probabil-
ity at each time step. The training and architecture details
are provided in Appendix A.3.8.

The results of this experiment are presented in Fig. 6a. We
plot reward obtained per time step over a 10k step window
(reward rate) against time. The time steps where the tasks
change are indicated with a vertical dotted line in black.
We observe that our method, PT memories, performs better
than the DQN and random agents. We also observe that,
the DQN agent’s performance drops over time due to a
couple of reasons. Firstly, DQN uses a neural network to
learn predictions, but NNs are known to lose plasticity if
they are trained for a long time. So, the DQN agent loses
ability to learn and adapt its predictions. Secondly, since

rewards are changed, the action-value function and hence the
optimal policy changes. The DQN agent ends up learning
mixture of conflicting action-values over time, therefore,
it requires more samples to overcome this effect and learn
the right action-values and policy. These two problems
doesn’t affect our method because the transient network is
periodically decayed, thereby, restoring the plasticity. Also,
since permanent network learns the mixture of action-value
functions of all tasks, transient network needs to compute
corrections which require fewer samples. To further analyze
the results, we plot the number of items collected within the
same task by various algorithms as shown in Fig. 6b. We
notice that the DQN agent collects far fewer positive items
(also more negative items) at the later stages of training,
whereas our approach continues to collect the same number
of positive items throughout the experiment.

9. Discussion
Designing agents that can learn continually is the most im-
portant challenge in RL. To do so, we must find new ways
to represent and update the agent’s knowledge tailored for
continual learning. Our method takes a step in this direc-
tion by decomposing value function into permanent and
transient components. The permanent component is periodi-
cally updated to learn general estimates, while the transient
component computes corrections quickly to adapt these es-
timates to changes. Our method has parallels with the learn-
ing system in brain when viewed under the complementary
learning systems theory lens. The theoretical results provide
good intuition and prove the effectiveness of our algorithm
in continual RL. When tested empirically, our approach
provides significant improvements in performance for both
prediction and control and various approximators. An in-
teresting future direction is to design separate features for
the permanent and transient components as in (Silver et al.,
2007). Learning a good update frequency parameter k and
decay parameter � in the continual learning setting, perhaps
using meta objectives (Flennerhag et al., 2021) is also future
work. We believe that a similar decomposition for other
forms of knowledge can be useful in continual RL.

The agent retains knowledge which helps it perform well over time!
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Partial Value-Equivalent Models

• Model only predicts a subset of features (not the entire observation) (cf.
Talvitie & Singh, 2008)

• Goal is to obtain correct value estimates, not to maximize likelihood

• Example: minigrid
Minimal Value-Equivalent Partial Models for Scalable and Robust Planning in Lifelong Reinforcement Learning

(a) 8x8 BlueBalls-R (b) 8x8 RedBoxes-R (c) 8x8 NoObstacles-R (d) 16x16 RedBalls-R (e) 16x16 BlueBoxes-R
Figure 2. Variations of the regular 2RDO environment with grid sizes of 8x8 and 16x16. In these environments, there are either no
obstacles (c), or there are several obstacles (balls and boxes) with different colors (a, b, d, e).

Rooms Dynamic Obstacles (2RDO) environment that are
built on top of Minigrid (Chevalier-Boisvert et al., 2018)
(see Fig. 2 & C.1), and (iii) on several Procgen environ-
ments (Cobbe et al., 2020) (see Fig. C.2). We choose these
environments as the first two allow for designing controlled
experiments that are helpful in answering the questions of
interest to this study and the Procgen environments are help-
ful in demonstrating the capabilities of the proposed models
in challenging domains. The details of the SW environment
are already presented in Sec. 3 and we refer the reader to
App. C for more details. In the regular 2RDO environments,
the agent (red triangle) spawns in top-left of the top room
and has to navigate to the green goal cell located in the
bottom-right of the same room, regardless of the gaseous
motions of the obstacles in the bottom room. At each time
step, the agent receives an image of the current state of the
grid and then, through the use of a learned state encoder,
transforms this image into a feature vector. Based on this,
the agent selects an action that either turns it left or right,
or moves it forward. If the agent successfully navigates to
the goal cell, it receives a reward of +1 and the episode
terminates. More details on the different versions (regular
and versions with a key) of the 2DRO environments and the
Procgen environments can be found in App. C.

5.1. Scalability Experiments

For our scalability experiments, we perform experiments
with several non-VE (m1, m2, m3) and VE (m4, m5, m6)
partial models of both the deterministic and stochastic ver-
sions of the SW environment, referred to as Det-SW and
Stoch-SW, respectively. The details of these models can be
found in Table C.1. For all of our experiments, we use value
iteration as our planning algorithm.

Question 1. Do minimal VE partial models allow for plan-
ning with no value loss?

In Sec. 4.1, we argued that by planning with a VE partial
model, an agent would incur no value loss compared to
planning with the true environment itself. To empirically
verify this, we present the agent with a set of non-VE partial
models m1, m2, m3 and a minimal VE partial model m4,
and compare the value losses on both the Det-SW and Stoch-
SW environments. Results are shown in Fig. 3a. We can

indeed see that while the VE partial model incurs no value
loss, the non-VE ones do incur serious value losses.

Question 2. Do minimal VE partial models allow for plan-
ning with less planning loss?

In Sec. 4.1, we argued that given a fixed amount of data,
compared to a regular model, a VE partial model is likely
to incur less planning loss, and this loss is likely to be
minimized when the VE partial model is a minimal one. For
empirical verification, we compare the planning losses of
a minimal VE partial model m4, two (non-minimal) VE
partial models m5 and m6, and a regular model m7, across
dataset sizes of 3, 5, 10 and 20, which corresponds to the
number of samples for each (f, a) pair, on the Stoch-SW
environment. Results in Fig. 3b show that, as expected, VE
partial models indeed incur less planning losses than regular
models, and the minimal VE partial model incurs the least
planning loss.

Question 3. Do minimal VE partial models provide compu-
tational complexity benefits?

In Sec. 4.2, we argued that compared to regular models,
planning with VE partial models would provide a significant
computational complexity benefit and this benefit would be
maximized when the model used for planning is a minimal
VE partial model. To empirically verify this, we present the
agent with a minimal VE partial model m4, two VE partial
models m5 and m6, and a regular model m7 of the Det-SW
environment, and compare the average time it takes to per-
form a single step of value iteration for each of these models.
Results are shown in Fig. 3c. As can be seen, planning with
VE partial models indeed provides significant computational
complexity benefits, and this benefit is maximized when the
VE partial model is a minimal one.

Question 4. Do minimal VE partial models provide sample
complexity benefits?

In Sec. 4.2, we argued that compared to regular models, plan-
ning with VE partial models is likely to provide a sample
complexity benefit and this benefit is likely to be maximized
when the model that is used for planning is a minimal VE
partial model. For empirical verification, we present the
agent with a minimal VE partial model m4 and with a regu-
lar model m7 as generative models, and compare the sample

Minimal Value-Equivalent Partial Models for Scalable and Robust Planning in Lifelong Reinforcement Learning

(a) Value Loss (b) Planning Loss (c) Planning Time (d) Det-SW (e) Stoch-SW
Figure 3. (a, b, c) The (a) value losses, (b) planning losses, and (c) planning times of several models. Plot (a) was obtained over a single
run and plots (b) and (c) were obtained by averaging over 50 runs per model. (d, e) The total reward obtained as a result of planning with
models m4 and m7 on the (d) Det-SW and (e) Stoch-SW environments. Shaded regions are standard errors over 50 runs.

efficiencies, as a result of performing Q-value iteration, on
the Det-SW and Stoch-SW environments. In these exper-
iments, after every episodic interaction, the agent updates
its model with the collected trajectory, and then performs
Q-value iteration until convergence. Results in Fig. 3d &
3e show that, as expected, planning with minimal VE par-
tial models indeed provides significant sample efficiency
benefits compared to planning with regular models.

5.2. Robustness Experiments

For our robustness experiments, we perform experiments
on different versions of the 2RDO environment with grid
sizes of 8x8 and 16x16. For convenience, we will refer to
these environments as follows: grid size, followed by their
obstacle type, followed by its version (regular or version
with a key). For example, we will refer to the regular 8x8
2DRO environment with red balls as 8x8 RedBalls-R (see
Fig. 2) and will refer to the 8x8 2DRO environment with red
balls and a key as 8x8 RedBalls-K (see Fig. C.1). We also
perform experiments on several Procgen environments (see
Fig. C.2). For all of our experiments, we use the straightfor-
ward decision-time planning algorithm of Zhao et al. (2021)
(see Alg. 2) whose details can be found in App. C. As this al-
gorithm makes use of neural networks, before moving on to
the robustness experiments, we try to answer the following
question.

Question 5. How to learn minimal VE partial models with
deep learning architectures?

So far, for illustration purposes, we have only performed
experiments in which we had a direct control over the fea-
tures of the agent’s model. However, in realistic scenarios,
the agent would have to come up on its own with a set of
features to build a model of the only relevant aspects of its
environment. A very popular way of letting the agent come
up with its own features is to use neural networks in the
representation of the agent’s encoder, value estimator and
model, and then to train it end-to-end on the environment
of interest. However, in order for the agent to come up with
only the relevant features, it has to be trained with the right
inductive biases. Even though finding the right inductive
biases to train a model-free or model-based RL agent is still

an open problem in the representation learning literature
(Bengio et al., 2013), in this study, we propose two induc-
tive biases that are likely to guide the agent in coming up
with only the relevant features. The first one is to only let
the value estimator shape the encoder and prevent the model
from doing so (see Fig. C.3). In this way, the agent can be
guided in learning the features that are relevant for predict-
ing the right values in the environment. And, the second
one is to train the agent across a variety of environments in
which the irrelevant aspects keep changing and the relevant
ones stay the same. In this way, the agent can be guided in
not learning the irrelevant aspects of the environment.

In order to test the usefulness of these two inductive biases
in coming up with only the relevant features of the environ-
ment, we compare three different agents: (i) a regular agent,
AREG, that was trained on the 8x8 BlueBalls-R environment
and whose encoder was jointly shaped by its value estimator
and model, (ii) an agent, AVES, that was again trained on the
8x8 BlueBalls-R environment, but whose encoder was only
shaped by its value estimator, and (iii) an agent, AVES+ME,
that was trained on the 8x8 BlueBalls-R, GreenBalls-R,
PurpleBalls-R and YellowBalls-R environments and whose
encoder was only shaped by its value estimator. We com-
pare these agents, as they get trained on their respective
environments, on the 8x8 BlueBalls-R and NoObstacles-R
environments. If the agent is successful in coming up with
only the relevant features of the environment, which are the
positions of the agent and the goal, and not the positions
and motions of the obstacles, we would expect it to perform
similarly on the 8x8 BlueBalls-R and 8x8 NoObstacles-R
environments. Results are shown in Fig. 4a & 4b. As can
be seen, even though all of the agents perform well on the
8x8 BlueBalls-R environment, the AREG agent completely
fails on the 8x8 NoObstacles-R environment, demonstrat-
ing that without the necessary inductive biases an agent is
not capable of coming up with only the relevant features
itself. We can also see that the AVES agent achieves a bet-
ter performance than the AREG agent and that the AVES+ME

agent achieves an even better performance than the AVES

agent, demonstrating the usefulness of our proposed induc-
tive biases in inducing models that display the behavior of
minimal VE partial models. In order to test the scalability of

Partial models drastically improve solution speed! (cf Alver & Precup. 2023)
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C.6. Details of the Encoder Shaping Procedure During Training

In Sec. 5.2, we argued that one of the important inductive biases that is likely to guide the agent in coming up with only the
relevant features of the environment is to only let the value estimator shape the encoder and to prevent the model from doing
so. This is pictorially depicted in Fig. C.3.
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Figure C.3. A pictorial representation of how the agent can be trained so that it can come up with relevant features of the environment.
(Right) The regular way of training, (Left) the way it can be done.

D. Additional Experimental Results with Procgen Environments
For our experiments with the Procgen environments, we again compare three different agents: (i) a regular agent AREG, that
was trained on 200 levels for the easy modes and 500 levels for the regular modes and whose encoder was jointly shaped by
its value estimator and model, (ii) an agent, AVES, that was again trained on 200 levels for the easy modes and 500 levels
for the regular modes, but whose encoder was only shaped by its value estimator, and (iii) an agent, AVES+ME, that was
trained on 100,000 levels for both the easy and regular modes and whose encoder was only shaped by its value estimator.
Note that we have used the recommended 200 and 500 levels for training the AREG and AVES agents as training on a single
environment for the Procgen benchmark is demonstrated to fail in all cases (Cobbe et al., 2020). We have also used 100,000
levels for training the AVES+ME agent to demonstrate the effectiveness of training on multiple environments on inducing
models that dispaly the behavior of minimal VE partial models. Following the protocol in Cobbe et al. (2020), we compare
these agents on a full distribution of levels and report it as the test performance.
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(a) 8x8 BlueBalls-R (b) 8x8 NoObstacles-R (c) 16x16 BlueBalls-R (d) 16x16 NoObstacles-R

(e) 8x8 RedBalls-R (f) 8x8 GreyBalls-R (g) 8x8 RedBoxes-R (h) 8x8 GreyBoxes-R

(i) 16x16 RedBalls-R (j) 16x16 GreyBalls-R (k) 16x16 RedBoxes-R (l) 16x16 GreyBoxes-R
Figure 4. The total steps to reach the goal in the 8x8 and 16x16 versions of the (a, c) BlueBalls-R, (b, d) NoObstacles-R, (e, i) RedBalls-R,
(f, j) GreyBalls-R, (g, k) RedBoxes-R and (h, l) GreyBoxes-R environments for the AREG, AVES and AVES+ME agents. Black dashed lines
indicate the performance of the optimal policy in the corresponding environments. Shaded regions are standard errors over 25 runs.

our results, we have also performed the same experiments
with 16x16 versions of the environments. As can be seen in
Fig. 4c & 4d, we obtain similar results.

Question 6. Can minimal VE partial models be useful in
performing robust transfer?

As minimal VE partial models only model the relevant as-
pects of the environment, we would expect them to be robust
to the distribution shifts happening in the irrelevant aspects
of the environment. In order to test this, we compare the
zero-shot performances of the AREG, AVES and AVES+ME

agents on the 8x8 and 16x16 RedBalls-R, GreyBalls-R,
RedBoxes-R and GreyBoxes-R environments. Results are
shown in Fig. 4e-4l. As can be seen, while the AREG agent
fails and the AVES agent only shows signs of robust trans-
fer, the AVES+ME agent is able to perform robust transfer
without any problem. We also compare the performances of
the three agents on several Procgen environments (see App.
D for the details). Results in Fig. D.1 show that a similar
test-time performance trend among the agents holds as well,
corroborating our conclusion with the 2RDO environments.

Also, as minimal VE partial models only model the relevant
aspects of the environment, compared to regular models,
we would expect them to be able to quickly adapt to the
distribution shifts happening in the relevant aspects of the

environment. To test this, we compare the adaptation speeds
of the AREG, AVES and AVES+ME agents to the 8x8 and 16x16
RedBalls-K, NoObstacles-K and GreyBalls-K environments
(see Fig. C.1). Opposed to the regular 2RDO environments,
in these environments the agent has to pick up the key to
obtain a reward upon navigating to the goal cell (see App.
C.2). Results are shown in Fig. 5a-5f. As can be seen, while
the AREG agent completely fails in adapting, the AVES agent
only shows signs of quick adaptation. However, it is the
AVES+ME agent that is able to adapt the quickest. Together,
these results illustrate the ability of minimal VE partial
models in performing robust transfer.

Question 7. Are minimal VE partial models more robust to
compounding model errors?

As minimal VE partial models only model the relevant as-
pects of the environment, compared to regular models, we
would expect them to be less susceptible to compounding
model errors during planning. In order to test this, we com-
pare the performances of the AREG and AVES+ME agents with
search budgets of 20, 40 and 80 on the 16x16 BlueBalls-R
environment. Note that this environment has been seen be-
fore by both of the agents. Results in Fig. 5g & 5h show that
while the performance of AREG agent drops significantly
with the increase in the search budget, the performance of
the AVES+ME agent stays close to optimal, demonstrating the
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(a) 8x8 BlueBalls-R (b) 8x8 NoObstacles-R (c) 16x16 BlueBalls-R (d) 16x16 NoObstacles-R

(e) 8x8 RedBalls-R (f) 8x8 GreyBalls-R (g) 8x8 RedBoxes-R (h) 8x8 GreyBoxes-R

(i) 16x16 RedBalls-R (j) 16x16 GreyBalls-R (k) 16x16 RedBoxes-R (l) 16x16 GreyBoxes-R
Figure 4. The total steps to reach the goal in the 8x8 and 16x16 versions of the (a, c) BlueBalls-R, (b, d) NoObstacles-R, (e, i) RedBalls-R,
(f, j) GreyBalls-R, (g, k) RedBoxes-R and (h, l) GreyBoxes-R environments for the AREG, AVES and AVES+ME agents. Black dashed lines
indicate the performance of the optimal policy in the corresponding environments. Shaded regions are standard errors over 25 runs.

our results, we have also performed the same experiments
with 16x16 versions of the environments. As can be seen in
Fig. 4c & 4d, we obtain similar results.

Question 6. Can minimal VE partial models be useful in
performing robust transfer?

As minimal VE partial models only model the relevant as-
pects of the environment, we would expect them to be robust
to the distribution shifts happening in the irrelevant aspects
of the environment. In order to test this, we compare the
zero-shot performances of the AREG, AVES and AVES+ME

agents on the 8x8 and 16x16 RedBalls-R, GreyBalls-R,
RedBoxes-R and GreyBoxes-R environments. Results are
shown in Fig. 4e-4l. As can be seen, while the AREG agent
fails and the AVES agent only shows signs of robust trans-
fer, the AVES+ME agent is able to perform robust transfer
without any problem. We also compare the performances of
the three agents on several Procgen environments (see App.
D for the details). Results in Fig. D.1 show that a similar
test-time performance trend among the agents holds as well,
corroborating our conclusion with the 2RDO environments.

Also, as minimal VE partial models only model the relevant
aspects of the environment, compared to regular models,
we would expect them to be able to quickly adapt to the
distribution shifts happening in the relevant aspects of the

environment. To test this, we compare the adaptation speeds
of the AREG, AVES and AVES+ME agents to the 8x8 and 16x16
RedBalls-K, NoObstacles-K and GreyBalls-K environments
(see Fig. C.1). Opposed to the regular 2RDO environments,
in these environments the agent has to pick up the key to
obtain a reward upon navigating to the goal cell (see App.
C.2). Results are shown in Fig. 5a-5f. As can be seen, while
the AREG agent completely fails in adapting, the AVES agent
only shows signs of quick adaptation. However, it is the
AVES+ME agent that is able to adapt the quickest. Together,
these results illustrate the ability of minimal VE partial
models in performing robust transfer.

Question 7. Are minimal VE partial models more robust to
compounding model errors?

As minimal VE partial models only model the relevant as-
pects of the environment, compared to regular models, we
would expect them to be less susceptible to compounding
model errors during planning. In order to test this, we com-
pare the performances of the AREG and AVES+ME agents with
search budgets of 20, 40 and 80 on the 16x16 BlueBalls-R
environment. Note that this environment has been seen be-
fore by both of the agents. Results in Fig. 5g & 5h show that
while the performance of AREG agent drops significantly
with the increase in the search budget, the performance of
the AVES+ME agent stays close to optimal, demonstrating the
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(a) 8x8 NoObstacles-K (b) 8x8 RedBalls-K (c) 8x8 GreyBalls-K (d) 16x16 NoObstacles-K

(e) 16x16 RedBalls-K (f) 16x16 GreyBalls-K (g) The AREG agent (h) The AVES+ME agent
Figure 5. (a, b, c, d, e, f) The total steps to reach the goal in the 8x8 and 16x16 versions of the (a, d) NoObstacles-K, (b, e) RedBalls-K,
(c, f) GreyBalls-K environments for the AREG, AVES and AVES+ME agents. For all of the plots the agents were first trained on regular
versions of the 2RDO environment and then on versions with a key. (g, h) The total steps to reach the goal in the 16x16 BlueBalls-R
environment for the (g) AREG and (h) AVES+ME agents with search budgets of 20, 40 and 80. For all plots, the black dashed lines indicate
the performance of the optimal policy in the corresponding environments and the shaded regions are standard errors over 25 runs.

robustness of minimal VE partial models to compounding
model errors.

6. Related Work
Partial Models. In the context of RL, the initial studies
of partial models can be dated back to the seminal study
of Talvitie & Singh (2008) which proposes to learn sev-
eral models of an uncontrolled dynamical systems that are
partial at the observation level. In contrast, we propose
to learn a single and useful partial model of a controlled
dynamical system that is partial at the feature level, which
provides several advantages such as eliminating the question
of how to combine the learned models, using them for con-
trol purposes, and making them compatible with function
approximation. Our work also has a very close connec-
tion to the study of Zhao et al. (2021) which proposes a
transformer-based deep model-based agent that dynamically
attends to relevant parts of its state representation during
planning. However, our work differs in that we propose
the general concept of partial models for LRL that is in-
dependent of the agent’s implementation details. Lastly,
another related line of research is the studies of Khetarpal
et al. (2020; 2021) on affordances which focus on building
models that are partial in the action space. Our study is com-
plementary to these studies in that they can still leverage
(non-minimal or minimal) VE partial models to reduce the
size of the feature space and further increase the benefits of
performing model-based RL with partial models.

Value-Equivalence. A recent trend in model-based RL
is to learn models that are specifically useful for value-
based planning (see e.g. Silver et al., 2017; Oh et al., 2017;

Schrittwieser et al., 2020; Grimm et al., 2020; 2021). Even
though our work also advocates the idea that models should
be useful in value-based planning, our work differs in that
we also argue that the explicit partiality of the models can
provide significant scalability and robustness benefits when
performing model-based RL in LRL scenarios.

7. Conclusion and Discussion
In conclusion, in this study, we have introduced special
types of models, called minimal VE partial models, that
only model the relevant aspects of the environment and
are particularly useful in LRL scenarios. Our theoretical
results suggest that these models can provide significant
advantages in the value and planning losses that are incurred
during planning and in the computational and sample com-
plexity of planning. Our empirical results (i) validate our
theoretical results and show that these models can scale to
large environments, that are typical in LRL, and (ii) show
that these models can be robust to distribution shifts and
compounding model errors. Overall, our findings suggest
that minimal VE partial models can provide significant ad-
vantages in performing model-based RL in LRL scenarios.
One limitation of our work is that, rather than providing a
principled method, we have only provided several heuristics
for training deep RL agents that can come up with only the
relevant features of the environment. However, we note that
this is mainly due to the lack of principled approaches in
the representation learning literature, and we believe that
this limitation can be overcomed with more principled ap-
proaches being introduced. We hope to tackle this limitation
in future work.

Blue: Regular, Green: Value-Equivalent, Red: Value equivalent + models
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Partial models allow deeper planning
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(a) 8x8 NoObstacles-K (b) 8x8 RedBalls-K (c) 8x8 GreyBalls-K (d) 16x16 NoObstacles-K

(e) 16x16 RedBalls-K (f) 16x16 GreyBalls-K (g) The AREG agent (h) The AVES+ME agent
Figure 5. (a, b, c, d, e, f) The total steps to reach the goal in the 8x8 and 16x16 versions of the (a, d) NoObstacles-K, (b, e) RedBalls-K,
(c, f) GreyBalls-K environments for the AREG, AVES and AVES+ME agents. For all of the plots the agents were first trained on regular
versions of the 2RDO environment and then on versions with a key. (g, h) The total steps to reach the goal in the 16x16 BlueBalls-R
environment for the (g) AREG and (h) AVES+ME agents with search budgets of 20, 40 and 80. For all plots, the black dashed lines indicate
the performance of the optimal policy in the corresponding environments and the shaded regions are standard errors over 25 runs.

robustness of minimal VE partial models to compounding
model errors.

6. Related Work
Partial Models. In the context of RL, the initial studies
of partial models can be dated back to the seminal study
of Talvitie & Singh (2008) which proposes to learn sev-
eral models of an uncontrolled dynamical systems that are
partial at the observation level. In contrast, we propose
to learn a single and useful partial model of a controlled
dynamical system that is partial at the feature level, which
provides several advantages such as eliminating the question
of how to combine the learned models, using them for con-
trol purposes, and making them compatible with function
approximation. Our work also has a very close connec-
tion to the study of Zhao et al. (2021) which proposes a
transformer-based deep model-based agent that dynamically
attends to relevant parts of its state representation during
planning. However, our work differs in that we propose
the general concept of partial models for LRL that is in-
dependent of the agent’s implementation details. Lastly,
another related line of research is the studies of Khetarpal
et al. (2020; 2021) on affordances which focus on building
models that are partial in the action space. Our study is com-
plementary to these studies in that they can still leverage
(non-minimal or minimal) VE partial models to reduce the
size of the feature space and further increase the benefits of
performing model-based RL with partial models.

Value-Equivalence. A recent trend in model-based RL
is to learn models that are specifically useful for value-
based planning (see e.g. Silver et al., 2017; Oh et al., 2017;

Schrittwieser et al., 2020; Grimm et al., 2020; 2021). Even
though our work also advocates the idea that models should
be useful in value-based planning, our work differs in that
we also argue that the explicit partiality of the models can
provide significant scalability and robustness benefits when
performing model-based RL in LRL scenarios.

7. Conclusion and Discussion
In conclusion, in this study, we have introduced special
types of models, called minimal VE partial models, that
only model the relevant aspects of the environment and
are particularly useful in LRL scenarios. Our theoretical
results suggest that these models can provide significant
advantages in the value and planning losses that are incurred
during planning and in the computational and sample com-
plexity of planning. Our empirical results (i) validate our
theoretical results and show that these models can scale to
large environments, that are typical in LRL, and (ii) show
that these models can be robust to distribution shifts and
compounding model errors. Overall, our findings suggest
that minimal VE partial models can provide significant ad-
vantages in performing model-based RL in LRL scenarios.
One limitation of our work is that, rather than providing a
principled method, we have only provided several heuristics
for training deep RL agents that can come up with only the
relevant features of the environment. However, we note that
this is mainly due to the lack of principled approaches in
the representation learning literature, and we believe that
this limitation can be overcomed with more principled ap-
proaches being introduced. We hope to tackle this limitation
in future work.

• Regular models (left) lead to worse performance when doing more
planning steps, due to error propagation

• Partial models have better error propagation properties (see Alver &
Precup. 2023, for details on the theory)
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Scaling up: ProcGen
Minimal Value-Equivalent Partial Models for Scalable and Robust Planning in Lifelong Reinforcement Learning

(a) CoinRun (b) StarPilot (c) CaveFlyer (d) DodgeBall
Figure C.2. The Procgen environments that are used in this study: (a) CoinRun, (b) StarPilot, (c) CaveFlyer and (d) DodgeBall. We refer
the reader to the benchmark website (https://openai.com/blog/procgen-benchmark/) for more visualizations.

Table C.1. Several non-VE and VE partial models of the SW environment.
m1 squirrel position, cloud position
m2 squirrel position, cloud position, wind direction
m3 squirrel position, cloud position, wind direction, hawk position
m4 squirrel position, hawk position, hawk direction
m5 squirrel position, hawk position, hawk direction, cloud position
m6 squirrel position, hawk position, hawk direction, cloud position, wind direction
m7 squirrel position, hawk position, hawk direction, cloud position, wind direction, weather

C.5. Details and Hyperparameters of the Decision-Time Planning Algorithm

The details and hyperparameters of the straightforward decision-time of Zhao et al. (2021) that we have used can be found
in Table C.2 and C.3.

Table C.2. Details and hyperparameters of Alg. 2 for the 2RDO environments.
�✓ A regular neural network feature extractor
Q⌘ A regular neural network
m! A regular neural network
Nple 200k
Nrbt 50k
ns 20
nbs 128
h best-first search (training), random search (evaluation)
T random sampling
✏ linearly decays from 1.0 to 0.0 over the first 1M time steps

Table C.3. Details and hyperparameters of Alg. 2 for the Procgen environments.
�✓ A convolutional neural network feature extractor
Q⌘ A regular neural network
m! A regular neural network
Nple 2M
Nrbt 50k
ns 50
nbs 128
h best-first search (training), random search (evaluation)
T random sampling
✏ linearly decays from 1.0 to 0.0 over the first 1M time steps

For more details (such as the NN architectures, replay buffer sizes, learning rates, exact details of the tree search, . . . ), we
refer the reader to the publicly available code and the supplementary material of Zhao et al. (2021).

Minimal Value-Equivalent Partial Models for Scalable and Robust Planning in Lifelong Reinforcement Learning

(a) CoinRun (Easy) (b) CoinRun (c) StarPilot (Easy) (d) StarPilot

(e) CaveFlyer (Easy) (f) CaveFlyer (g) DodgeBall (Easy) (h) DodgeBall
Figure D.1. The training and test performance of the AREG, AVES and AVES+ME agents on the (a) CoinRun (Easy), (b) CoinRun, (c)
StarPilot (Easy), (d) StarPilot, (e) CaveFlyer (Easy), (f) CaveFlyer, (g) DodgeBall (Easy), and (h) DodgeBall environments. We have
used the same bar plot in Alver & Precup (2020) for reporting the performances. Black dashed lines indicate the maximum achievable
performance in the corresponding environment. Plots without a dashed line do not have an upper bound in the maximum achievable score
in their corresponding environment. The means and the standard errors are computed over 25 independent runs of the trained agents.

Partial models improve generalization!
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Conclusion

• An agent that is much smaller than its environment will be pressured to
find structure on its current trajectory: continually, online, not striving
for optimality but for gradual improvement.

• The structure it builds drives two important computations: exploration
decisions and credit assignment

• While agent implementations often link these two computations, they
can and perhaps should be more decoupled

• Many of the ingredients needed already exist (information-directed
sampling, GVFs, options, affordances, partial models)
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Some challenges

• From a theoretical point of view, we need to formalize the problem
further

Moving away from usual stationarity/recurrence assumptions to fully
transient agents

• From an empirical point of view, we should think of the appropriate
environments and metrics

Reconsider reward sparsity as a mark of interesting problems?
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Evaluation for continual RL

representations learned by an agent. Moreover, auxiliary evaluation metrics can further our
understanding of an agent’s abilities. Specifically, the core desired capabilities of a continual
learner can be tested with probe questions.

6.3 Towards Broader Evaluation Criteria for Continual RL

At the intersection of metrics (what to measure) and domains (how to measure)3 we
recommend that bsuite (Osband et al., 2019) is a promising example of the type of framework
needed for training and evaluating agents in a continual fashion. In Figure 9 we highlight some
important evaluation criteria to consider to better understand the performance of continual
RL agents. For a given degree and nature of non-stationarity (see Sec. 4), researchers
should generate a set of carefully designed experiments with a carefully chosen complexity to
train and evaluate continual RL agents. Ideally, proper empirical analysis would result in a
measure of the behavior along di↵erent dimensions of probe-metrics as shown in the Fig. 9.

Figure 9: Evaluating Continual Reinforcement Learning Agents. A) Depicts the
evolution of domains and benchmarks over time commonly used in RL. B) Depicts
key metrics for evaluating continual RL agents in the style of bsuite. Such a
framework should also o↵er a knob controlling the degree and nature of non-
stationarity that agents experience (see Figure 4). For a given degree of non-
stationarity, a set of carefully designed experiments to test di↵erent probe questions
would help foster more rapid progress in the field.

To this end, it is important to consider the following capabilities as probe questions (i.e.
auxiliary metrics) in addition to measuring the accumulated returns over time.

1. Catastrophic Forgetting (Forward and Backward Transfer): It is desired for our agents
to be able to e↵ectively use previously acquired knowledge in new related situations

3. We acknowledge that evaluation of deep RL agents faces several challenges pertaining to reproducibility
(see (Henderson et al., 2017b; Khetarpal et al., 2018b)). This is even more reason for the community to
move towards standardized evaluation benchmarks for continual RL.

36

Cf. Khetarpal, Riemer, Rish and Precup, 2022

COMP579, Lecture 25 28


