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A Mystery: Learning Efficiently from Interaction

e People in their lifetime experience: 100 years x 365 days x 24 hours
x 3600 seconds x 640 muscle activations/second = 20 trillion motor

actions

e How can we learn from only this amount of data? In a very big world
that is partially observable, complex, has other agents in it?

e And while consuming around 2000 calories/day?

Very good representation and very efficient learning algorithms
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Today’s Perspective
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Aperture principle

The Big-World perspective:

The world is much
bigger than the agent

It contains many

The narrow aperture other agents!

of experience
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High-Level View of Agent

e Agent has one stream of experience (observations, actions, rewards) to
support all learning processes

e Agent is “smaller” than the entire environment

— Only has time to travel on a specific trajectory
— Cannot compute arbitrarily fast or remember all the relevant experience
in a replay buffer

e Asynchronous, online learning

— The world moves at its own speed

— Agent has a time scale at which it can perceive, act and learn

— Agent can also choose the time scale at which it updates its
representation
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Should We Think This Way?

e Yes!

— Naturalistic perspective: the conditions in which intelligence has
developed in the natural world

— Realistic perspective: the onus is on the agent to do well given its
current circumstances

— Natural for general intelligence, but also consistent with real
applications like robotics, health care, energy management...

e Nol

— Are we handicapping ourselves too much?
— Does this perspective go against the Bitter Lesson?

e Next: explore the implications of this view on algorithmic solutions and
theoretical framing
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Recall: Cartoon of sequential decision making

e At time t, agent receives an observation from set X and can choose an
action from set A (think finite for now)

e Goal of the agent is to maximize long-term return
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Some observations

e We usually think of the infinite tree of all possible observations and
actions

e Instead, consider focusing on one specific path through the tree

e If there is no structure (ie every node is completely different), there is
nothing interesting to learn!

e Markovian assumption: trajectories through the tree cluster into
equivalence classes, which we call states

e This allows many ways of doing credit assignment: TD(0), TD()),
Monte Carlo

e Because we cluster an infinite tree into a finite number of clusters, it
makes sense to make recurrence assumptions: states will be revisited
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An example of non-Markovian structure

e Linear predictive state representations (Littman et al, 2001, Singh et al,
2004)

e Make a systems dynamics matrix, with histories as rows and future
sequences as columns

e Assume systems dynamics matrix has finite rank

e One can show that POMDPs, k-order Markov models are equivalent to
linear PSRs
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“Small Agent” Perspective

Agent’s trajectory will cover a minuscule fraction of all possible
trajectories

Notions of recurrence like in MDPs no longer make sense (the agent is
really transient)

Yet the agent still needs to do as well as possible along its current
trajectory

So it needs to construct a knowledge representation that allows it to
generalize quickly

Agent state: the internal representation used by the agent to predict and
act

Agent state will have to be learned

The representation will inherently be lossy/imperfect
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An Evolution of ldeas

e Dynamic programming: agent needs to find an optimal policy at all
states (allowed by Markovian structure)

e Reinforcement learning: agent focuses on states that are actually
encountered during its experience

This is what allows tackling large environments like Go!

e One step further: agent's learning should enable it to do well in the
future on the trajectory that will be encountered!
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Desirable Algorithmic Properties

e Stability and plasticity. useful knowledge should be retained but the
agent should remain able to learn

e Scalability (a la bitter lesson): the more data and compute are available,
the better performance should be

e Graceful degradation: future performance should be really good if the
agent is in similar situations to what it has seen, and is allowed to
degrade as the situations are increasingly different

e More debatable: Self-reliance: the agent should be able to learn and
understand the world from its own experience
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Sequential Decision Making beyond MDPs

e At decision point ¢, the agent receives an observation z; € X and chooses
an action a; € A

e Let t’ be the next decision point (as a special case, t' =t + 1)

e The agent also receives a reward for this period, with value r; 4/, which
depends on the agent’s action

e There is a designated terminal observation, 1, which ends the agent's
trajectory

o Let ¢, designate the time at which this observation is received
e Assume ¢t is finite on all trajectories

e [he goal of the agent is to maximize the cumulative return received over
its life time, expressed as a sum of rewards: ) ry py where the first t = 0
and the last t/ =t

e A learning algorithm will be evaluated in expectation over instantiations
of environment-agent pairs
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Computational and Information Limitations are
Important

e

MDP j

MDP k
Super-MDP

e |f the agent sees the identity of the MDP and the state, it's usual RL
e |f the agent sees only the state, we need continual adaptation!

e Cf. Rich Sutton’s aperture principle
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Some interesting special cases

e MDPs and POMDPs: assumptions on how x4 and 7, ;/ are generated by
the environment as a function of x; and ay

e Online regression: the label is the action, the reward is the loss function

e Predictive state representations (Littman et al, 2002, Singh et al, 2004)
and related models (eg Jaeger, 2002): low-rank linear structure on x,a

trajectories
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What is useful structure?

e The agent needs to be able to do induction: estimate potential future
return from its past history

e We want to continue leveraging the compositionality of returns: G; =
Ty + Gy
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Stability-plasticity dilemma

Stability — Plasticity Dilemma Stability — Plasticity Dilemma
old Current Future
Learning Learning .- Learning
A\ oo " Transfer ‘4
- +—>
Sharing Sharing
\/ “ -
Interference Interference
PAST FUTURE

e DeepRL agents lose plasticity (cf Nikishin et al, 2022)

e Even deep supervised learning architectures lose plasticity (cf. Dohare et
al, 2022)

e Solutions proposed above mainly focus on resetting weights - retains
plasticity but loses stability
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Complementary Learning Systems

7

Connections within and
among neocortical areas
(green) support gradual
acquisition of structured
knowledge through
interleaved learning

Rapid learning in connections within
hippocampus (red) supports initial
learning of arbitrary new information

Bidirectional connections (blue)
link neocortical representations
to the hippocampus/MTL for
storage, retrieval, and replay

Cf. Kumaran, Hassabis and McLelland, 2016
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Simple RL Implementation

e Value function has two components:
VI (s) = Vi'(s) + Vy (s)

e Permanent memory: V¥ should provide good estimates for any
circumstances

e Transient memory: V7' should quickly compute corrections to V¥ to
adapt the the current distribution

e Both updated in parallel using TD-style updates

e This paper: both functions using the same features

Cf. Anand and Precup, NeurlPS5'2023
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Prediction results

(a) Discrete grid. (b) Gym-minigrid.
Discrete Grid (Tabular) Gym-minigrid (DNN)

W 0.20 X w 2.5
= 0.15 2
x o’

0.10 20

0.05

0 50 100 150 200 250 300 0 100 200 300 400
Episodes Episodes

The agent retains knowledge while preserving plasticity!
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Control results

e Using JelllyBean World (Mitchell et al, 2020)

e Both spatial and reward non-stationarity (green objects give small
rewards, blue and red objects flip between great and bad)
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The agent retains knowledge which helps it perform well over time!

COMP579, Lecture 25 20



Partial Value-Equivalent Models

e Model only predicts a subset of features (not the entire observation) (cf.
Talvitie & Singh, 2008)

e Goal is to obtain correct value estimates, not to maximize likelihood

e Example: minigrid
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Partial models drastically improve solution speed! (cf Alver & Precup. 2023)
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Learning Partial Value-Equivalent Models
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Learned partial models improve generalization
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Blue: Regular, Green: Value-Equivalent, Red: Value equivalent + models
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Partial models allow deeper planning
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e Regular models (left) lead to worse performance when doing more
planning steps, due to error propagation

e Partial models have better error propagation properties (see Alver &
Precup. 2023, for details on the theory)
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Scaling up: ProcGen
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Partial models improve generalization!
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Conclusion

e An agent that is much smaller than its environment will be pressured to
find structure on its current trajectory: continually, online, not striving
for optimality but for gradual improvement.

e The structure it builds drives two important computations: exploration
decisions and credit assignment

e While agent implementations often link these two computations, they
can and perhaps should be more decoupled

e Many of the ingredients needed already exist (information-directed
sampling, GVFs, options, affordances, partial models)
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Some challenges

e From a theoretical point of view, we need to formalize the problem
further

Moving away from usual stationarity/recurrence assumptions to fully
transient agents

e From an empirical point of view, we should think of the appropriate
environments and metrics

Reconsider reward sparsity as a mark of interesting problems?
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Evaluation for continual RL

B) Metrics for Continual Reinforcement Learning

[0]0))) Cause-and-Effect

A) Benchmarks With Varying Complexity

Complexity

— Backward
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Cf. Khetarpal, Riemer, Rish and Precup, 2022
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