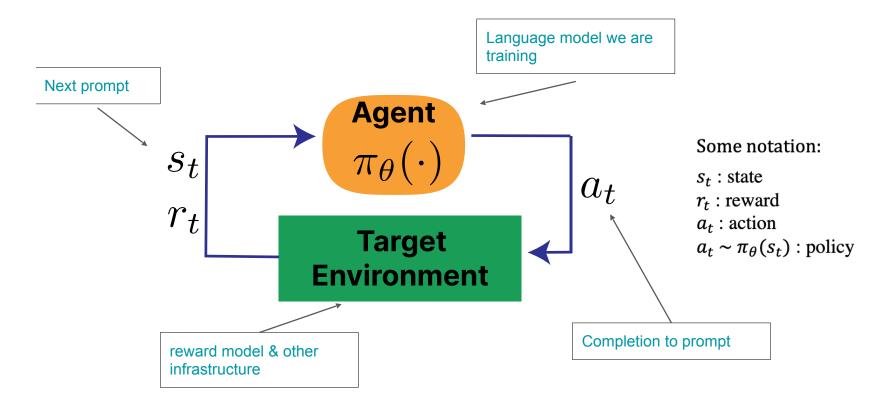
Reinforcement Learning for LLMs / RLHF

COMP579, Lecture 24

Overview of RLHF



RLHF early attempts

Summarization

"Three pigs defend themselves from a mean wolf"

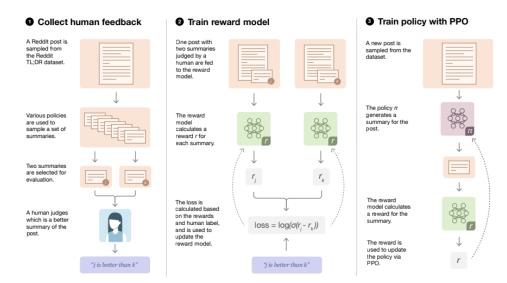


Figure 2: Diagram of our human feedback, reward model training, and policy training procedure.

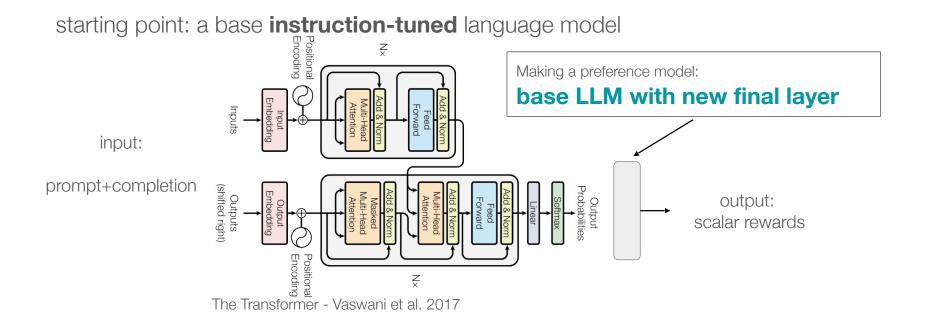
Stiennon, Nisan, et al. "Learning to summarize with human feedback." 2020.

RLHF training phases

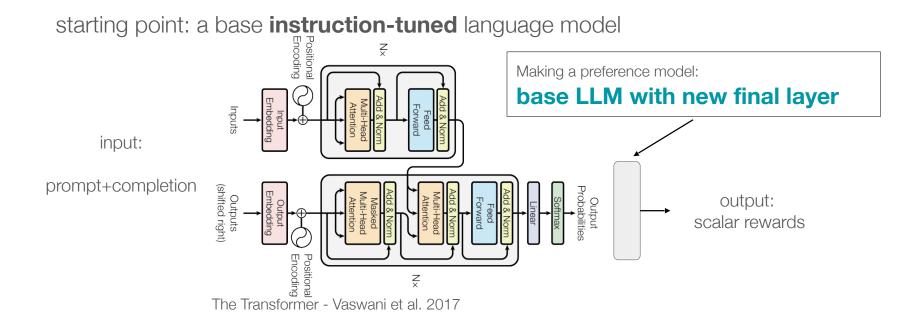
base model (instruction, helpful, chatty etc.)

Vaswani et al. 2017

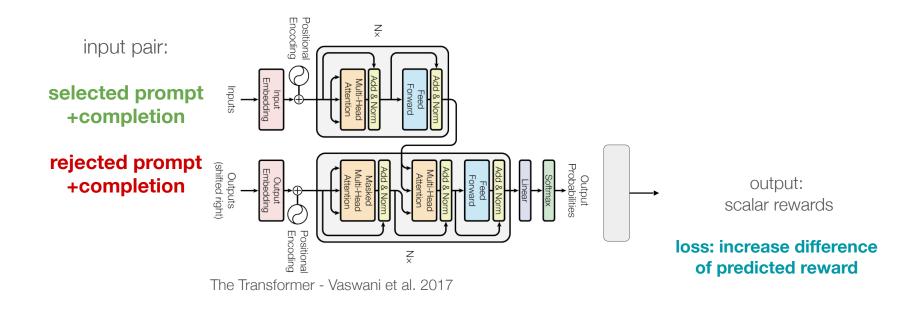
Model structure



Model structure



Model training



Recall: Bradely-Terry reward model

- Collect data from human raters (pairs of y_w , y_l responses to a prompt x)
- Optimize the expected value of:

$$-\log(\sigma(r_{\theta}(x, y_w) - r_{\theta}(x, y_l)))$$

wrt reward parameter vector θ

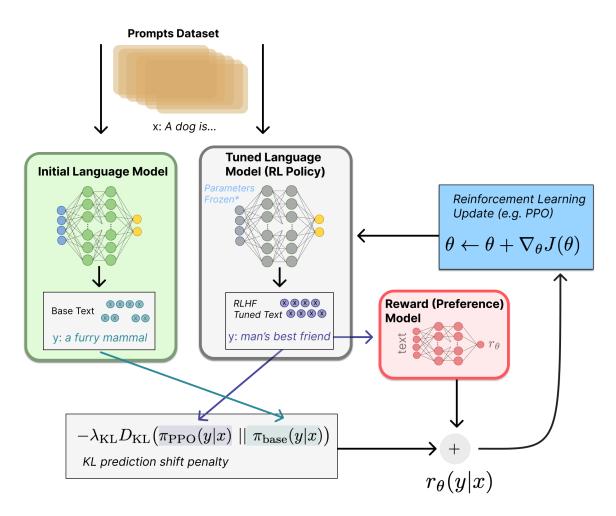
- Cf. Ouyang et al, InstructGPT
- Corresponds to maximum likelihood fitting of binomial preference function if reward is linear over the variables

Evaluating the reward model

Ensemble of humans Large enough RM Validation accuracy trained on enough Human baseline data approaching 64k single human perf 32k 16k 8k Data 0.60 10⁸ 109 10¹⁰ Model size [Stiennon et al., 2020]

Evaluate RM on predicting outcome of held-out human judgments

RLHF finetuning



RLHF details

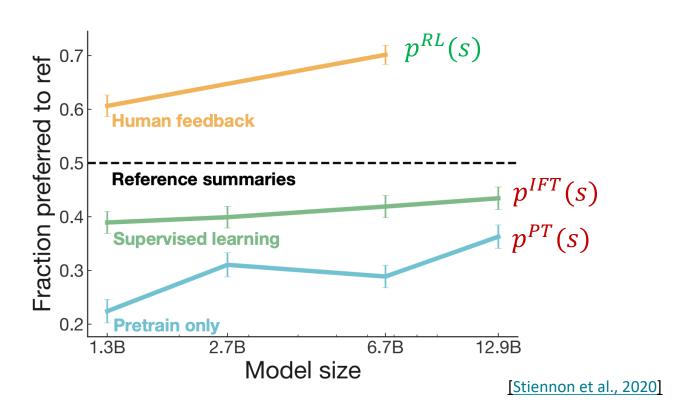
Finally, we have everything we need:

- A pretrained (possibly instruction-finetuned) LM $p^{PT}(s)$
- A reward model $RM_{\phi}(s)$ that produces scalar rewards for LM outputs, trained on a dataset of human comparisons
- A method for optimizing LM parameters towards an arbitrary reward function. Now to do RLHF:
- Initialize a copy of the model $p_{\theta}^{RL}(s)$, with parameters θ we would like to optimize
- Optimize the following reward with RL:

$$R(s) = RM_{\phi}(s) - \beta \log \left(\frac{p_{\theta}^{RL}(s)}{p^{PT}(s)} \right) \quad \text{Pay a price when} \quad p_{\theta}^{RL}(s) > p^{PT}(s)$$

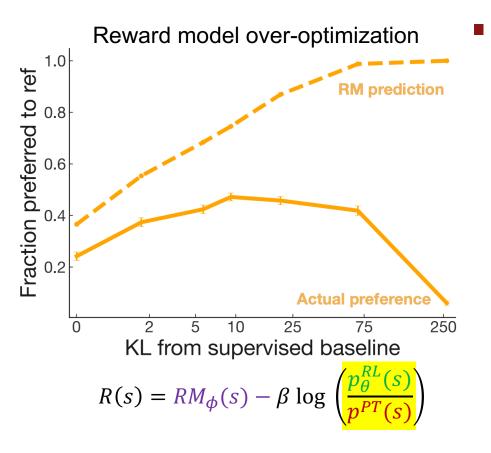
This is a penalty which prevents us from diverging too far from the pretrained model. In expectation, it is known as the **Kullback-Leibler (KL)** divergence between $p_{\theta}^{RL}(s)$ and $p^{PT}(s)$.

RLHF results

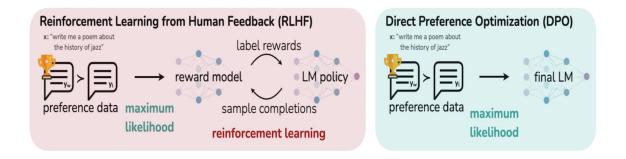


Problem: reward hacking

- Human preferences are unreliable!
 - "Reward hacking" is a common problem in RL
 - Chatbots are rewarded to produce responses that seem authoritative and helpful, regardless of truth
 - This can result in making up facts
 + hallucinations
- Models of human preferences are even more unreliable!



Recall: Direct Preference Optimization



$$\nabla_{\theta} \mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\beta \mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \bigg[\underbrace{\sigma(\hat{r}_{\theta}(x, y_l) - \hat{r}_{\theta}(x, y_w))}_{\text{higher weight when reward estimate is wrong}} \bigg[\underbrace{\nabla_{\theta} \log \pi(y_w \mid x)}_{\text{increase likelihood of } y_w} - \underbrace{\nabla_{\theta} \log \pi(y_l \mid x)}_{\text{decrease likelihood of } y_l} \bigg] \bigg],$$

$$\hat{r}_{\theta}(x, y) = \beta \log \frac{\pi_{\theta}(y|x)}{\pi_{\text{ref}}(y|x)}$$

- You can replace the complex RL part with a very simple weighted MLE objective
- Other variants (KTO, IPO) now emerging too

[Rafailov+ 2023]

Learning with non-transitive preferences: NashLLM

• Objective: find a policy π^* which is preferred over any other policy

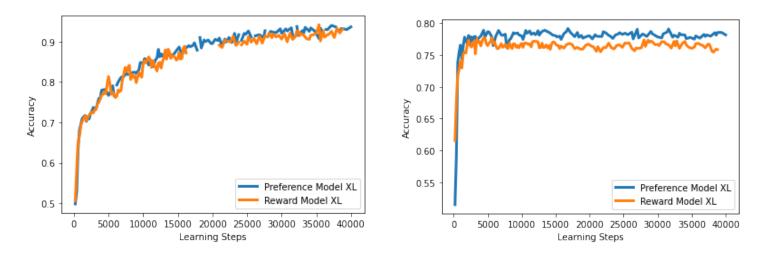
$$\pi^* = \arg\max_{\pi} \min_{\pi'} \mathbb{P}(\pi' \preceq \pi)$$

- Think of this as a game: one player picks π the other picks π'
- When both players use π^* this is a *Nash equilibrium* for the game
- For this game an equilibrium exists (even if eg preferences are not transitive)
- Cf. Munos et al, 2024 (https://arxiv.org/pdf/2312.00886.pdf)

NashLLM-style algorithms

- Fit a *two-argument preference function* by supervised learning
- Decide what is the *set of opponent policies*
- Ideally, the max player should play against a mixture of past policies
- *Optimize* using eg online mirror descent, convex-concave optimization...
- A lot of algorithmic variations to explore!

NashLLM results



Using preferences instead of rewards leads to less overfitting

Open directions

- RLHF is still a very underexplored and fastmoving area!
- RLHF gets you further than instruction finetuning, but is (still!) data expensive.
- Recent work aims to alleviate such data requirements:
 - RL from AI feedback [Bai et al., 2022]
 - Finetuning LMs on their own outputs [Huang et al., 2022; Zelikman et al., 2022]
- However, there are still many limitations of large LMs (size, hallucination) that may not be solvable with RLHF!

Large Language Models Can Self-Improve

Jiaxin Huang^{1*} Shixiang Shane Gu² Le Hou^{2†} Yuexin Wu² Xuezhi Wang² Hongkun Yu² Jiawei Han¹ ¹University of Illinois at Urbana-Champaign ¹{jiaxinh3, hanj}@illinois.edu xuezhiw, hongkuny}@google.com

