Reinforcement Learning for LLMs / RLHF
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Overview of RLHF
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Some notation:

S¢ : state

1 : reward

a; : action

as ~ mg(se) : policy

Completion to prompt




RLHF early attempts

© Collect human feedback © Train reward model © Train policy with PPO
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Stiennon, Nisan, et al. "Learning to summarize with human feedback." 2020.
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RLHF training phases

base model (instruction, helpful, chatty etc.)
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preference collection & training

Playground task @
Talk to the
assistant

Task 1ol

Decide on atask you'd lie
the assistant to help with
and enter it into the task
box. Interact with the Al
assistant. When you're
fiished, select a final
response from the assistant
andleave a comment on
how the assitant did in the.
comment box. Click to go to
the next task.
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arder time comprehending and reflecting on the world around us.




Model structure

starting point: a base instruction-tuned language model

input:

prompt+completion
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Recall: Bradely-Terry reward model

e Collect data from human raters (pairs of ¥, y; responses to a prompt
x)

e Optimize the expected value of:

—log(o(re(x, Yuw) — rel(x,v1)))

wrt reward parameter vector 6
e Cf. Ouyang et al, InstructGPT

e Corresponds to maximum likelihood fitting of binomial preference
function if reward is linear over the variables
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Evaluating the reward model

Evaluate RM on predicting outcome of held-out human judgments
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RLHF finetuning

Prompts Dataset

x: A dog is...

4 N\ /" Tuned Language )
Initial Language Model Model (RL Policy)

Reinforcement Learning
Update (e.g. PPO)
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Base Text 00 ®® Tuned Text ®®®®
y: a furry mammal y: man’s best friend >
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KL prediction shift penalty
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RLHF details

Finally, we have everything we need:
* A pretrained (possibly instruction-finetuned) LM p”7 (s)

* Areward model RMy(s) that produces scalar rewards for LM outputs, trained on a
dataset of human comparisons

* A method for optimizing LM parameters towards an arbitrary reward function.
Now to do RLHF:

* Initialize a copy of the model ng(s) , with parameters 6 we would like to optimize

* Optimize the following reward with RL:
ng (S)> Pay a price when

R(s) = RMy(s) — B log ('pPT(s) pEL(s) > pPT(s)
(N N J
This is a penalty which prevents us from diverging too far from

the pretrained model. In expectation, it is known as the
Kullback-Leibler (KL) divergence between pji“(s) and pT(s).
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RLHF results

P (s)
Reference summaries P IFT (S)
P (s)
1.3B 2.7B 6.7B 12.98

Model size

[Stiennon et al., 2020]
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Problem:

* Human preferences are unreliable!

e "Reward hacking” is a common
problem in RL

* Chatbots are rewarded to
produce responses that seem
authoritative and helpful,
regardless of truth

e This can result in making up facts
+ hallucinations

e Models of human preferences are
even more unreliable!
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Recall: Direct Preference Optimization

Reinforcement Learning from Human Feedback (RLHF) Direct Preference Optimization (DPO)
iy . label rewards gt
':Yw > —> reward model LM policy © t_:_yJ > —>  finalLM
® \/ ©
preference data maximum sample completions preferencedata . ..
likelihood reinforcement learning likelihood
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* You can replace the complex RL part with a very simple weighted MLE objective

e Other variants (KTO, IPO) now emerging too [Rafailov+ 2023]
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Learning with non-transitive preferences: NashLLM

e Objective:find a policy 7* which is preferred over any other policy

. /
7 = argmax min P(7" < )
7T 7'("

e Think of this as a game: one player picks 7 the other picks 7’
e When both players use 7* this is a Nash equilibrium for the game

e For this game an equilibrium exists (even if eg preferences are not
transitive)

e Cf. Munos et al, 2024 (https://arxiv.org/pdf/2312.00886.pdf)
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NashLLM-style algorithms

e Fit a two-argument preference function by supervised learning

e Decide what is the set of opponent policies

e |deally, the max player should play against a mixture of past policies

e Optimize using eg online mirror descent, convex-concave optimization...

e A lot of algorithmic variations to explore!
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NashLLM results
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Using preferences instead of rewards leads to less overfitting
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Open directions

RLHF is still a very underexplored and fast-
moving area!

RLHF gets yo u fu rth ert h an | nstru Ct|0 n Jiaxin Huang'* Shixiang Shane Gu®> Le Hou?' Yuexin Wu? Xuezhi Wang?

Hongkun Yu? Jiawei Han'

LARGE LANGUAGE MODELS CAN SELF-IMPROVE

University of Illinois at Urbana-Champaign 2Google

finetunlngl bUt iS (Sti”!) data expenSive' 1{jiaxinh3, hanj}@illinois.edu 2{shanegu, lehou, crickwu,

xuezhiw, hongkuny}@google.com

Recent work aims to alleviate such data
requirements:

e RLfrom Al feedback [Bai et al., 2022]

* Finetuning LMs on their own outputs ﬁ
[Huang et al., 2022; Zelikman et al.,

2022] LM — chain of thought

[Huang et al., 2022]

However, there are still many limitations of
large LMs (size, hallucination) that may not
be solvable with RLHF!

Self-Taught Reasoner (STaR)
[Zelikman et al., 2022]
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