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Overview of RLHF

Lambert

Review: reinforcement learning basics in language

16

Language model we are 
training

Completion to promptreward model & other 
infrastructure

Next prompt
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RLHF early attempts

Lambert

History: early OpenAI experiments with RLHF

Stiennon, Nisan, et al. "Learning to summarize with human feedback." 2020.

“Three pigs defend themselves 
from a mean wolf”

18

Summarization
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RLHF training phases

Lambert

Vaswani et al. 2017

base model (instruction, helpful, chatty etc.) 
                                         
                                                               

   	 	 	 	 	 	             
	 	 	 	 	  

Three phases of RLHF

20

preference collection & training

RL optimization
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Model structure

Lambert

Making a preference model: 
base LLM with new final layer

The Transformer - Vaswani et al. 2017

output: 
 scalar rewards

input: 

prompt+completion

Preference model structure

starting point: a base instruction-tuned language model

22
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Model training

Lambert

The Transformer - Vaswani et al. 2017

input pair: 

selected prompt 
+completion 

rejected prompt 
+completion

Preference model training

23

output: 
 scalar rewards 

loss: increase difference 
of predicted reward
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Recall: Bradely-Terry reward model

• Collect data from human raters (pairs of yw, yl responses to a prompt
x)

• Optimize the expected value of:

− log(σ(rθ(x, yw)− rθ(x, yl)))

wrt reward parameter vector θ

• Cf. Ouyang et al, InstructGPT

• Corresponds to maximum likelihood fitting of binomial preference
function if reward is linear over the variables
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Evaluating the reward modelMake sure your reward model works first!

Data

Evaluate RM on predicting outcome of held-out human judgments

[Stiennon et al., 2020]

Large enough RM 
trained on enough 
data approaching 
single human perf
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RLHF finetuning

Lambert

Fine tuning with RL

25
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RLHF details

42

This is a penalty which prevents us from diverging too far from 
the pretrained model. In expectation, it is known as the 
Kullback-Leibler (KL) divergence between !!"#(#) and !$% # .

RLHF: Putting it all together [Christiano et al., 2017; Stiennon et al., 2020]

Pay a price when 
0*/5 ! > 067 !

• Finally, we have everything we need:
• A pretrained (possibly instruction-finetuned) LM 067(!) 
• A reward model	"9.(!) that produces scalar rewards for LM outputs, trained on a 

dataset of human comparisons
• A method for optimizing LM parameters towards an arbitrary reward function.

• Now to do RLHF:
• Initialize a copy of the model 0*/5(!) , with parameters ) we would like to optimize
• Optimize the following reward with RL:

" ! = "9.(!) − ?	log
0*/5(!)
067(!)
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RLHF resultsRLHF provides gains over pretraining + finetuning

[Stiennon et al., 2020]

/$%(!) 
/&'%(!) 

/()(!) 
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Problem: reward hacking

" ! = "9.(!) − ?	log
0*/5(!)
067(!)

56

Limitations of RL + Reward Modeling

• Human preferences are unreliable!
• ”Reward hacking” is a common 

problem in RL
• Chatbots are rewarded to 

produce responses that seem 
authoritative and helpful, 
regardless of truth

• This can result in making up facts 
+ hallucinations

• Models of human preferences are 
even more unreliable!

Reward model over-optimization

[Stiennon et al., 2020]
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Recall: Direct Preference OptimizationRemoving the ‘RL’ from RLHF

• You can replace the complex RL part with a very simple weighted MLE objective
• Other variants (KTO, IPO) now emerging too [Rafailov+ 2023]
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Learning with non-transitive preferences: NashLLM

• Objective:find a policy π∗ which is preferred over any other policy

π∗ = argmax
π

min
π′

P(π′ � π)

• Think of this as a game: one player picks π the other picks π′

• When both players use π∗ this is a Nash equilibrium for the game

• For this game an equilibrium exists (even if eg preferences are not
transitive)

• Cf. Munos et al, 2024 (https://arxiv.org/pdf/2312.00886.pdf)
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NashLLM-style algorithms

• Fit a two-argument preference function by supervised learning

• Decide what is the set of opponent policies

• Ideally, the max player should play against a mixture of past policies

• Optimize using eg online mirror descent, convex-concave optimization...

• A lot of algorithmic variations to explore!
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NashLLM results

Nash Learning from Human Feedback

Figure 1 | Learning curves showing the accuracy of preference models of di�erent sizes on the train
set (left) and on the test set (right).

Figure 2 | Learning curves showing the accuracy of a preference model versus the accuracy of a reward
model of the same size on the train set (left) and on the test set (right).

15

Using preferences instead of rewards leads to less overfitting
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Open directionsWhat’s next?

• RLHF is still a very underexplored and fast-
moving area!

• RLHF gets you further than instruction 
finetuning, but is (still!) data expensive.

• Recent work aims to alleviate such data 
requirements:
• RL from AI feedback [Bai et al., 2022]
• Finetuning LMs on their own outputs

[Huang et al., 2022; Zelikman et al., 
2022]

• However, there are still many limitations of 
large LMs (size, hallucination) that may not 
be solvable with RLHF!

64

[Huang et al., 2022]

LM chain of thought

Self-Taught Reasoner (STaR)
[Zelikman et al., 2022]
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