
Large Language Models and RLHF

COMP579, Lecture 23

Recall: Learning form Preferences

Preference
dataset

Unlabeled
dataset

Preference-reward
modeling

Preference
model

Unlabeled
dataset

DPPO (Ours)

Agent
Preference

dataset

Reward
model

Preference
model

Reward-based
RL

Agent

Figure 1: An overview of the difference between our
approach (below) and the baselines (top). Our approach
does not require modeling the reward from the prefer-
ence predictor as our policy optimization algorithm can
learn directly from preference labels.

Figure 2: Predicted reward vs. true reward
on the Hopper environment when using
a reward model from PbRL [27]. The re-
ward model fails to accurately capture the
underlying reward structure.

Recent PbRL methods take a two-step approach: they first learn a reward model from the given
preference dataset and then run off-the-shelf reinforcement learning algorithms on top of the learned
reward model [10, 31, 40]. However, acquiring an accurate reward model only from preference labels,
typically provided by human teachers, poses a significant challenge as it is unclear how to extract
the underlying reward structure from preference. Current methods rely on modeling the reward with
certain specific assumptions, though there are some concerns regarding whether those assumptions
hold in practice [13, 27].

Alternatively, predicting the preference itself is comparatively more straightforward since we have
direct access to training labels, allowing us to leverage powerful techniques from supervised learning.
Building upon this observation, we introduce a PbRL algorithm that bypasses the need for reward
function modeling by directly learning from preference labels. Our approach begins by devising a
policy scoring metric that assigns high scores to policies aligning with the provided preference dataset.
Concretely, the PbRL objective is formulated as a contrastive learning problem, guiding the learned
policy to be closer to more preferred trajectory segments while distancing itself from the less preferred
ones [9, 20]. Furthermore, we enhance the performance of the preference predictors from previous
works by introducing a novel prediction smoothness regularizer. Experiment results on offline RL
settings with actual human preference labels show that the proposed algorithm outperforms or is on
par with the baselines on all of the tasks considered [16]. Notably, in high-dimensional control tasks,
our algorithm outperforms offline RL methods that utilize ground-truth reward information. Moreover,
our preliminary experiments show that our algorithm can be successfully applied for fine-tuning large
language models. Our official code is available at https://github.com/snu-mllab/DPPO.

2 Preliminaries

2.1 Preference-based reinforcement learning

Reinforcement learning considers an environment formulated as a Markov Decision Process (MDP)
defined by a tuple (S, A, T, R, p0, H), where S is a state space, A is an action space, T (s0|s,a) is
the state transition dynamics, R(s,a) is the reward function, p0(s) is the initial state distribution, and
H is the time horizon. The goal of reinforcement learning is to learn a policy ⇡ that optimizes the
expected return:

J(⇡) = Es0⇠p0,at⇠⇡(·|st),st+1⇠T (·|st,at)

"
HX

t=0

rt

#
.

Conventional RL assumes the reward information (rt) is given and uses this to optimize their
policy. However, finding a suitable reward metric can be costly in many real-world scenarios.

2

• One approach is to fit a reward mode (eg Bradley-Terry)

• Another approach is to directly optimize a policy based on preferences

• Optimal policies exist for preference relations that are total consistent
pre-orders, even if a corresponding reward function does not exist

• Today: more discussion on LLMs

COMP579, Lecture 23 1

What is a language model?

• Language Modeling is the task of predicting what word comes next

the students opened their ______

• More formally: given a sequence of words ,
compute the probability distribution of the next word :

where can be any word in the vocabulary

• A system that does this is called a Language Model

2. Language Modeling

exams
minds

laptops
books

11

COMP579, Lecture 23 2

Probabilistic language modelsLanguage Modeling

• You can also think of a Language Model as a system that
assigns a probability to a piece of text

• For example, if we have some text , then the
probability of this text (according to the Language Model) is:

12

This is what our LM provides

COMP579, Lecture 23 3

N-gram modelsn-gram Language Models

the students opened their ______

• Question: How to learn a Language Model?
• Answer (pre- Deep Learning): learn an n-gram Language Model!

• Definition: An n-gram is a chunk of n consecutive words.
• unigrams: “the”, “students”, “opened”, ”their”
• bigrams: “the students”, “students opened”, “opened their”
• trigrams: “the students opened”, “students opened their”
• four-grams: “the students opened their”

• Idea: Collect statistics about how frequent different n-grams are and use these to
predict next word.

15

COMP579, Lecture 23 4

N-gram models and Markov assumptionn-gram Language Models

16

• First we make a Markov assumption: '(&'!) depends only on the preceding n-1 words

(statistical
approximation)

(definition of
conditional prob)

(assumption)

n-1 words

prob of a n-gram

prob of a (n-1)-gram

• Question: How do we get these n-gram and (n-1)-gram probabilities?
• Answer: By counting them in some large corpus of text!

COMP579, Lecture 23 5

Generating textGenerating text with a n-gram Language Model

21

You can also use a Language Model to generate text

today the _______

condition
on this

company 0.153
bank 0.153
price 0.077
italian 0.039
emirate 0.039

…

get probability
distribution

sample

COMP579, Lecture 23 6

Generating textGenerating text with a n-gram Language Model

24

You can also use a Language Model to generate text

today the price of gold per ton , while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

…but incoherent. We need to consider more than
three words at a time if we want to model language well.

But increasing n worsens sparsity problem,
and increases model size…

COMP579, Lecture 23 7

How good are n-gram models?Generating text with a n-gram Language Model

24

You can also use a Language Model to generate text

today the price of gold per ton , while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

…but incoherent. We need to consider more than
three words at a time if we want to model language well.

But increasing n worsens sparsity problem,
and increases model size…

COMP579, Lecture 23 8

Problems with n-gram models

• Small n means model is not good enough

• Large n means that many combinations do not occur in the data -
sparsity

• Generally speaking, fixed n is very rigid

COMP579, Lecture 23 9

Recurrent nets (RNNs)

3. Recurrent Neural Networks (RNN)

29

hidden states

input sequence
(any length)

…

…

…

Core idea: Apply the same
weights 4 repeatedlyA family of neural architectures

outputs
(optional)

COMP579, Lecture 23 10

A Simple RNN Language Model

the students opened theirwords / one-hot vectors

books
laptops

word embeddings

a zoo

output distribution

Note: this input sequence could be much
longer now!

hidden states

is the initial hidden state

30

COMP579, Lecture 23 11

RNN trainingTraining an RNN Language Model

• Get a big corpus of text which is a sequence of words
• Feed into RNN-LM; compute output distribution for every step t.

• i.e., predict probability dist of every word, given words so far

• Loss function on step t is cross-entropy between predicted probability
distribution , and the true next word (one-hot for):

• Average this to get overall loss for entire training set:

32

COMP579, Lecture 23 12

RNN trainingTraining an RNN Language Model
= negative log prob

of “students”

the students opened their …examsCorpus

Loss

…

33

Predicted
prob dists

COMP579, Lecture 23 13

Generating text with RNNsGenerating with an RNN Language Model (“Generating roll outs”)
Just like an n-gram Language Model, you can use a RNN Language Model to
generate text by repeated sampling. Sampled output becomes next step’s input.

<s> my favorite season

sample

my
sample

favorite
sample

season
sample

is

is42

sample

spring

spring

sample

</s>

COMP579, Lecture 23 14

RNN exampleGenerating text with an RNN Language Model

Let’s have some fun!
• You can train an RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on Harry Potter:

Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

44

COMP579, Lecture 23 15

Issues with RNNs: Linear interaction distanceIssues with recurrent models: Linear interaction distance

• O(sequence length) steps for distant word pairs to interact means:
• Hard to learn long-distance dependencies (because gradient problems!)
• Linear order of words is “baked in”; we already know linear order isn’t the

right way to think about sentences…

7

The waschef who …

Info of chef has gone through
O(sequence length) many layers!

COMP579, Lecture 23 16

Issues with RNNs: Hard to parallelizeIssues with recurrent models: Lack of parallelizability

• Forward and backward passes have O(sequence length)
unparallelizable operations
• GPUs can perform a bunch of independent computations at once!
• But future RNN hidden states can’t be computed in full before past RNN

hidden states have been computed
• Inhibits training on very large datasets!

8

h1

0

1 n

hTh2

1

2

2

3

Numbers indicate min # of steps before a state can be computed

COMP579, Lecture 23 17

Issues with RNNs: Bottleneck problem1. Why attention? Sequence-to-sequence: the bottleneck problem
En

co
de

r R
NN

Source sentence (input)

<START> he hit me with a pieil a m’ entarté

he hit me with a pie <END>

Decoder RNN

Target sentence (output)

Encoding of the
source sentence.

This needs to capture all
information about the

source sentence.
Information bottleneck!

6

COMP579, Lecture 23 18

Solution: Attention

• On each step of decoding, use direct connection to the encoder to focus
on a particular part of the sequence

• A bit like what humans do!

• Attention provides a solution to the bottleneck problem!

COMP579, Lecture 23 19

Pooling in RNNsThe starting point: mean-pooling for RNNs

10

• Starting point: a very basic way of ‘passing information from the encoder’ is to average

the movie a lotoverall I enjoyed

positive

Sentence
encoding

How to compute
sentence encoding?

Usually better:
Take element-wise
max or mean of all

hidden states

COMP579, Lecture 23 20

Attention is weighted averaging!Attention is weighted averaging, which lets you do lookups!

11

Attention is just a weighted average – this is very powerful if the weights are learned!

In a lookup table, we have a table of keys
that map to values. The query matches
one of the keys, returning its value.

In attention, the query matches all keys softly,
to a weight between 0 and 1. The keys’ values
are multiplied by the weights and summed.

COMP579, Lecture 23 21

Using dot products
Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RNN

At
te

nt
io

n
sc

or
es

dot product

15

COMP579, Lecture 23 22

Using softmax for aggregationSequence-to-sequence with attention
En

co
de

r
RN

N

Source sentence (input)

<START>il a m’ entarté

Decoder RNN
At

te
nt

io
n

sc
or

es
On this decoder timestep, we’re
mostly focusing on the first
encoder hidden state (”he”)

At
te

nt
io

n
di

st
rib

ut
io

n

Take softmax to turn the scores
into a probability distribution

16

COMP579, Lecture 23 23

Putting it all togetherSequence-to-sequence with attention
En

co
de

r
RN

N

Source sentence (input)

<START>il a m’ entarté

Decoder RNN

At
te

nt
io

n
di

st
rib

ut
io

n
At

te
nt

io
n

sc
or

es
Attention

output
Concatenate attention output
with decoder hidden state, then
use to compute !"!	as before

!"!	

he

18

COMP579, Lecture 23 24

Attention more formallyAttention: in equations

• We have encoder hidden states
• On timestep t, we have decoder hidden state
• We get the attention scores for this step:

• We take softmax to get the attention distribution for this step (this is a probability distribution and
sums to 1)

• We use to take a weighted sum of the encoder hidden states to get the attention output

• Finally we concatenate the attention output with the decoder hidden
state and proceed as in the non-attention seq2seq model

24

COMP579, Lecture 23 25

Attention exampleSequence-to-sequence with attention
En

co
de

r
RN

N

Source sentence (input)

<START>il a m’ entarté

Decoder RNN
At

te
nt

io
n

sc
or

es
At

te
nt

io
n

di
st

rib
ut

io
n

Attention
output

he hit me

!"%	

with

21

COMP579, Lecture 23 26

Attention blueprintThere are several attention variants

• We have some values and a query

• Attention always involves:
1. Computing the attention scores
2. Taking softmax to get attention distribution ⍺:

3. Using attention distribution to take weighted sum of values:

thus obtaining the attention output a (sometimes called the context vector)

27

There are
multiple ways

to do this

COMP579, Lecture 23 27

From translation to language generation: Self-attentionSelf-Attention: keys, queries, values from the same sequence

34

Let !!:#	be a sequence of words in vocabulary #, like Zuko made his uncle tea.

For each !$, let $$ = &!%, where & ∈ ℝ&×|)| is an embedding matrix.

1. Transform each word embedding with weight matrices Q, K, V , each in ℝ&×&

2. Compute pairwise similarities between keys and queries; normalize with softmax

!%& = #'($) %%& =
exp(!%&)	

∑&* exp(!%&()
3. Compute output for each word as weighted sum of values

#% = -.' (queries) $% = /.' (keys) 0% = 1.' (values)

2% =3
)
%%& 0%

COMP579, Lecture 23 28

Multihead attentionHypothetical Example of Multi-Head Attention

48

COMP579, Lecture 23 29

Transformer decoder

The Transformer Decoder

56

• The Transformer Decoder is a
stack of Transformer Decoder
Blocks.

• Each Block consists of:
• Self-attention
• Add & Norm
• Feed-Forward
• Add & Norm

• That’s it! We’ve gone through
the Transformer Decoder.

Transformer Decoder

COMP579, Lecture 23 30

Transformer encoder

The Transformer Encoder

57

• The Transformer Decoder
constrains to unidirectional
context, as for language
models.

• What if we want bidirectional
context, like in a bidirectional
RNN?

• This is the Transformer
Encoder. The only difference is
that we remove the masking
in the self-attention.

Transformer DecoderNo Masking!

COMP579, Lecture 23 31

PretrainingPretraining through language modeling [Dai and Le, 2015]

Recall the language modeling task:
• Model 4" 5# 5$:#&$), the probability

distribution over words given their past
contexts.

• There’s lots of data for this! (In English.)

Pretraining through language modeling:
• Train a neural network to perform language

modeling on a large amount of text.
• Save the network parameters.

25

Decoder
(Transformer, LSTM, ++)

Iroh goes to make tasty tea

goes to make tasty tea END

COMP579, Lecture 23 32

Pretraining / finetuning paradigmThe Pretraining / Finetuning Paradigm

Pretraining can improve NLP applications by serving as parameter initialization.

26

(Transformer, LSTM, ++)

Iroh goes to make tasty tea

goes to make tasty tea END

Step 1: Pretrain (on language modeling)
Lots of text; learn general things!

Step 2: Finetune (on your task)
Not many labels; adapt to the task!

(Transformer, LSTM, ++)

J/L

… the movie was …

COMP579, Lecture 23 33

What data to use?Where does this data come from?

Model Training Data

BERT BookCorpus, English
Wikipedia

GPT-1 BookCorpus

GPT-3 CommonCrawl, WebText,
English Wikipedia, and 2
book databases (“Books 1”
and “Books 2”)

GPT-
3.5+

Undisclosed

COMP579, Lecture 23 34

GPT (Devlin et al, 2018)Generative Pretrained Transformer (GPT) [Radford et al., 2018]

2018’s GPT was a big success in pretraining a decoder!
• Transformer decoder with 12 layers, 117M parameters.
• 768-dimensional hidden states, 3072-dimensional feed-forward hidden layers.
• Byte-pair encoding with 40,000 merges
• Trained on BooksCorpus: over 7000 unique books.

• Contains long spans of contiguous text, for learning long-distance dependencies.
• The acronym “GPT” never showed up in the original paper; it could stand for

“Generative PreTraining” or “Generative Pretrained Transformer”

50 [Devlin et al., 2018]

COMP579, Lecture 23 35

Deep RL from Human Feedback (Christiano et al, 2017)

An alternative approach is to allow a human to provide feedback on our system’s current behavior
and to use this feedback to define the task. In principle this fits within the paradigm of reinforcement
learning, but using human feedback directly as a reward function is prohibitively expensive for RL
systems that require hundreds or thousands of hours of experience. In order to practically train deep
RL systems with human feedback, we need to decrease the amount of feedback required by several
orders of magnitude.

Our approach is to learn a reward function from human feedback and then to optimize that reward
function. This basic approach has been considered previously, but we confront the challenges involved
in scaling it up to modern deep RL and demonstrate by far the most complex behaviors yet learned
from human feedback.

In summary, we desire a solution to sequential decision problems without a well-specified reward
function that

1. enables us to solve tasks for which we can only recognize the desired behavior, but not
necessarily demonstrate it,

2. allows agents to be taught by non-expert users,

3. scales to large problems, and

4. is economical with user feedback.

RL algorithm environment

observation

action

human
feedback

reward predictorpredicted
reward

Figure 1: Schematic illustration of our approach:
the reward predictor is trained asynchronously
from comparisons of trajectory segments, and the
agent maximizes predicted reward.

Our algorithm fits a reward function to the hu-
man’s preferences while simultaneously training
a policy to optimize the current predicted reward
function (see Figure 1). We ask the human to
compare short video clips of the agent’s behav-
ior, rather than to supply an absolute numerical
score. We found comparisons to be easier for hu-
mans to provide in some domains, while being
equally useful for learning human preferences.
Comparing short video clips is nearly as fast as
comparing individual states, but we show that
the resulting comparisons are significantly more
helpful. Moreover, we show that collecting feed-
back online improves the system’s performance
and prevents it from exploiting weaknesses of
the learned reward function.

Our experiments take place in two domains: Atari games in the Arcade Learning Environment (Belle-
mare et al., 2013), and robotics tasks in the physics simulator MuJoCo (Todorov et al., 2012). We
show that a small amount of feedback from a non-expert human, ranging from fifteen minutes to five
hours, suffices to learn most of the original RL tasks even when the reward function is not observable.
We then consider some novel behaviors in each domain, such as performing a backflip or driving
with the flow of traffic. We show that our algorithm can learn these behaviors from about an hour of
feedback—even though it is unclear how to hand-engineer a reward function that would incentivize
them.

1.1 Related Work

A long line of work studies reinforcement learning from human ratings or rankings, including Akrour
et al. (2011), Pilarski et al. (2011), Akrour et al. (2012), Wilson et al. (2012), Sugiyama et al. (2012),
Wirth and Fürnkranz (2013), Daniel et al. (2015), El Asri et al. (2016), Wang et al. (2016), and
Wirth et al. (2016). Other lines of research considers the general problem of reinforcement learning
from preferences rather than absolute reward values (Fürnkranz et al., 2012; Akrour et al., 2014),
and optimizing using human preferences in settings other than reinforcement learning (Machwe and
Parmee, 2006; Secretan et al., 2008; Brochu et al., 2010; Sørensen et al., 2016).

Our algorithm follows the same basic approach as Akrour et al. (2012) and Akrour et al. (2014). They
consider continuous domains with four degrees of freedom and small discrete domains, where they
can assume that the reward is linear in the expectations of hand-coded features. We instead consider

2

• People provide a preference among two choices

• Assuming there is a latent variable explaining the choice, reward is fit
using maximum likelihood (Bradley-Terry model)

• Cf. https://arxiv.org/pdf/1706.03741.pdf

COMP579, Lecture 23 36

Bradely-Terry reward model

• Collect data from human raters (pairs of yw, yl responses to a prompt
x)

• Optimize the expected value of:

− log(σ(rθ(x, yw)− rθ(x, yl)))

wrt reward parameter vector θ

• Cf. Ouyang et al, InstructGPT

• Corresponds to maximum likelihood fitting of binomial preference
function if reward is linear over the variables

COMP579, Lecture 23 37

Optimizing Preferences: Setup

• An agent interacting with an environment receives observations for a set
O and performs action from set A
• A history ht is a sequence of observation-action pairs 〈o0, a0, o1, a1, . . . ot〉
• A policy π is a mapping from histories to actions: π : H → A
• Consider a binary relation over trajectory distributions �
• A policy π in an environment e induces a probability distribution over

trajectories, Dπ

• See Colaco-Carr et al, AISTATS’2024 (https://arxiv.org/abs/2311.01990)

COMP579, Lecture 23 38

Preference Relations and Their Properties

• We will formalize preference relations through pre-orders

• For trajectory distributions A and B, A � B means is that B is at least
as preferred as A

• � is a pre-order if it satisfies:

– Reflexivity: A � A
– Transitivity:if A � B and B � C the A � C

• A pre-order is total if for and A, B, A � B and B � A

COMP579, Lecture 23 39

Direct Preference Process

• A Direct Preference Process is a tuple O,A, T, e,� where:

– O is an observation set
– A is an action set
– T is a time horizon
– e is an environment (transition function from achievable history-action

pairs to the next observation)
– � is a binary (preference) relation over trajectory distributions

• � is expressible through a reward function r : H → R if:

∀A,B,A � B if and only if EA

[
T∑

t=0

r(Ht)

]
≤ EB

[
T∑

t=0

r(Ht)

]

COMP579, Lecture 23 40

Preference Relations and Their Properties

• A total pre-order is consistent if

∀α ∈ (0, 1),∀A,B,C,A � B =⇒ αA+ (1− α)C � αB + (1− α)C

• A total pre-order is convex if

∀α ∈ (0, 1),∀A,B,C,A � B. if and only if αA+(1−α)C � αB+(1−α)C

• A total pre-order has the interpolation property if

∀A,B,C,A � B and B � C implies ∃α ∈ (0, 1), αA+ (1− α)C ∼ B

• Von Neumann-Morgenstern theorem: if all the above hold, � can be
expressed by a utility function

COMP579, Lecture 23 41

When Are Preferences Representable By Reward
Functions?

• Main result

– If convexity and/or interpolation do not hold, � is NOT is expressible
through a reward function

– However, total consistent pre-orders have deterministic optimal policy!

• The latter situation is not exotic or rare!

COMP579, Lecture 23 42

Examples when Optimal Policies Exist Without Rewards

• Total consistent convex pre-order not satisfying interpolation: tie-
breaking criteria

– Use a first criterion, if tied go to a second criterion
– See not flooding vs water in second reservoir in power plant example

• Total consistent pre-order that is non-convex: excess risk

– If risky event does not occur, linear utility
– Risky event occurring entails exponential penalty
– No flooding neighbouring areas in power plant example

COMP579, Lecture 23 43

How Do We Compute Optimal Policies?

• If � is a total consistent pre-order and a policy π satisfies the following
for any attainable history ht, t < T and any action at:

Dπ(ht · at) � Dπ(ht)

then π is �-optimal

• So we are justified to do policy search!

• If � is expressible through a reward function, value iteration is a direct
consequence of this result

COMP579, Lecture 23 44

Discussion

• Nice to know that aproaches such as direct preference optimization are
justified

• Our results are currently on distributions - working on sample-based
extensions

• If we can fit a reward function, should we?

– Bias-variance trade-off? Sample complexity considerations?

• What can we do if other properties of pre-orders are violated?

COMP579, Lecture 23 45

Learning with non-transitive preferences: NashLLM

• Objective:find a policy π∗ which is preferred over any other policy

π∗ = argmax
π

min
π′

P(π′ � π)

• Think of this as a game: one player picks π the other picks π′

• When both players use π∗ this is a Nash equilibrium for the game

• For this game an equilibrium exists (even if eg preferences are not
transitive)

• Cf. Munos et al, 2024 (https://arxiv.org/pdf/2312.00886.pdf)

COMP579, Lecture 23 46

NashLLM-style algorithms

• Fit a two-argument preference function by supervised learning

• Decide what is the set of opponent policies

• Ideally, the max player should play against a mixture of past policies

• Optimize using eg online mirror descent, convex-concave optimization...

• A lot of algorithmic variations to explore!

COMP579, Lecture 23 47

NashLLM results

Nash Learning from Human Feedback

Figure 1 | Learning curves showing the accuracy of preference models of di�erent sizes on the train
set (left) and on the test set (right).

Figure 2 | Learning curves showing the accuracy of a preference model versus the accuracy of a reward
model of the same size on the train set (left) and on the test set (right).

15

Using preferences instead of rewards leads to less overfitting

COMP579, Lecture 23 48

