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Recall: Learning form Preferences
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e One approach is to fit a reward mode (eg Bradley-Terry)
e Another approach is to directly optimize a policy based on preferences

e Optimal policies exist for preference relations that are total consistent
pre-orders, even if a corresponding reward function does not exist

e Today: more discussion on LLMs
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What is a language model?

e Language Modeling is the task of predicting what word comes next
books

the students opened their // laptops
\\ exams

minds
e More formally: given a sequence of words e, x@ .z

compute the probability distribution of the next word 1) ;
t+1 t 1
P(a:( )] z® . ))
where 2" can be any word in the vocabulary V' = {wy, ..., w|y |}

e A system that does this is called a Language Model
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Probabilistic language models

* You can also think of a Language Model as a system that
assigns a probability to a piece of text

e For example, if we have some text (... z(T), then the
probability of this text (according to the Language Model) is:

PxW, . ™) =PaW) x P(@| M) x -.. x P(xD| TV . z0)
T
= | BRI 10)
t=1

L J
Y

This is what our LM provides
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N-gram models

the students opened their

* Question: How to learn a Language Model?
e Answer (pre- Deep Learning): learn an n-gram Language Model!

e Definition: An n-gram is a chunk of n consecutive words.
* unigrams: “the”, “students”, “opened”, "their”
e bigrams: “the students”, “students opened”, “opened their”
e trigrams: “the students opened”, “students opened their”
e four-grams: “the students opened their”

e Idea: Collect statistics about how frequent different n-grams are and use these to
predict next word.
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N-gram models and Markov assumption

e First we make a Markov assumption: x (D) depends only on the preceding n-1 words

n-1 words
A

4 \
P )z® 2y = p@ttD|® | gtrt2) (assumption)

prob of a n-gram \P(x(t+1) x®) . gtnt2) (definition of
~ x® initi

— [P, gt iti
Plx®,.. .. x ) conditional prob)

prob of a (n-1)-gram

* Question: How do we get these n-gram and (n-1)-gram probabilities?
e Answer: By counting them in some large corpus of text!

_count(x"D) M) gltmnt2) (statistical
count(z®), ... glt=nt2) approximation)
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Generating text

You can also use a Language Model to generate text

t\oday the;
Y

condition
on this

get probability
distribution

v

company ©.153

bank

0.153

price

0.877 sample

italian ©.039
emirate 0.039
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Generating text

You can also use a Language Model to generate text
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today the price of gold per ton, while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

...but incoherent. We need to consider more than
three words at a time if we want to model language well.

But increasing n worsens sparsity problem,
and increases model size...



How good are n-gram models?

You can also use a Language Model to generate text
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today the price of gold per ton, while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

...but incoherent. We need to consider more than
three words at a time if we want to model language well.

But increasing n worsens sparsity problem,
and increases model size...



Problems with n-gram models

e Small n means model is not good enough

e Large n means that many combinations do not occur in the data -
sparsity

e Generally speaking, fixed n is very rigid
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outputs
(optional) {

hidden states <

input sequence
(any length) {
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Recurrent nets (RNNs)

g(i’v)

h3)

x(

%

3)

v
v
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I 7Y = P(x®)|the students opened their
A Simple RNN Language Model 7 =7, s et e

laptops

output distribution

Q(t) = softmax (Uh,(t) + b2) cRIVI _[I_IL

Q A
N

A 200
U
h_ h(2) h®) h4)
hidden states @ @ ) )
Wi 1@ Wi @ Wh (@ Wr |@®
(t) — (t—1) (t) N N N
h a(Whh +W,e +b1) > @ " o > @ " o
h(9) is the initial hidden state ) () () ()
h N N 3
We We We We
| . r—.—\ r—.—\ r . 2
word embeddings (D) (@) 2| @ (3| © e ©
e® — Ea® o 6) o o)
(@) (@) (@) (@)
T T T8 e
words / one-hot vectors the  students opened  their
w(t) - R|V| aj(l) m(z) w(3) a‘;(4)
Note: this input sequence could be much /
longer now!
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RNN training

e Get a big corpus of text which is a sequence of words =), ..., z(™
e Feed into RNN-LM; compute output distribution Q(t) for every step t.
* i.e., predict probability dist of every word, given words so far

e Loss function on step tis cross-entropy between predicted probability
distribution §*), and the true next word y® (one-hot for z(+1):

J®(0) = CE(y®,g®) Z y®) log ) = 1Oggétt)+l
weV

e Average this to get overall loss for entire training set:

1 — 1 —
T0) = 72700 = 72 ~log
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Loss —

Predicted
prob dists

h(0)

Corpus — the

RNN training

= negative log prob
of “students”

JW(6)

J2) 9)

L1
— g g3 g3 g@
U U lu U
h h( h3) h4)
() () () ()
Wh\' Wh\. Wh\‘ Wh\. Wh\
1@ | @ 1@ | @ -
() () () ()
‘/F‘ e
rJWe We We We
(1) (2)| © 3| O 4| ©
“’lel “le| “le| ° |o
@) @) @) (@)
Te Tz & s
students opened their exams
2(1) 2(2) 2(3) (4
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Generating text with RNNs

Just like an n-gram Language Model, you can use a RNN Language Model to
generate text by repeated sampling. Sampled output becomes next step’s input.

my favorite season is spring </s>
N N N
sample sample sample sample sample sample
g(l) Q(2) g(3) g(4) g(4) y(4)
N N N
U U U U U U
rD h(2) h®) h4) h4) h4)
® L () L @ e
(Wi || Wi |@| Wr |@|Wr |@| Wh |@
1@ 1@ | @ @ 1@ | @
® @ @ @ @ @
A ! i e N e
W We W W, W, W,
(1) )| © 3)| @ 4| © (4) 4| ©
el ¢ el ¢ le| ¢ le| “le| ¢ e
© o o o o o
e & g g |5 &
<s> my  favorite  season is spring
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RNN example

Let’s have some fun!
* You can train an RNN-LM on any kind of text, then generate text in that style.
e RNN-LM trained on Harry Potter:

“Sorry,” Harry shouted, panicking—*“T'll leave those brooms in London, are
they?”

“No idea,” said Nearly Headless Nick, casting low close by Cedric, carrying the
last bit of treacle Charms, from Harry’s shoulder, and to answer him the
common room perched upon it, four arms held a shining knob from when the

spider hadn’t felt it seemed. He reached the teams too.

Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
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Issues with RNINs: Linear interaction distance

e O(sequence length) steps for distant word pairs to interact means:
e Hard to learn long-distance dependencies (because gradient problems!)

* Linear order of words is “baked in”; we already know linear order isn’t the
right way to think about sentences...

—>... — — 000 —P.

T
— 000 — — 000 —»i

The chef who ...

Info of chef has gone through
O(sequence length) many layers!
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Issues with RNINs: Hard to parallelize

e Forward and backward passes have O(sequence length)
unparallelizable operations

e GPUs can perform a bunch of independent computations at once!

e But future RNN hidden states can’t be computed in full before past RNI
hidden states have been computed

* Inhibits training on very large datasets!

.—»E—> —> 000 —> —> 0900 — ——».
td
—>000 — ——> 000 1
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Issues with RNINs: Bottleneck problem

Encoding of the
source sentence.

This needs to capture all Target sentence (output)
. . A
information about the s \
source sentence. he hit me  with a pie <END>
Information bottleneck!
o )
- o
3 @
3 e
c =2
L =2
il a m’  entarté <START> he hit me  with a pie
\ )
Y

Source sentence (input)
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Solution: Attention

e On each step of decoding, use direct connection to the encoder to focus
on a particular part of the sequence

e A bit like what humans do!
e Attention provides a solution to the bottleneck problem!
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Pooling in RNNs

positive How to compute
sentence encoding?

Usually better:
Take element-wise
max or mean of all
hidden states

Sentence
encoding

§-

S

i

overall / enjoyed the movie a lot

e Starting point: a very basic way of ‘passing information from the encoder’ is to average
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Attention is weighted averaging!

Attention is just a weighted average — this is very powerful if the weights are learned!

In attention, the matches all keys softly, In a lookup table, we have a table of keys
to a weight between 0 and 1. The keys’ that map to . The matches
are multiplied by the weights and summed. one of the keys, returning its value.
keys values Weighted keys values
Sum
kI vi __EAe
b v2
k2 v2 query
query output
d C v3
q k3 V3 ZH X output
4 4
ké  v4 . v v
e v5
k5 v5
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Using dot products

dot product

Attention
scores

Encoder
RNN

il a m’  entarté <START>

\ J
Y

Source sentence (input)
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mostly focusing on the first
/ encoder hidden state (“he”)

Using softmax for aggregation

On this decoder timestep, we’re

Attention
distribution
—

I

Attention
scores
r—H

Encoder
NN

il
\

Take softmax to turn the scores
into a probability distribution

7

m entarté <START>

J

Y

Source sentence (input)
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Putting it all together

Attention
output

Attention
distribution

Attention
scores

Encoder
NN

il a m’  entarté

J

Y
Source sentence (input)
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<START>

Concatenate attention output
with decoder hidden state, then
use to compute ¥, as before

NNY J2p02aq
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Attention more formally

¢ We have encoder hidden states hi,...,hxy € R"
e On timestep t, we have decoder hidden state s; € R”
e We get the attention scores e’ for this step:

el =[s'hy,...,sThy] € RY

* We take softmax to get the attention distribution a for this step (this is a probability distribution and
sums to 1)

o' = softmax(e’) € RY

e Weuse a'totakea weighted sum of the encoder hidden states to get the attention output a;
N
a; = Z Oéfhl c Rh
i=1

* Finally we concatenate the attention output a; with the decoder hidden
state S: and proceed as in the non-attention seq2seq model
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Attention example

Attention with
output

Attention
distribution
—

I
1
[}

Attention
scores
—

Encoder
NN

!

entartée <START> he hit me
N\ J

il a

v
Source sentence (input)
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Attention blueprint

e We have some values hq,...,hy € R% and a query s € R%
e Attention always involves: There are
1. Computing the attention scores e € RY «——— multiple ways
to do this

2. Taking softmax to get attention distribution a:

o = softmax(e) € RY

3. Using attention distribution to take weighted sum of values:

N
a= Za,hz = R%

=1

thus obtaining the attention output a (sometimes called the context vector)
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From translation to language generation: Self-attention

Let w.,, be a sequence of words in vocabulary V, like Zuko made his uncle tea.

For each w;, let x; = Ew;, where E € RVl is an embedding matrix.
1. Transform each word embedding with weight matrices Q, K, V, each in R4%4
= Qx; k; = Kx; (keys) v; = Vx; (values)

2. Compute pairwise similarities between keys and queries; normalize with softmax

exp(e;;
e, = ;rkj o = p(e;;)
Zj/ exp(e;;r)
3. Compute output for each word as weighted sum of values

, =  r 1)
_ Ol al] ’ l

0, = aij Ui .

j J
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Multihead attention

Attention head 1
attends to entities

V V VvV
k k k k Kk k Kk

went to Stanford CS 224n and
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q
v

k

learned

Attention head 2 attends to
syntactically relevant words

q
V V V V Vv

vV Vv
k k k Kk k k Ik

went to Stanford CS 224n and learned
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Transformer decoder

The Transformer Decoder

COMP579,

The Transformer Decoder is a
stack of Transformer Decoder
Blocks.

Each Block consists of:
 Self-attention

* Add & Norm

e Feed-Forward

e Add & Norm

That’s it! We’ve gone through
the Transformer Decoder.

Lecture 23

Probabilities

Softmax
N
Linear
N

Add & Norm
N

Feed-Forward

T

|
Add & Norm
N
Masked Multi-

Head Attention

t{j\ Block

Add Position
Embeddings

T

Embeddings

Repeat for number
of encoder blocks

Decoder Inputs
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Transformer encoder

The Transformer Encoder Probabilities
Softmax
e The Transformer Decoder Lir?;qr
constrains to unidirectional N
context, as for language Add & Norm
models. o o
Q¢ Feed-Forward
* What if we want bidirectional € § A
context, like in a bidirectional E g |
RNN? f g Add é;(I\Norm
e This is the Transformer §§ '\Lutltt;'n';'ii‘:d
Encoder. The only difference is & ©
that we remove the masking m Block
in the self-attention. |
Add Position
No Maskin , Embeddings
& Embeddings

Decoder Inputs
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Pretraining

Recall the language modeling task:

* Model pg(W;|wy.t—_1), the probability
distribution over words given their past
contexts.

* There’s lots of data for this! (In English.)

Pretraining through language modeling:

e Train a neural network to perform language
modeling on a large amount of text.

e Save the network parameters.
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Pretraining / finetuning paradigm

Pretraining can improve NLP applications by serving as parameter initialization.

Step 1: Pretrain (on language modeling) Step 2: Finetune (on your task)
Lots of text; learn general things! Not many labels; adapt to the task!
goes to make tasty tea END @/@

Iroh  goes to make tasty tea ... the movie was ...

COMP579, Lecture 23
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What data to use?

Composition of the Pile by Category

= Academic * Internet = Prose * Dialogue * Misc

Bibliotik
Pile-CC ' BC2

Model Training Data

FublMed Central ATV BERT  BookCorpus, English
Wikipedia
GPT-1  BookCorpus
GPT-3 A CommonCrawl, WebText,
StackExchange English Wikipedia, and 2
PMA book databases (“Books 1”

Freelaw USPTO h|| NIH |OpenWebText2 Wikipedia and “Books 2”)

GPT- Undisclosed
3.5+
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GPT (Devlin et al, 2018)

2018’s GPT was a big success in pretraining a decoder!

Transformer decoder with 12 layers, 117M parameters.

768-dimensional hidden states, 3072-dimensional feed-forward hidden layers.
Byte-pair encoding with 40,000 merges

Trained on BooksCorpus: over 7000 unique books.

* Contains long spans of contiguous text, for learning long-distance dependencies.

The acronym “GPT” never showed up in the original paper; it could stand for
“Generative PreTraining” or “Generative Pretrained Transformer”

COMP579, Lecture 23
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Deep RL from Human Feedback (Christiano et al, 2017)

predicted
rewa rd/

RL algorithm

reward predictor [«

) observak

human

feedback

«

»
>

action

environment

e People provide a preference among two choices

e Assuming there is a latent variable explaining the choice, reward is fit
using maximum likelihood (Bradley-Terry model)

e Cf. https://arxiv.org/pdf/1706.03741.pdf
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Bradely-Terry reward model

e Collect data from human raters (pairs of ¥, y; responses to a prompt
x)

e Optimize the expected value of:

—log(o(re(x, Yuw) — rel(x,v1)))

wrt reward parameter vector 6
e Cf. Ouyang et al, InstructGPT

e Corresponds to maximum likelihood fitting of binomial preference
function if reward is linear over the variables
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Optimizing Preferences: Setup

e An agent interacting with an environment receives observations for a set
O and performs action from set A

e A history h; is a sequence of observation-action pairs (0g, ag, 01, a1, - . . 0¢)
e A policy 7 is a mapping from histories to actions: 7 : H — A
e Consider a binary relation over trajectory distributions <

e A policy m in an environment e induces a probability distribution over
trajectories, D™

e See Colaco-Carr et al, AISTATS'2024 (https://arxiv.org/abs/2311.01990)
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Preference Relations and Their Properties

e We will formalize preference relations through pre-orders

e For trajectory distributions A and B, A < B means is that B is at least
as preferred as A

e < is a pre-order if it satisfies:

— Reflexivity: A X A
— Transitivity:if A< B and B<C the A<C

e A pre-order is total if forand A, B, A<Band B=< A
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Direct Preference Process

e A Direct Preference Process is a tuple O, A, T, e, < where:

— O is an observation set

— A is an action set

— T is a time horizon

— e is an environment (transition function from achievable history-action
pairs to the next observation)

— = is a binary (preference) relation over trajectory distributions

e < is expressible through a reward function r : H — R if:
T T

VA,B,A=Bifandonly if E4 | r(H:)| <Ep|> r(H)

t=0 t=0
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Preference Relations and Their Properties

e A total pre-order is consistent if

Va € (0,1),VA,B,C/A<B — aA+(1—a)C 2aB+ (1—-a)C
e A total pre-order is convex if

Va € (0,1),VA,B,C, A < B. if and only if tdA+(1—a)C < aB+(1—a)C
e A total pre-order has the interpolation property if

VA,B,C,A =< B and B < C implies da € (0,1),0A+ (1 — a)C ~ B

e Von Neumann-Morgenstern theorem: if all the above hold, < can be
expressed by a utility function
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When Are Preferences Representable By Reward
Functions?

e Main result

— If convexity and/or interpolation do not hold, =< is NOT is expressible

through a reward function
— However, total consistent pre-orders have deterministic optimal policy!

e [ he latter situation is not exotic or rarel
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Examples when Optimal Policies Exist Without Rewards

Total consistent convex pre-order not satisfying interpolation: tie-

breaking criteria

— Use a first criterion, if tied go to a second criterion
— See not flooding vs water in second reservoir in power plant example

e Jotal consistent pre-order that is non-convex: excess risk

— If risky event does not occur, linear utility
— Risky event occurring entails exponential penalty
— No flooding neighbouring areas in power plant example
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How Do We Compute Optimal Policies?

e |f < is a total consistent pre-order and a policy 7 satisfies the following
for any attainable history h;, ¢ < T and any action a;:

D™ (hs - az) < D™ (hy)

then 7 is <-optimal
e So we are justified to do policy search!

o |f < is expressible through a reward function, value iteration is a direct
consequence of this result
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Discussion

e Nice to know that aproaches such as direct preference optimization are
justified

e Our results are currently on distributions - working on sample-based
extensions

e If we can fit a reward function, should we?
— Bias-variance trade-off? Sample complexity considerations?

e What can we do if other properties of pre-orders are violated?
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Learning with non-transitive preferences: NashLLM

e Objective:find a policy 7* which is preferred over any other policy

. /
7 = argmax min P(n" < )
7T 7'("

e Think of this as a game: one player picks 7 the other picks 7’
e When both players use 7* this is a Nash equilibrium for the game

e For this game an equilibrium exists (even if eg preferences are not
transitive)

e Cf. Munos et al, 2024 (https://arxiv.org/pdf/2312.00886.pdf)
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NashLLM-style algorithms

e Fit a two-argument preference function by supervised learning

e Decide what is the set of opponent policies

e |deally, the max player should play against a mixture of past policies

e Optimize using eg online mirror descent, convex-concave optimization...

e A lot of algorithmic variations to explore!
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NashLLM results

0.80 -
0.9 A MM W '
0.75 -
0.8 - 0.70 -
g g
2 07 - 5 065 1
£ <
0.60 -
0.6 -
= Preference Model XL 055 1 = Preference Model XL
0.5 - == Reward Model XL == Reward Model XL
0 5000 10000 15000 20000 25000 30000 35000 40000 0 5000 10000 15000 20000 25000 30000 35000 40000
Leamning Steps Leaming Steps

Using preferences instead of rewards leads to less overfitting
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