

Inverse RL:

Given π^* and T, can we recover R? More generally, given execution traces, can we recover R?

Motivation for inverse RL

- Scientific inquiry
 - Model animal and human behavior
 - E.g., bee foraging, songbird vocalization. [See intro of Ng and Russell, 2000 for a brief overview.]
- Apprenticeship learning/Imitation learning through inverse RL
 - Presupposition: reward function provides the most succinct and transferable definition of the task
 - Has enabled advancing the state of the art in various robotic domains
- Modeling of other agents, both adversarial and cooperative

Problem setup

Input:

- State space, action space
- Transition model $P_{sa}(s_{t+1} | s_t, a_t)$
- *No* reward function
- Teacher's demonstration: s₀, a₀, s₁, a₁, s₂, a₂, ...
 (= trace of the teacher's policy π*)
- Inverse RL:
 - Can we recover *R* ?
- Apprenticeship learning via inverse RL
 - Can we then use this *R* to find a good policy ?
- Behavioral cloning
 - Can we directly learn the teacher's policy using supervised learning?

Behavioral cloning

Formulate as standard machine learning problem

- Fix a policy class
 - E.g., support vector machine, neural network, decision tree, deep belief net, ...
- Estimate a policy (=mapping from states to actions) from the training examples (s₀, a₀), (s₁, a₁), (s₂, a₂), ...

- Two of the most notable success stories:
 - Pomerleau, NIPS 1989: ALVINN
 - Sammut et al., ICML 1992: Learning to fly (flight sim)

Inverse RL vs. behavioral cloning

• Which has the most succinct description: π^* vs. R^* ?

 Especially in planning oriented tasks, the reward function is often much more succinct than the optimal policy.

Inverse RL history

- 1964, Kalman posed the inverse optimal control problem and solved it in the 1D input case
- 1994, Boyd+al.: a linear matrix inequality (LMI) characterization for the general linear quadratic setting
- 2000, Ng and Russell: first MDP formulation, reward function ambiguity pointed out and a few solutions suggested
- 2004, Abbeel and Ng: inverse RL for apprenticeship learning---reward feature matching
- 2006, Ratliff+al: max margin formulation

Three broad categories of formalizations

- Max margin
- Feature expectation matching
- Interpret reward function as parameterization of a policy class

Basic principle

- Find a reward function R* which explains the expert behaviour.
- Find R* such that

 $\operatorname{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R^{*}(s_{t}) | \pi^{*}\right] \geq \operatorname{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R^{*}(s_{t}) | \pi\right] \quad \forall \pi$

- In fact a convex feasibility problem, but many challenges:
 - R=0 is a solution, more generally: reward function ambiguity
 - We typically only observe expert traces rather than the entire expert policy π^* --- how to compute left-hand side?
 - Assumes the expert is indeed optimal --- otherwise infeasible
 - Computationally: assumes we can enumerate all policies

Feature based reward function

• Let $R(s) = w^{\top} \phi(s)$, where $w \in \Re^n$, and $\phi: S \to \Re^n$.

$$E[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) | \pi] = E[\sum_{t=0}^{\infty} \gamma^{t} w^{\top} \phi(s_{t}) | \pi]$$

$$= w^{\top} E[\sum_{t=0}^{\infty} \gamma^{t} \phi(s_{t}) | \pi]$$

$$= w^{\top} \mu(\pi) \qquad \text{AKA Successor features!}$$
Expected cumulative discounted sum of feature values or "feature expectations"

- Subbing into $E[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi^*] \ge E[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi] \quad \forall \pi$ gives us:
 - Find w^* such that $w^{*\top}\mu(\pi^*) \ge w^{*\top}\mu(\pi) \quad \forall \pi$

Feature based reward function

- Feature expectations can be readily estimated from sample trajectories.
- The number of expert demonstrations required scales with the number of features in the reward function.
- The number of expert demonstration required does *not* depend on
 - Complexity of the expert's optimal policy π^*
 - Size of the state space

Ambiguity

• Standard max margin:

$$\begin{split} \min_{w} \|w\|_{2}^{2} \\ \text{s.t.} \ w^{\top} \mu(\pi^{*}) \geq w^{\top} \mu(\pi) + 1 \quad \forall \pi \end{split}$$

Structured prediction max margin:

$$\begin{split} \min_{w} \|w\|_{2}^{2} \\ \text{s.t.} \ w^{\top} \mu^{(\pi^{*})} \geq w^{\top} \mu(\pi) + m(\pi^{*},\pi) \quad \forall \pi \end{split}$$

- Justification: margin should be larger for policies that are very different from π^* .
- Example: $m(\pi, \pi^*) = number of states in which \pi^* was observed and in which <math>\pi$ and π^* disagree

Expert suboptimality

Structured prediction max margin with slack variables:

$$\min_{w,\xi} \|w\|_2^2 + C\xi$$

s.t. $w^{\top} \mu(\pi^*) \ge w^{\top} \mu(\pi) + m(\pi^*, \pi) - \xi \quad \forall \pi$

 Can be generalized to multiple MDPs (could also be same MDP with different initial state)

$$\min_{w,\xi^{(i)}} \|w\|_2^2 + C \sum_i \xi^{(i)}$$

s.t. $w^\top \mu(\pi^{(i)*}) \ge w^\top \mu(\pi^{(i)}) + m(\pi^{(i)*},\pi^{(i)}) - \xi^{(i)} \quad \forall i,\pi^{(i)}$

Three broad categories of formalizations

- Max margin (Ratliff+al, 2006)
 - Feature boosting [Ratliff+al, 2007]
 - Hierarchical formulation [Kolter+al, 2008]
- Feature expectation matching (Abbeel+Ng, 2004)
 - *Two player game formulation of feature matching* (*Syed+Schapire, 2008*)
 - Max entropy formulation of feature matching (Ziebart+al,2008)
- Interpret reward function as parameterization of a policy class. (Neu+Szepesvari, 2007; Ramachandran+Amir, 2007; Baker, Saxe, Tenenbaum, 2009; Mombaur, Truong, Laumond, 2009)

Feature matching

 Inverse RL starting point: find a reward function such that the expert outperforms other policies

Let $R(s) = w^{\top} \phi(s)$, where $w \in \Re^n$, and $\phi: S \to \Re^n$.

Find w^* such that $w^{*\top}\mu(\pi^*) \ge w^{*\top}\mu(\pi) \quad \forall \pi$

• Observation in Abbeel and Ng, 2004: for a policy π to be guaranteed to perform as well as the expert policy π^* , it suffices that the feature expectations match:

$$\|\mu(\pi) - \mu(\pi^*)\|_1 \le \epsilon$$

implies that for all w with $||w||_{\infty} \leq 1$:

$$|w^{*\top}\mu(\pi) - w^{*\top}\mu(\pi^*)| \le \epsilon$$

Apprenticeship learning [Abbeel & Ng, 2004]

- Assume $R_w(s) = w^{\top} \phi(s)$ for a feature map $\phi : S \to \Re^n$.
- Initialize: pick some controller π_0 .
- Iterate for i = 1, 2, ...:

• "Guess" the reward function:

Find a reward function such that the teacher maximally outperforms all previously found controllers.

$$\max_{\substack{\gamma, w: \|w\|_2 \leq 1}} \gamma$$

s.t. $w^\top \mu(\pi^*) \geq w^\top \mu(\pi) + \gamma \quad \forall \pi \in \{\pi_0, \pi_1, \dots, \pi_{i-1}\}$

- Find optimal control policy π_i for the current guess of the reward function R_w .
- If $\gamma \leq \varepsilon/2$ exit the algorithm.

Reward function parameterizing the policy class

Recall:

$$V^{*}(s;R) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s,a) V^{*}(s;R)$$
$$Q^{*}(s,a;R) = R(s) + \gamma \sum_{s'} P(s'|s,a) V^{*}(s;R)$$

Let's assume our expert acts according to:

$$\pi(a|s;R,\alpha) = \frac{1}{Z(s;R,\alpha)} \exp(\alpha Q^*(s,a;R))$$

Then for any R and α, we can evaluate the likelihood of seeing a set of state-action pairs as follows:

$$P((s_1, a_1)) \dots P((s_m, a_m)) = \frac{1}{Z(s_1; R, \alpha)} \exp(\alpha Q^*(s_1, a_1; R)) \dots \frac{1}{Z(s_m; R, \alpha)} \exp(\alpha Q^*(s_m, a_m; R))$$

Reward function parameterizing the policy class --- deterministic systems

- Assume deterministic system x_{t+1} = f(x_t, u_t) and an observed trajectory (x₀*, x₁*, ..., x_T*)
- Find reward function by solving:

$$\begin{split} \min_{w} & \sum_{t=0}^{T} \|x_{t}^{*} - x_{t}^{w}\|_{2} \\ \text{s.t.} & x^{w} \text{is the solution of:} \\ & \max_{x} \sum_{t=0}^{T} \sum_{i} w_{i} \phi_{i}(x_{t}) \\ & \text{s.t.} x_{t+1} = f(x_{t}, u_{t}) \\ & x_{0} = x_{0}^{*}, \quad x_{T} = x_{T}^{*} \end{split}$$

[Mombaur, Truong, Laumond, 2009]

Parking lot navigation

- Reward function trades off:
 - Staying "on-road,"
 - Forward vs. reverse driving,
 - Amount of switching between forward and reverse,
 - Lane keeping,
 - On-road vs. off-road,
 - Curvature of paths.

[Abbeel et al., IROS 08]

Experimental setup

Demonstrate parking lot navigation on "train parking lots."

- Run our apprenticeship learning algorithm to find the reward function.
- Receive "test parking lot" map + starting point and destination.
- Find the trajectory that maximizes the *learned reward function* for navigating the test parking lot.

Nice driving style

Sloppy driving-style

"Don't mind reverse" driving-style

