
High-level picture

Dynamics 
Model T

Reinforcement

Probability 
distribution over next 
states given current 

state and actionDescribes desirability 
of being in a state.  

Reward 
Function R

Reinforcement
Learning / 

Optimal Control

Controller/
Policy π∗

Prescribes action to 
take for each state

Inverse RL: 
Given π*and T, can we recover R?
More generally, given execution traces, can we recover R?



 Scientific inquiry

 Model animal and human behavior
 E.g., bee foraging, songbird vocalization.  [See intro of Ng 

and Russell, 2000 for a brief overview.]

 Apprenticeship learning/Imitation learning through 

Motivation for inverse RL

Apprenticeship learning/Imitation learning through 
inverse RL

 Presupposition: reward function provides the most 
succinct and transferable definition of the task

 Has enabled advancing the state of the art in various 
robotic domains

 Modeling of other agents, both adversarial and 
cooperative



 Input: 
 State space, action space

 Transition model   Psa(st+1 | st, at)

 No reward function

 Teacher’s demonstration: s0, a0, s1, a1, s2, a2, …
(= trace of the teacher’s policy π*)

Problem setup

(= trace of the teacher’s policy π*)

 Inverse RL: 
 Can we recover R ?

 Apprenticeship learning via inverse RL
 Can we then use this R to find a good policy ?

 Behavioral cloning
 Can we directly learn the teacher’s policy using supervised learning?



 Formulate as standard machine learning problem

 Fix a policy class
 E.g., support vector machine, neural network, decision tree, 

deep belief net, … 

 Estimate a policy (=mapping from states to actions) 
from the training examples  (s , a ), (s , a ), (s , a ), …

Behavioral cloning

from the training examples  (s0, a0), (s1, a1), (s2, a2), …

 Two of the most notable success stories:

 Pomerleau,  NIPS 1989: ALVINN 

 Sammut et al., ICML 1992: Learning to fly (flight sim)



 Which has the most succinct description: ππππ* vs. RRRR*?

 Especially in planning oriented tasks, the reward function 
is often much more succinct than the optimal policy.

Inverse RL vs. behavioral cloning

is often much more succinct than the optimal policy.



 1964, Kalman posed the inverse optimal control problem 
and solved it in the 1D input case

 1994, Boyd+al.: a linear matrix inequality (LMI) 
characterization for the general linear quadratic setting 

 2000, Ng and Russell: first MDP formulation, reward 

Inverse RL history

 2000, Ng and Russell: first MDP formulation, reward 
function ambiguity pointed out and a few solutions 
suggested

 2004, Abbeel and Ng: inverse RL for apprenticeship 
learning---reward feature matching

 2006, Ratliff+al: max margin formulation



Three broad categories of formalizations

 Max margin 

 Feature expectation matching 

 Interpret reward function as parameterization of a policy class



 Find a reward function R* which explains the expert 
behaviour.

 Find R* such that

In fact a convex feasibility problem, but many challenges:

Basic principle

E[
∞

t=0 γtR∗(st)|π∗] ≥ E[
∞

t=0 γtR∗(st)|π] ∀π

 In fact a convex feasibility problem, but many challenges:
 R=0 is a solution, more generally: reward function ambiguity

 We typically only observe expert traces rather than the entire expert 
policy π* --- how to compute left-hand side?

 Assumes the expert is indeed optimal --- otherwise infeasible

 Computationally: assumes we can enumerate all policies



 ff

Feature based reward function

Let R(s) = w⊤φ(s), where w ∈ ℜn, and φ : S → ℜn.

E[

∞

t=0

γtR(st)|π] = E[

∞

t=0

γtw⊤φ(st)|π]

= w⊤E[
∞

t=0

γtφ(st)|π]

 Subbing into

gives us:  



t=0

|

= w⊤µ(π)

Expected cumulative discounted sum of 
feature values or “feature expectations”

E[
∞

t=0 γtR∗(st)|π∗] ≥ E[
∞

t=0 γtR∗(st)|π] ∀π

Find w∗ such that w∗⊤µ(π∗) ≥ w∗⊤µ(π) ∀π

Doina Precup
AKA Successor features!



Feature based reward function

Let R(s) = w⊤φ(s), where w ∈ ℜn, and φ : S → ℜn.
Find w∗ such that w∗⊤µ(π∗) ≥ w∗⊤µ(π) ∀π

E[
∞

t=0 γtR∗(st)|π∗] ≥ E[
∞

t=0 γtR∗(st)|π] ∀π

 Feature expectations can be readily estimated from sample trajectories.

 The number of expert demonstrations required scales with the number 
of features in the reward function.

 The number of expert demonstration required does not depend on

 Complexity of the expert’s optimal policy π*

 Size of the state space



 Standard max margin:

 “Structured prediction” max margin: 

Ambiguity

min
w
∥w∥22

s.t. w⊤µ(π∗) ≥ w⊤µ(π) + 1 ∀π

 “Structured prediction” max margin: 

 Justification: margin should be larger for policies that are 
very different from π*.

 Example: m(π, π*) = number of states in which π* was 
observed and in which π and π* disagree

min
w
∥w∥22

s.t. w⊤µ(π∗) ≥ w⊤µ(π) +m(π∗, π) ∀π



 Structured prediction max margin with slack variables:

Expert suboptimality

min
w,ξ

∥w∥22 + Cξ

s.t. w⊤µ(π∗) ≥ w⊤µ(π) +m(π∗, π)− ξ ∀π

 Can be generalized to multiple MDPs (could also be same 
MDP with different initial state)

min
w,ξ(i)

∥w∥22 + C


i

ξ(i)

s.t. w⊤µ(π(i)∗) ≥ w⊤µ(π(i)) +m(π(i)∗, π(i))− ξ(i) ∀i, π(i)



Three broad categories of formalizations

 Max margin (Ratliff+al, 2006)

 Feature boosting [Ratliff+al, 2007]

 Hierarchical formulation [Kolter+al, 2008]

 Feature expectation matching (Abbeel+Ng, 2004) Feature expectation matching (Abbeel+Ng, 2004)
 Two player game formulation of feature matching 

(Syed+Schapire, 2008)
 Max entropy formulation of feature matching (Ziebart+al,2008)

 Interpret reward function as parameterization of a policy class. 
(Neu+Szepesvari, 2007; Ramachandran+Amir, 2007; Baker, Saxe, 
Tenenbaum, 2009; Mombaur, Truong, Laumond, 2009)



 Inverse RL starting point: find a reward function such 
that the expert outperforms other policies

Feature matching

Let R(s) = w⊤φ(s), where w ∈ ℜn, and φ : S → ℜn.

Find w∗ such that w∗⊤µ(π∗) ≥ w∗⊤µ(π) ∀π

 Observation in Abbeel and Ng, 2004: for a policy π to be 
guaranteed to perform as well as the expert policy π*, it 
suffices that the feature expectations match:

implies that for all w with        

∥µ(π)− µ(π∗)∥1 ≤ ǫ

∥w∥∞ ≤ 1:

|w∗⊤µ(π)− w∗⊤µ(π∗)| ≤ ǫ



Apprenticeship learning [Abbeel & Ng, 2004]

 Assume 

 Initialize: pick some controller π0.

 Iterate for i = 1, 2, … :

 “Guess” the reward function:  

Find a reward function such that the teacher maximally outperforms  Find a reward function such that the teacher maximally outperforms  
all previously found controllers.  

 Find optimal control policy πi for the current guess of the reward 
function Rw.

 If          , exit the algorithm.



 Recall:

Reward function parameterizing the 
policy class

V ∗(s;R) = R(s) + γmax
a



s′

P (s′|s, a)V ∗(s;R)

Q∗(s, a;R) = R(s) + γ


s′

P (s′|s, a)V ∗(s;R)

 Let’s assume our expert acts according to:

 Then for any R and α, we can evaluate the likelihood of 
seeing a set of state-action pairs as follows:

π(a|s;R, α) =
1

Z(s;R, α)
exp(αQ∗(s, a;R))

P ((s1, a1)) . . . P ((sm, am)) =
1

Z(s1;R, α)
exp(αQ∗(s1, a1;R)) . . .

1

Z(sm;R, α)
exp(αQ∗(sm, am;R))



 Assume deterministic system xt+1 = f(xt, ut) and an 
observed trajectory (x0*, x1*, …, xT*)

 Find reward function by solving:

Reward function parameterizing the policy 
class --- deterministic systems

minw
T

t=0 ∥x∗t − xwt ∥2
s.t. xwis the solution of:

maxx
T

t=0


i wiφi(xt)

s.t.xt+1 = f(xt, ut)

x0 = x∗0, xT = x∗T

[Mombaur, Truong, Laumond, 2009]



Parking lot navigation

[Abbeel et al., IROS 08]

 Reward function trades off: 
 Staying “on-road,”
 Forward vs. reverse driving,
 Amount of switching between forward and reverse, 
 Lane keeping,
 On-road vs. off-road,
 Curvature of paths.



 Demonstrate parking lot navigation on “train parking lots.”

Experimental setup

 Run our apprenticeship learning algorithm to find the reward 
function.

 Receive “test parking lot” map + starting point and 
destination. 

 Find the trajectory that maximizes the learned reward 
function for navigating the test parking lot.



Nice driving style



Sloppy driving-style



“Don’t mind reverse” driving-style


