
Learning Decisions from Preferences

Doina Precup

COMP579, Lecture 22, part 2



Example: Power Plant Control

Optimizing Energy Production Using Policy Search and
Predictive State Representations

Yuri Grinberg, Doina Precup Michel Gendreau
School of Computer Science, McGill University,
Canada

NSERC/Hydro-Québec Industrial Research Chair on the Stochastic Optimization of Electricity Generation,
CIRRELT and Département de Mathématiques et de Génie Industriel, École Polytechnique de Montréal.

Abstract
We consider the challenging practical problem of optimizing the
power production of a complex of hydroelectric power plants,
which involves control over three continuous action variables, un-
certainty in the amount of water inflows and a variety of constraints
that need to be satisfied. We propose a policy-search-based ap-
proach coupled with predictive modelling to address this problem.
This approach has some key advantages compared to other alterna-
tives, such as dynamic programming: the policy representation and
search algorithm can conveniently incorporate domain knowledge;
the resulting policies are easy to interpret, and the algorithm is nat-
urally parallelizable. Our algorithm obtains a policy which outper-
forms the solution found by dynamic programming both quantita-
tively and qualitatively.

Hydroelectric Power Plant
Plant Architecture:

• 3 turbines to control (con-
tinuous variables), one per
reservoir

• turbine R1 is controlled by
the water flow

• (stochastic) ground water
inflows

• weekly time steps

• objective: maximize aver-
age annual power production
while satisfying constraints
(see below)

Constraints in the order of priority:

1. Minimum turbine speed at R1:

2. Stable turbine speeds at R1 ( ±35m3/s) during weeks 43-45

3. Minimum water volume at reservoir R2 : 1360hm3

Modeling Inflows Stochastic Process
Water inflows are highly uncertain!

Challenges:

• Large inflows spill water to avoid reservoir
overflow (wasted resources)

• Small inflows risk of violating constraints 1 & 3

• Volatile inflows risk of violating constraint 2

Use Mixed Observable Predic-
tive State Representations (MO-
PSR) formalism [1] - well suited
for modeling periodic processes.

Policy Search Solution
Reward = annual power produced + penalty for constraint violations
Policy (per tubine) = trucated linear function of features
Features = amount of water in reservoirs, average inflow predictions

The algorithm performs local random search within different sub-
sets of policy parameters. Line search is then done in the direction
of improvement.

1: repeat
2: Call for SEARCHWITHINBLOCK(✓, I) with various predefined choices for I
3: until no improvement
4:
5: procedure SEARCHWITHINBLOCK(✓, I) . I, Ic - an index set and its complement
6: repeat
7: Obtain n samples {�i ⇠ N (0, �I)}i2{1,...,n}
8: Evaluate policies defined by parameters {{✓Ic , ✓I + �i}}i2{1,...,n} (in parallel)

9: if Ê(R{✓Ic ,✓I+�i}) > Ê(R✓) + Threshold then

10: Find ↵⇤ = arg max↵ Ê(R{✓Ic ,✓I+↵�i}) using a line search
11: ✓  {✓Ic , ✓I + ↵⇤�i}
12: until no improvement for N consecutive iterations
13: return ✓

Empirical Evaluation
Comparison with current industry solution (DP)

Quantitative
comparison

Mean-prod R1 v.% R1 43-
45 v.%

R1 43-45
v. mean

R2 v.%

DP 8,251GW 0% 22% 11 0%
PS no pred 8,286GW 0% 28% 2.6 1.8%
PS with pred 8,290GW 0% 3.7% 0.5 1.8%

Conclusion
X Easy to incorporate domain knowledge into policy search

X Predictive State Representations provide useful features

X Interpretable solutions

X Easy to implement the search algorithm

X Scalable using parallel computing resources
[1] Ong, S., Grinberg, Y., Pineau, J. (2013). Mixed Observability Predictive State Representations. In Proc. of 27th AAAI Conference on
Artificial Intelligence.
* We thank Grégory Emiel and Laura Fagherazzi of Hydro-Québec for many helpful discussions and for providing access to the
simulator and their DP results, and Kamran Nagiyev for porting an initial version of the simulator to Java. This research was supported
by the NSERC/Hydro-Québec Industrial Research Chair on the Stochastic Optimization of Electricity Generation, and by the NSERC
Discovery Program.

Cf. Grinberg et al, 2014; collaboration with Hydro Quebec

• Major: sufficient flow needs to be maintained to allow easy passage for fish

• Major: stable turbine speed throughout weeks 43-45 to allow fish spawning

• Minor: amount of water in second reservoir should be above a minimum

Reward function can be quite hard to formulate!

COMP579, Lecture 22, part 2 1



How to Solve Power Plant Control?

• Spent a lot of time trying to craft a reward function that captures the
objective

• Reward hacking is a major issue

• Tried various constrained and risk-sensitive optimization (hyper-
parameter tuning is no better than fitting rewards)

• Ended up doing randomized policy search!

COMP579, Lecture 22, part 2 2



Learning from Human Feedback (Knox, 2012)
Teaching an Agent Manually via 

Evaluative Reinforcement (TAMER) 

sDelayed reward Action
State

Sensory 
display

Reward 
model

Action

Supervised 
learner

Credit 
assigner

Action 
selector

samples

Human Environment

TAMER 
agent

Ĥ : S ⇥ A ! R

H : S ⇥ A ! R

a

a

h
Environment 

Agent 

(State, Reward) Action 

TAMER 15 

ICDL 2008 and K-CAP 2009 

If greedy: 

• Numerical reward is a high-variance signal even when learned

COMP579, Lecture 22, part 2 3



Deep RL from Human Feedback (Christiano et al, 2017)

An alternative approach is to allow a human to provide feedback on our system’s current behavior
and to use this feedback to define the task. In principle this fits within the paradigm of reinforcement
learning, but using human feedback directly as a reward function is prohibitively expensive for RL
systems that require hundreds or thousands of hours of experience. In order to practically train deep
RL systems with human feedback, we need to decrease the amount of feedback required by several
orders of magnitude.

Our approach is to learn a reward function from human feedback and then to optimize that reward
function. This basic approach has been considered previously, but we confront the challenges involved
in scaling it up to modern deep RL and demonstrate by far the most complex behaviors yet learned
from human feedback.

In summary, we desire a solution to sequential decision problems without a well-specified reward
function that

1. enables us to solve tasks for which we can only recognize the desired behavior, but not
necessarily demonstrate it,

2. allows agents to be taught by non-expert users,

3. scales to large problems, and

4. is economical with user feedback.

RL algorithm environment

observation

action

human 
feedback

reward predictorpredicted
reward

Figure 1: Schematic illustration of our approach:
the reward predictor is trained asynchronously
from comparisons of trajectory segments, and the
agent maximizes predicted reward.

Our algorithm fits a reward function to the hu-
man’s preferences while simultaneously training
a policy to optimize the current predicted reward
function (see Figure 1). We ask the human to
compare short video clips of the agent’s behav-
ior, rather than to supply an absolute numerical
score. We found comparisons to be easier for hu-
mans to provide in some domains, while being
equally useful for learning human preferences.
Comparing short video clips is nearly as fast as
comparing individual states, but we show that
the resulting comparisons are significantly more
helpful. Moreover, we show that collecting feed-
back online improves the system’s performance
and prevents it from exploiting weaknesses of
the learned reward function.

Our experiments take place in two domains: Atari games in the Arcade Learning Environment (Belle-
mare et al., 2013), and robotics tasks in the physics simulator MuJoCo (Todorov et al., 2012). We
show that a small amount of feedback from a non-expert human, ranging from fifteen minutes to five
hours, suffices to learn most of the original RL tasks even when the reward function is not observable.
We then consider some novel behaviors in each domain, such as performing a backflip or driving
with the flow of traffic. We show that our algorithm can learn these behaviors from about an hour of
feedback—even though it is unclear how to hand-engineer a reward function that would incentivize
them.

1.1 Related Work

A long line of work studies reinforcement learning from human ratings or rankings, including Akrour
et al. (2011), Pilarski et al. (2011), Akrour et al. (2012), Wilson et al. (2012), Sugiyama et al. (2012),
Wirth and Fürnkranz (2013), Daniel et al. (2015), El Asri et al. (2016), Wang et al. (2016), and
Wirth et al. (2016). Other lines of research considers the general problem of reinforcement learning
from preferences rather than absolute reward values (Fürnkranz et al., 2012; Akrour et al., 2014),
and optimizing using human preferences in settings other than reinforcement learning (Machwe and
Parmee, 2006; Secretan et al., 2008; Brochu et al., 2010; Sørensen et al., 2016).

Our algorithm follows the same basic approach as Akrour et al. (2012) and Akrour et al. (2014). They
consider continuous domains with four degrees of freedom and small discrete domains, where they
can assume that the reward is linear in the expectations of hand-coded features. We instead consider

2

• People provide a preference among two choices

• Assuming there is a latent variable explaining the choice, reward is fit
using maximum likelihood (Bradley-Terry model)

• Cf. https://arxiv.org/pdf/1706.03741.pdf

COMP579, Lecture 22, part 2 4



Bradely-Terry reward model

• Collect data from human raters (pairs of yw, yl responses to a prompt
x)

• Optimize the expected value of:

− log(σ(rθ(x, yw)− rθ(x, yl)))

wrt reward parameter vector θ

• Cf. Ouyang et al, InstructGPT

• Corresponds to maximum likelihood fitting of binomial preference
function if reward is linear over the variables

COMP579, Lecture 22, part 2 5



Direct Preference Optimization

Preference
dataset

Unlabeled
dataset

Preference-reward
modeling

Preference
model

Unlabeled
dataset

DPPO (Ours)

Agent
Preference

dataset

Reward
model

Preference
model

Reward-based
RL

Agent

Figure 1: An overview of the difference between our
approach (below) and the baselines (top). Our approach
does not require modeling the reward from the prefer-
ence predictor as our policy optimization algorithm can
learn directly from preference labels.

Figure 2: Predicted reward vs. true reward
on the Hopper environment when using
a reward model from PbRL [27]. The re-
ward model fails to accurately capture the
underlying reward structure.

Recent PbRL methods take a two-step approach: they first learn a reward model from the given
preference dataset and then run off-the-shelf reinforcement learning algorithms on top of the learned
reward model [10, 31, 40]. However, acquiring an accurate reward model only from preference labels,
typically provided by human teachers, poses a significant challenge as it is unclear how to extract
the underlying reward structure from preference. Current methods rely on modeling the reward with
certain specific assumptions, though there are some concerns regarding whether those assumptions
hold in practice [13, 27].

Alternatively, predicting the preference itself is comparatively more straightforward since we have
direct access to training labels, allowing us to leverage powerful techniques from supervised learning.
Building upon this observation, we introduce a PbRL algorithm that bypasses the need for reward
function modeling by directly learning from preference labels. Our approach begins by devising a
policy scoring metric that assigns high scores to policies aligning with the provided preference dataset.
Concretely, the PbRL objective is formulated as a contrastive learning problem, guiding the learned
policy to be closer to more preferred trajectory segments while distancing itself from the less preferred
ones [9, 20]. Furthermore, we enhance the performance of the preference predictors from previous
works by introducing a novel prediction smoothness regularizer. Experiment results on offline RL
settings with actual human preference labels show that the proposed algorithm outperforms or is on
par with the baselines on all of the tasks considered [16]. Notably, in high-dimensional control tasks,
our algorithm outperforms offline RL methods that utilize ground-truth reward information. Moreover,
our preliminary experiments show that our algorithm can be successfully applied for fine-tuning large
language models. Our official code is available at https://github.com/snu-mllab/DPPO.

2 Preliminaries

2.1 Preference-based reinforcement learning

Reinforcement learning considers an environment formulated as a Markov Decision Process (MDP)
defined by a tuple (S, A, T, R, p0, H), where S is a state space, A is an action space, T (s0|s,a) is
the state transition dynamics, R(s,a) is the reward function, p0(s) is the initial state distribution, and
H is the time horizon. The goal of reinforcement learning is to learn a policy ⇡ that optimizes the
expected return:

J(⇡) = Es0⇠p0,at⇠⇡(·|st),st+1⇠T (·|st,at)

"
HX

t=0

rt

#
.

Conventional RL assumes the reward information (rt) is given and uses this to optimize their
policy. However, finding a suitable reward metric can be costly in many real-world scenarios.

2

• Cf. An et al, NeurIPS’2023 (https://arxiv.org/pdf/2301.12842.pdf)

• Direct preference optimization (Rafailov et al, NeurIPS’2023,
https://arxiv.org/pdf/2305.18290.pdf)

• Several other almost-concurrent papers in this space

COMP579, Lecture 22, part 2 6



Optimizing Preferences: Setup

• An agent interacting with an environment receives observations for a set
O and performs action from set A
• A history ht is a sequence of observation-action pairs 〈o0, a0, o1, a1, . . . ot〉
• A policy π is a mapping from histories to actions: π : H → A
• Consider a binary relation over trajectory distributions �
• A policy π in an environment e induces a probability distribution over

trajectories, Dπ

• See Colaco-Carr et al, AISTATS’2024 (https://arxiv.org/abs/2311.01990)

COMP579, Lecture 22, part 2 7



Preference Relations and Their Properties

• We will formalize preference relations through pre-orders

• For trajectory distributions A and B, A � B means is that B is at least
as preferred as A

• � is a pre-order if it satisfies:

– Reflexivity: A � A
– Transitivity:if A � B and B � C the A � C

• A pre-order is total if for and A, B, A � B and B � A

COMP579, Lecture 22, part 2 8



Direct Preference Process

• A Direct Preference Process is a tuple O,A, T, e,� where:

– O is an observation set
– A is an action set
– T is a time horizon
– e is an environment (transition function from achievable history-action

pairs to the next observation)
– � is a binary (preference) relation over trajectory distributions

• � is expressible through a reward function r : H → R if:

∀A,B,A � B if and only if EA

[
T∑

t=0

r(Ht)

]
≤ EB

[
T∑

t=0

r(Ht)

]

COMP579, Lecture 22, part 2 9



Preference Relations and Their Properties

• A total pre-order is consistent if

∀α ∈ (0, 1),∀A,B,C,A � B =⇒ αA+ (1− α)C � αB + (1− α)C

• A total pre-order is convex if

∀α ∈ (0, 1),∀A,B,C,A � B. if and only if αA+(1−α)C � αB+(1−α)C

• A total pre-order has the interpolation property if

∀A,B,C,A � B and B � C implies ∃α ∈ (0, 1), αA+ (1− α)C ∼ B

• Von Neumann-Morgenstern theorem: if all the above hold, � can be
expressed by a utility function

COMP579, Lecture 22, part 2 10



When Are Preferences Representable By Reward
Functions?

• Main result

– If convexity and/or interpolation do not hold, � is NOT is expressible
through a reward function

– However, total consistent pre-orders have deterministic optimal policy!

• The latter situation is not exotic or rare!

COMP579, Lecture 22, part 2 11



Examples when Optimal Policies Exist Without Rewards

• Total consistent convex pre-order not satisfying interpolation: tie-
breaking criteria

– Use a first criterion, if tied go to a second criterion
– See not flooding vs water in second reservoir in power plant example

• Total consistent pre-order that is non-convex: excess risk

– If risky event does not occur, linear utility
– Risky event occurring entails exponential penalty
– No flooding neighbouring areas in power plant example

COMP579, Lecture 22, part 2 12



How Do We Compute Optimal Policies?

• If � is a total consistent pre-order and a policy π satisfies the following
for any attainable history ht, t < T and any action at:

Dπ(ht · at) � Dπ(ht)

then π is �-optimal

• So we are justified to do policy search!

• If � is expressible through a reward function, value iteration is a direct
consequence of this result

COMP579, Lecture 22, part 2 13



Discussion

• Nice to know that aproaches such as direct preference optimization are
justified

• Our results are currently on distributions - working on sample-based
extensions

• If we can fit a reward function, should we?

– Bias-variance trade-off? Sample complexity considerations?

• What can we do if other properties of pre-orders are violated?

COMP579, Lecture 22, part 2 14



Learning with non-transitive preferences: NashLLM

• Objective:find a policy π∗ which is preferred over any other policy

π∗ = argmax
π

min
π′

P(π′ � π)

• Think of this as a game: one player picks π the other picks π′

• When both players use π∗ this is a Nash equilibrium for the game

• For this game an equilibrium exists (even if eg preferences are not
transitive)

• Cf. Munos et al, 2024 (https://arxiv.org/pdf/2312.00886.pdf)

COMP579, Lecture 22, part 2 15



NashLLM-style algorithms

• Fit a two-argument preference function by supervised learning

• Decide what is the set of opponent policies

• Ideally, the max player should play against a mixture of past policies

• Optimize using eg online mirror descent, convex-concave optimization...

• A lot of algorithmic variations to explore!

COMP579, Lecture 22, part 2 16



NashLLM results

Nash Learning from Human Feedback

Figure 1 | Learning curves showing the accuracy of preference models of di�erent sizes on the train
set (left) and on the test set (right).

Figure 2 | Learning curves showing the accuracy of a preference model versus the accuracy of a reward
model of the same size on the train set (left) and on the test set (right).

15

Using preferences instead of rewards leads to less overfitting

COMP579, Lecture 22, part 2 17


