Learning Decisions from Preferences
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Example: Power Plant Control

e B 3 turbines to control (con-
tinuous variables), one per
reservoir

o (L] turbine R1 is controlled by
the water flow

e /~_ (stochastic) ground water
inflows

e weekly time steps

e objective: maximize aver-
age annual power production
while satisfying constraints
(see below)

Cf. Grinberg et al, 2014; collaboration with Hydro Quebec

e Major: sufficient flow needs to be maintained to allow easy passage for fish
e Major: stable turbine speed throughout weeks 43-45 to allow fish spawning
e Minor: amount of water in second reservoir should be above a minimum

Reward function can be quite hard to formulate!
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How to Solve Power Plant Control?

e Spent a lot of time trying to craft a reward function that captures the
objective

e Reward hacking is a major issue

e Tried various constrained and risk-sensitive optimization (hyper-
parameter tuning is no better than fitting rewards)

e Ended up doing randomized policy search!
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Learning from Human Feedback (Knox, 2012)

Delayed reward
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e Numerical reward is a high-variance signal even when learned
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Deep RL from Human Feedback (Christiano et al, 2017)
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e People provide a preference among two choices

e Assuming there is a latent variable explaining the choice, reward is fit
using maximum likelihood (Bradley-Terry model)

e Cf. https://arxiv.org/pdf/1706.03741.pdf
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Bradely-Terry reward model

e Collect data from human raters (pairs of ¥, y; responses to a prompt
x)

e Optimize the expected value of:

—log(o(re(x, Yuw) — rel(x,v1)))

wrt reward parameter vector 6
e Cf. Ouyang et al, InstructGPT

e Corresponds to maximum likelihood fitting of binomial preference
function if reward is linear over the variables
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Direct Preference Optimization
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e Cf. An et al, NeurlPS'2023 (https://arxiv.org/pdf/2301.12842.pdf)

e Direct preference optimization (Rafailov et al, NeurlPS5'2023,
https://arxiv.org/pdf/2305.18290.pdf)

e Several other almost-concurrent papers in this space
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Optimizing Preferences: Setup

e An agent interacting with an environment receives observations for a set
O and performs action from set A

e A history h; is a sequence of observation-action pairs (0g, ag, 01, a1, - . . 0¢)
e A policy 7 is a mapping from histories to actions: 7 : H — A
e Consider a binary relation over trajectory distributions <

e A policy m in an environment e induces a probability distribution over
trajectories, D™

e See Colaco-Carr et al, AISTATS'2024 (https://arxiv.org/abs/2311.01990)
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Preference Relations and Their Properties

e We will formalize preference relations through pre-orders

e For trajectory distributions A and B, A < B means is that B is at least
as preferred as A

e < is a pre-order if it satisfies:

— Reflexivity: A X A
— Transitivity:if A< B and B<C the A<C

e A pre-order is total if forand A, B, A<Band B=< A
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Direct Preference Process

e A Direct Preference Process is a tuple O, A, T, e, < where:

— O is an observation set

— A is an action set

— T is a time horizon

— e is an environment (transition function from achievable history-action
pairs to the next observation)

— = is a binary (preference) relation over trajectory distributions

e < is expressible through a reward function r : H — R if:
T T

VA,B,A=Bifandonly if E4 | r(H:)| <Ep|> r(H)

t=0 t=0
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Preference Relations and Their Properties

e A total pre-order is consistent if

Va € (0,1),VA,B,C/A<B — aA+(1—a)C 2aB+ (1—-a)C
e A total pre-order is convex if

Va € (0,1),VA,B,C, A < B. if and only if tdA+(1—a)C < aB+(1—a)C
e A total pre-order has the interpolation property if

VA,B,C,A =< B and B < C implies da € (0,1),0A+ (1 — a)C ~ B

e Von Neumann-Morgenstern theorem: if all the above hold, < can be
expressed by a utility function
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When Are Preferences Representable By Reward
Functions?

e Main result

— If convexity and/or interpolation do not hold, =< is NOT is expressible

through a reward function
— However, total consistent pre-orders have deterministic optimal policy!

e [ he latter situation is not exotic or rarel
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Examples when Optimal Policies Exist Without Rewards

Total consistent convex pre-order not satisfying interpolation: tie-

breaking criteria

— Use a first criterion, if tied go to a second criterion
— See not flooding vs water in second reservoir in power plant example

e Jotal consistent pre-order that is non-convex: excess risk

— If risky event does not occur, linear utility
— Risky event occurring entails exponential penalty
— No flooding neighbouring areas in power plant example
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How Do We Compute Optimal Policies?

e |f < is a total consistent pre-order and a policy 7 satisfies the following
for any attainable history h;, ¢ < T and any action a;:

D™ (hs - az) < D™ (hy)

then 7 is <-optimal
e So we are justified to do policy search!

o |f < is expressible through a reward function, value iteration is a direct
consequence of this result
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Discussion

e Nice to know that aproaches such as direct preference optimization are
justified

e Our results are currently on distributions - working on sample-based
extensions

e If we can fit a reward function, should we?
— Bias-variance trade-off? Sample complexity considerations?

e What can we do if other properties of pre-orders are violated?
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Learning with non-transitive preferences: NashLLM

e Objective:find a policy 7* which is preferred over any other policy

. /
7 = argmax min P(7" < )
7T 7'("

e Think of this as a game: one player picks 7 the other picks 7’
e When both players use 7* this is a Nash equilibrium for the game

e For this game an equilibrium exists (even if eg preferences are not
transitive)

e Cf. Munos et al, 2024 (https://arxiv.org/pdf/2312.00886.pdf)
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NashLLM-style algorithms

e Fit a two-argument preference function by supervised learning

e Decide what is the set of opponent policies

e |deally, the max player should play against a mixture of past policies

e Optimize using eg online mirror descent, convex-concave optimization...

e A lot of algorithmic variations to explore!
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NashLLM results
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Using preferences instead of rewards leads to less overfitting
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